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Abstract: Open-world continual learning (OWCL) aims to simulate real-world scenarios where tasks evolve continuously, categories

change dynamically, and unseen samples are encountered. A well-designed OWCL model is expected not only to retain knowledge of
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learned tasks while acquiring new tasks but also to recognize unknown categories, thus achieving continuous and robust knowledge
accumulation and generalization. However, most existing continual learning methods are built upon the closed-world assumption and
cannot effectively cope with the category uncertainty and inter-task interference introduced by open categories. In particular, they show
clear limitations in balancing knowledge stability and plasticity. Therefore, based on the formal definition of the OWCL problem, this
study proposes a task-aware prompt-driven mixture-of-experts model (TP-MoE), which realizes dynamic modeling of task semantics and
efficient scheduling of expert modules, thus supporting knowledge transfer and knowledge update. Specifically, TP-MoE introduces a plug-
and-play task prompt aggregation mechanism and improves the gating strategy for expert routing, enabling the continual integration of
historical and current task knowledge during task increments. At the same time, an adaptive open-boundary thresholding strategy is
incorporated, which dynamically adjusts the decision boundaries of open categories according to the transfer between new and old
knowledge, thus enhancing both open-category detection capability and known-category classification accuracy. Experimental results
demonstrate that TP-MoE achieves state-of-the-art performance across various metrics on the Split-CIFAR100 and Open-CORe50
benchmarks, exhibiting strong robustness and generalization. This study provides a scalable and transferable framework for knowledge
modeling and task scheduling in open-world continual learning.

Key words: open-world continual learning (OWCL); continual learning; task-aware; mixture-of-experts (MoE) model; knowledge transfer
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ANFFR TR LA 6] & 5% ) 28 B A, 35 BRI AL 73 28 Sk AR 23 28 Sk gt B A T — BT logits 7340
1 5 BURTT R S0 FA 77 1%, A8 F S AR 55 T A 250 I 4K logits 73 #OUE N BRIE, 5 B A fe g 76 a4
B B v A ARG TN AR TR A
4.1 ESBURNRERME R

T BT PR RR 2 ST SE I 3 A, FRATT 1 Jain i B8 A5 Akt Al A A8 25405 18 10 A R SR edE BRAME 55 T 1 3
RN, BEATS  RATE — AT S BUR 32 7R 1B (task-aware prompt pool), PAEES Kk B AN FME S5 B 5138,
IR I 2 EAR KRBT I GRRAZIR7R . [FIRT, HAES % o B HRR B8 g A2 IR R 46, F UEAT ARAR 2, 2%
i ¢ M PR 38 I R AN RTS8 SR J R IR S 2 SRR BT S BUR N SR, BT T —FhRA TH AR
IR G SR, el ARG 55 BUR AR,

AT EIVUTAES ¢ TR p,, BATEWIBR AT - 1 BB F I BIRIER p, « poy, HiE— LS EH
AFESS 1,..., 0= 1 % 2] BRSSO & #4724 00

p=ay. pr-a)p, ®)

o, o o T FVAE 28 S E 74 2525 T I 10 I ROR I FORE 2 B, AR T, U S S0 A B T 1.6 1
AT S5 1AL 5 0 B e, TR AME 5 R RO 4 SR FeBL. Rt i B8, 0118 U228 S T 020 5 e
e SUTTEIR R, BINBALS 1. = | FoR REE A 15 BAE MRS B, Bt i SRR, B B IE
MZIHIT L, ()

Lo () = + - o exp(h- ,ui {T) 9
" Zv:‘ > Z Zy: : D PN  exphp /) v
Horh, H, ¥ BRSNS D B @ R S5 10 2 JE RN RS, = AR E REE S 3, 8RB0
0.4-0.8, . RN FC, ML E T HAZ ).
i, BAMESS T 0 KSR R BT 1 2845k (T 70 28 k2 80 AIE 4 SR 5345 21
Ly (fos ) = L (fo, P1) + A+ Loega (P) 10)
Heh, A S, AT P2 MRS
TE TP FRp 822 o v, I RUAE HESR B B2 TOVR AN TE AR 25 W IR, Rk, ZECRIE T BAMESS T IR 28R G,
BT B R TIAE S5 AR IR 0l AU B8 7, RIS 5 Bl T JCH: S 45 8 2 =) A5 B i g 22 2 6 2R R AR SR S 01 1)
PRI T
Bl 82Tk TR SR IR, AT BUR RIS B 73 252k £, TR0 C AR I @ AR AR iR, A
T PRIEZE | 2o B v iR S 3 0B A 2% T AN 18 IR 55
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o1 Lo SXPU (O1iD) I
e Yo 2 ZH: 3 e i) w
Foob, | FORIESBRIR, S8 MRTAE S5 1, W4 i = [1,0; I B f, F 13 BURBE A TORFIE RN, 9 T TU0 240
ARERFAENTET I FRIRALS | O SRS K, oA BEIL 5 SR B B AL AL 55U 2k, B ME S i (53]
B P F AT SR A1k, 38 5 R 7 1.5 B B B i
DAt A 55 SO OB B A SEM I 2% (1) A 55 UM SRS SRR IR, BAJ () AR5 U A 55 A R )
R L, BB IR 2R EBREDARAL £, + L,
4.2 AELMFRENTHE
ARTCHG MOE 45 Wi F BT ICih i 51 (0 W RTe, 45 e T 55 BUBUR BRI TOREA BN, 3 — ik
G0 e 1 BRSO B, T 5 OB AT 4 5 W 4 3 (expert routing), 4R -SRI E DR AR [ £E55 19
TEHMCRE A R AR AR T Bl
IEWIE 3 45 BT A0, MoE K5I N T I 15 B SUYE 4 SN T P TR 26T I 4 AT IMBUR £
HE TP % SOR AN HEAT S SR I, LA 28 1 VR T AU SR, N2 Bt R S VR 7 (R
TR AR LT 35 ST S MO S ik it
Pk, 45855 1, BRI £, + £, 185 TAES BUSIFUR 25, 383 MoE w3k B Bk R SR A
HRNHEAT Il £, RPREASHEAT SRS 38, (0 3 S A9 00 B MO, AT SN T 1300 R e 5 2 P DA T
GEHy 1R

X WEWE - p, W WETp,

expert score;,, = T +a-o|B- T

Forr, ! FRORAESS ¢ ORISR i ANREAS WP AWK G35 BRI 0 JE SR AN RE 0 Skont L PR A 9 R B ARG

Vd, NETRSHL, o M B XN Kb EZHL. JF H., FATRHBGE R o (B FIR 21 T 2 FiAS[R] 8 30T o 2k
AT VP, FERLAVE A g SR R ARTESE S .

FEYIZRILRE T, MoE BEHHILAL H AR5 FAE 55 0 RIS REAT . 28— AT 1) A& 46 b, B 2B AR 4 20 5K
(12) 7€ SCHE S5 BURAR AL 1135 B EL expert score,,, JIEEANHINJ3 BCXT 2 A 52 705 1) 8 B JLAEVE R 0 2 1) o AR
H, 8T Top-k FERHIE RIS SRR & N KM, ENZT, AWRTE T FRENGLRE T ER ST, &
IEN SRR BOR BN T 4 Bh 3R B 67 457 2% (auxiliary load balancing loss)™”), i04F £5. %45 2 il I 1% W48 42 A [A]
FEARTA) A 73 e SR BE R, T8 4 505 70 SRAC AR ARG T 3R . 4l B A7 8 ) i 45 2 B BT 3R A

Ly =/lload{]lvzjl—l (ﬁ_%zlilﬁ) } (13)

Horh, f FORH j AR FAE 2T batch THEOE FIAIAR, N AL FEEL, A NI R BB Z 4

L, L5 A5 b x A & SR AR 17 Z AT fe /M, H AR I A & KA SR e 2, 22
B P LA T A RS QP 833 ) R

i LR U (K52, DA DRAE AR R 1 TR WL B T I ZRi, RAT B v 1 Top-k & 5K W 26 e HO0S N (9T 1 B 125 5 R
G RE, LR ARBEE B Z N ZRD PR QR R 45 RS . XM =) 1 5 170 A% 3 SRS A R T 72 DR i R IB B BN [R] I
2 FEARBR BT SRLSCAR, A TP-MoE RENS A8 KBTI it F 45 82 SR 55 rh Sl LA S sl iz AL RE I 58—

I, ASCRrdE th TP-MoE FAUAE FIFIIZR VAT 1O 3T k%%, fEBLIER b, FATHe i I 55 UK 1 19% BR
i3 ELEAE T R 0 2 SR T B R AN (R4 230 AN [ S X 2% PR AL L, T 5 B A 78 B A 3t [X 73 AN [RI AT
55 AN TR B 73S (R SCRFIE, MRS ZR 1) 41 BE it — D3R THR R L & IO CR T B 3 3R TR A AR i iiid 51
RN I ZEE R DGR SR T RN, A BT TR Fp 27 5] 73 FAE 55 LRI, By (538 N 2 T TR
DR ARt T ORbR, RIS T BRI TFISOE A 822 ST RE ).

12)
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43 BENHFRIENEE

TEARTH, BATFEAIER BT WAl 78 O AIRE A 5 2R JRE AR 2 (AR 2 0 )3 5, 3R s 78 el 78 FF il itk S e e 3]
Tob R R 6 A [ AT 55 340 B0 70 WU X 2 Y B3 v A b A I S R SRR AR . R B I — kAR, $2 PR B S N
HEAT FF A I BB 3 3 J7 4, ST VEAN T B 2 51 S5k R A 0 7 I S EE B B 2 R b B AT T TBORE A A I, 15
BT O % SRS A AR i — AN B R A A 5L, A TR R AR AR,

Z R R B TAE MR &, PSR B AR B G BEAE T 78 0 R F G 28 i 2% 31, FRATIER H K B OE L
FF IR S0 AL 5 A O REAEUR: 1 3& P % 4 Softman i FO IR, DMT 558U A HE 78 B3k 5 1 MoE @il &4
AZRAE A EEAE, R0 AN A0 1 k1R % E & BRI Cd 5.

BpRHh, AR T —FIET logits 43 HIAT 55 BUBTF TB0 3130 S 77 v, eI A v DA A (1) 43 2 3
logits 157> R SZHLFIWT: 1 SR FA WAL A [ 5 K logits 1550 AN BATAR] B2 SJ T 25251, W) B SR v] DAHEBTZAE A
J&THEE GRENZEA). fETE AT S ¢ MIZRJG, B4 it 3277 2 5 5 He 38 58 A DI SRR AR R U N 2475 485 () Tl
GET ML, & — TSR 2848 £, B ARG8T Softman 151555

X TFAES ¢ P RINZRREAS X, 1 5 I8 PR 4450 B AR B RE AR N RAE 1 2805, @ 28 4.1 TR A (8)
FENVYFIAESS ¢ T2 B — AR p,, SFEAHRN B HEAT token 345, FRoATH B & BB B AT AR A IR T
KA LAAS 2]

Logit Score,, = f, () (14)

SCRE, TN TR LRSS B ERE A IO BUK Sofimax 18 45, JERIE AR5 1 HOTT REAR UK Sofiman 5435 P
38, Rt B I AT 55 ¢ 5 20 B TF BCEAS U (¥ BRIAE 7,

1

n=c- I)lf_,l ; max (Logit Score,.v,) (15)

Horb, X ARG ¢ PINGREARR S ECR, ¢ mTi T 4aTs e 1S4

FEHERRRY BE, BATEFZ BB R AW — DMEASZ 15 8 TR, IR R FEA R 445 BN 5K Sofimax 11550 5
BME n, AT EEB: SRR K Softmax 1515353 /NT BB, WZFEABA TE AR RN B, AR HFRTE Jy“unknown™;
SR, WRZREARIA TE 9 RS B, R D3 P I ZRA5 21 4 70 o Ho 0 S 30 2 A2 . i ied I v 2k HL B 4 P
PR 1 3 L SRS, A58 70 B 85 A7 2SRRI TSI AR 8 5 20 9 55 TR B X SR S ARG N, 38 S 7 A A iR 20 2K RIS,
TREARZ AR S5 U IR R Rl 5 1 22 1 5 W 4 A 5, RE M AT R0t BEAT RR AR A AN BT

5 SIS

TEATT R, T AT B 7850 #h38 UF A4 H 1) TP-MoE BEBYEFF JCHH FERF L2 SIE 55 R IR I, AT L 7
AT N LA Bl M 1 6 e $ 4R, B Split-CIFAR100 A1 Open-CORe50. 73 4N ¥dfs 45 i H6 Ak b, A0 5%
B NG T TSR SITE W RIS RO 25 150 8 T 0 AT 4R B E AT T 30 0IE. (R, &5 M iR e 7 P9 AS 32 ZEAFTF 5% )
B8HF TP-MoE MR, Hdid — R FTH Al S2 56 A1 S 4Rl MAR 303 — S5 I0AIE A RIS B 1A RO AR By A fi
5.1 LW ESTINHIE

B, RS S PRS- S E B I, 10 VRIS B I RE4:54 2] (class-incremental OWCL, CI-OWCL).
TR 5T, BATH Split-CIFAR100 048 K738 10 MES (FBAMES WS 10 A2E01), MHKE &AME 5 12851
ToE S, MRS FTE S AN I, ARG AT TS B, R EFINGREATTH; AR, &Rk
HRAE FH BT A AT55 10 56 B MRS AT VR4, XA RECRIE T EHT 9 MESS 2 AW IR AR A, ARIE T AR FRE 4
S BT S5 1 25 ) T A A5 2050 R AR 2 8005 . TR BEE T, TR 85 I BB AU R BRI BT % LR Fr
RIFHI 53 SRR, 375 LEUER AR 2 1 B TP IO AR, (RIS, 3 75 B AR AN W 27 =) R 28 ) S o0 T FF J80RE
AHIATIR, AT H TERA A 4325
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B, BT AT A T R £ 313 5, i AEIY BFURE 2L 2% =) (domain-incremental OWCL, DI-
OWCL). TEULI 5o, BAVE A K2 — A2 HEA BRI R B R 5B Open-COReS0. 1E ZEHR L, F—
A FT I ZRRE AR 23 B AT 55 I HERE R IR, B8 2 A 22 Ak (1 a0 AR B 30 8 6 AR A 50, @i X fik e
K AT NSRS I REAE AR A, 185 0 28 19 23 A1 A8 A 22 25 BB e SR 43 AT AR, AR OB R T B0 T80
SReE )RR RE 7). 9 B, A SCHE AR BURr Bl i 8 T SELE SR T TF R, 1K KT GG 4 A S 5l (RIFE T
FERCRR S 2] v B B AR (1 1

BE, [EA I, AR E T K E 50 B A4 & IR A BT R 222 ) 3 5%, Bl in{e 251 A Wik
WA RIS, ASFAE 73 A0 tH BE PR S50 A T A 1 5 A I S 3 st R, 9 T BV BT L 38 UF 4 SC TP-MoE #5E B 7E st ik 5t
Fra 2 ) W BAZ O AL G S0, SRR S LA BT 2 7 R B A AF T Lk, B8 it ik B R A T2 & (CI-
OWCL) A3 i (DI-OWCL) iX PN EE Al H B AR MEIAE S5 €, 77 (5T TP-MoE AL 132 AL R 7 AL A & 3
WEHEAT R GEVPAN, W00 J5 4150 53 343 5 T FU SR AR 2 AL S 4.

WK 1 fizn, £ CI-OWCL 375 F [ Split-CIFAR100 #5544, Ja8 90 ANEA1ZEHIF 10 AR A5, &
it 10 AMESS A 55000 ANFEA, BEER ISR (RIEEMES T) GE 5000 MEEAS. Bk S A4E Rk B 241255011 9000 4
FEARIR B ARAZEA ) 1000 MEA. £ DI-OWCL 355 F Fifi H i) Open-CORe50 #8548, . 25 N2 &n3|
25 ASKRAZEA, 3 5 AT, BEEARER 59936, TEIZRIIREARE S MR 1 B, SWiEEAa S 7528 1~k H
SRR A RIREAAT 7466 AN3K B A SR IFEAR.

K1 HIRERMR.
e N . N BMMEE T SRR R S0ERfEF
Dataset CAIRAEE FcasE T HE WGFEA AR DR AR AR AR R
Split-CIFAR100 90 10 10 55000 5000 9000 1000
14989
14986
Open-COReS0 25 25 5 59936 14995 7528 7466
14966
14975

TESREGSEWL T T, TP-MoE J5i%:35F PyTorch 2 SEH, BT SEERINTE .3 NVIDIA RTX 3090 GPU kAT, fr
13 F BTN 55 T W 458 VIT-B/16, 1ZB AR A H 68 7 U1 ImageNet-21K _F5E ISR, 32T M4 I 452
AEWHEA S SRR, TERAMT S5 IR BY B, FRATTRE i A 57 S0 09 28 S i IR A R I8, O T A T b
IOVE AT AR I (R AR, AR SCBAE A FR 225 S 41 X (5 I e T2 M 5 B B AT S L. ZEVIZRBY B, X BT
B SR T S T BB, LIS BENLAR UG #8T  224x224 (5 3R, AT BEN LK TR0 . AR50 IR HE R B,
B Split-CIFAR100 41 BT A £ 45 M 35 G — A L il 28 256 15 %=, i L3 BT N 224%224; Split-CIFAR100
PG 0 B3 DR 32532 RSP AR 224%224.

5.2 1M iEtR R EERE

BAMER 3 A FRFRIR AL BB AT 55 LM B HEAT AT VEAS, 958 ACC,« AUC, M1 FPR,.

FART S, ACC, FRIEFT ¢t MESH OSSR B P35 i 20 i 2R, FH 17 R A% 28 1 0 6 388 05 77 TG 1Y)
I, AUC, TRk T B3 10 ¢ AMES 1 ROC 2k N 1P AN, B LTSS AL A8 X 43 2 %0 5 R 0 S48 07 T £ mf
HEE; FPR, (BUFTA AT S5 NP RBAPEZR) F T S0 TF BRI A 004 1R 3., FRN B BLKE R R AR L 02
THIAZE.

EAER IR, BT H iAo R S B AR A TR, DU 1K 25 SO0 78 18 44 5236 36 1E 2 9 TR
B 1B AN RS2 2) 43 28 RE F13RAIE, Rk, B3 FH (A0 LU AT 48K 22 0 R SR S5 T ORI i vk A& oA T
7oyttt FE BT SRR (K 8UR, # TP-MoE 5 23 N & FE 2R R AT LUK, 1 SR L G BILAT (1) T ik S 822 o)
Jiik FRE ) J5ik A KT T A B AT AMFEAR I I VR A G AN, AL IR B SR T 5 MEE R
BRI S5 5 38R AR 45 G I BB RR SR 2% ) ik, NI 1A 4R RN SR 2R i 2.
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« L2PPY: % 0733 TR BB ML) (prompt-based fine-tuning), & 2% U 1| 245 7Y 33 e B4 482 SIME 4%
o, SRR T KRB TR ZR R,

« DualPrompt"": 1% 7552 H 0UEE B2 oR A0 S M, 40 590 T 1704 55 65 e 48 5 A1 55 R4, DASH SR 7E #5422 )
YR iz AL RS

« CODA-PPY: CODA-P 54 5%t 2 51 5 Sh A s WL, 7038 BLHTAT 45 1 R GRRF O 22 030, 4 25 THRp a2
SIHERE.

« RanPAC™": I & — b P 17 0 R F7 8225 31 05125, SR BEAL R 39 2 JuBL (randomized partial attention) K
PR ST 55 AH I AR, TR I S o e M s

« ADAM™: ADAM 37 F0 3 TV 3 WL A0 RR 2% S5, 32— R R 3h 43 7% R B A s AR 55 14T
25 IR SE 4.

« OpenMax™: iX & —Fl OOD ¥l J7 32, i i i % Sofimax iy i JZ 0N AR FN G, SEHLFFAE IR (open-set
recognition).

» MaxLogits": %7718 FH 550 K logit {5 1E 48 b KA I 43 A SRR AR, Sy f 42 S) S Al — R (a7 B Al 9 JR 1)
00D HHIHA.

« Entropy™: 1% 5 VI FH B 84 HH 4 A OGS (LA AR, T X 90 20 4 4 5 40 A 45, 38647 00D Al

* EnergyBased™: i% 00D J5 3% T #14 W 444 HH i+ SRS R 0 55, LAIX 239045 P RE A 5 5K L1, 327 R e 2k
HIFIR I BE

« MORE!"?:: MORE f&—# OWCL J7i%, $&H 7 —Fft P9 77 15 200 IE WAL BIAR, DLTE i 1 7T 45 57) 46k I3 4

« Pro-KTY: Pro-KT J&t — R T JFUR 1 Fp45: 25 51 7532k, R0 P D5 200 68 M (L A 55 I ) S e %, A 0086 I I i
T 15
53 FEXLRHERSH

T VS TP-MoE KA 20, BATEN SR AR e T DR B ANWE 70 1 .

WEFLIAEE 1: TP-MoE RE7S 7L FF U SRR 2 21 193 5 T LA BORE B AE CUAnZE i 432 PR B i 45 R0

WEFLIA R 2: TP-MoE RETS 7L SRR 2 I 193 5 T HIUAT BOREBYAE A K 2 ) (Rl b 3R A5 B8 A7 ) 25 R0

T BAIEIR AN IR B AN I R 45 R, BATKT L T AT AR TP-MoE 528 5.2 R B MBLA LR MR8 507
IRTEWIA EAERE 4 LA RARINZ 508 T RERIL. PP AR B HE 2 BUERI 2 (ACC,). TR I B8
(AUC,)) FIRIER (FPR,), WEBAE R (T4 M REE AT A TH VP4,

M 2 B B SO 45 R i) DUE HY, 7E Split-CIFAR100 $dE4£ b, TP-MoE & #L T Fra *F ik, Acc, A
0.876+0.023, #H ELR IR AL Pro-KT (0.779+0.010) = H 29 9.7%; AUC, B F] 0.915+0.016, &35 4050 F HAh 77721
SRR, R AR 2R 7 AR50 A A 2 B L 4 BE SR (R R RE 7). kAR, TP-MoE 7E FPR, bSR3l T A B AR 1)
0.280+0.101, M bt K2 Hi% 487572 (1 L2P. DualPrompt. CODA-P) ¥ i#85d 0.9 MImiRIE R, AR08l 1% B4l
FMNFEA IR AE IR, - B FLAE FFSOA 85 R AR R 0 AR~ VR I RV BT, A7) e 4 R E T U0 7E 58 N &2 44 14 Open-
CORe25 #IELE L, TP-MoE AR R R A B, 3 ACC, N 0.797+0.087, TEFTE ik HEZ B —. AUC, iK%
0.789+0.245, &2 = T Pro-KT (0.675+0.125) 1 MORE (0.641+0.077) 5483 7732, U6 B AR AR Th ) KR, & 24
Yt R BCR N B RSN S5 X 73R8 7). FPR, 845 U4 0.320+0.074, FIFEIC T BTa L7 ik, it — PR
T TP-MoE 1 Ab B JEUER FE AR IR . £ SEAIC IR iR AE A 1.

I H., BT MoE LA B FE A R & RF L5 X S BORAMLE], BATIE T —MUE FH MoE 5411 baseline
(BP 25 BRAT 55 BUB B HR 7R Bl SR B TR IR (B L)), AN S8 285 SR b il DU, 1% 7 VA R 40 2 SRS FE AN okl
A7) L3RI 2, Vi B FL R Z KT 55 R AL AR AR AR 7, 3E—2P 981 T A SCHTHE TP-MoE HEE HH T 2% U
FOOFE R R A SR 5 FATL 55400 55 8 R0 FF 6 ) S s o B
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# 2 TP-MoE 5 AL R0 L 45 R
Split-CIFAR100 (CI-OWCL5t) Open-CORe25 (DI-OWCL 375%)
ACC, (1) AUC (1) FPR,(]) ACC, (1) AUC, (1) FPR, (1)

OpenMax 0.436+0.048  0.133+0.051 0.937+0.046  0.424+0.063  0.244+0.050 0.968+0.039
MaxLogits ~ 0.445+0.041 0.103+0.047 0.931£0.045  0.412+0.179  0.259+0.053  0.964+0.037

K Jitk

Lap Entropy ~ 0.445:0.028 0.120£0.038 0.932+0.041  0.424£0.063 0.257+0.063 0.958£0.046
EnergyBased  0.445:0.038 0.10240.043 0.925£0.040  0.425£0.065 0.256:0.057 0.970+0.057

OpenMax  042320.031 0.13920.037 0.9280.045 _ 0.402£0.029 0.270:0.024 _0.9600.036

Dualprompr  MPLOES 04250034 011420039 0.933:0042 04080113 026140017 097540022
Entopy  0.425:0.045 0204:0.032 0.936:0.048 0.408+0.112 0.267+0.026 0.961£0.019

ik EnergyBased 0.425£0.046  0.1140.049 0.94240.039  0.408:0.112  0.260£0.030 0.9730.020
%2 OpenMax  0.439+0.036  0.125:0.042 0.9360.046  0.4130.032 0.278+0.045 0.953+0.020
;g copap  MaxLogits  0.439:0.047 0.090:0.039 0942:0.047 041510033 (0.183£0.028 0.964:0.018
it Entopy  0.439:0.036 0.106:0.053 0.936:0.047 0415£0.033 0.256£0.056 0.953+0.021
e EnergyBased  0.43940.031 0.089+0.053 0.946£0.039 0.415£0.033 0.169+0.022 0.962+0.018
Ty OpenMax  0.44040.044 0.1120.042 0.876:0.043  0.433:0.025 0.283+0.038 0.960+0.029
by Moxlogits  0440:0.042 0.099£0.042 08820038  0.433£0.026 023840029 0.965:0.025

Entropy  0.440:0.042 0221£0.043 0.876:0.047 0433£0.025 0.197£0.016 0.967+0.021

EnergyBased  0.440£0.035 0.386£0.042 0.869+0.041  0.433:0.027 0.345:0.023  0.906:0.035

OpenMax  0.46740.045 0.09120.044 0.879:0.042 047220022 0.20120.020 _0.952%0.013

Ranpac | MaxLogits 046820042 0.092:0.042 0.878£0.030 0472:0.022 021260017 0.9630.010

Entopy  0.468:0.049 0.091£0.041 0.871£0.031 0472£0.022 0219£0.021 0.962+0.010

EncrgyBased  0.468:0.046 0.22760.038 0.869+0.041  0.475:0.021 0.411£0.025 0.939:0.021

Pr— MoE 0.21240.072  0.20040.030 0.995:0.002  0.120£0.035 0.1020.031 0.991::0.004
Py MORE 0.716:0.011 0.717+0.127 0.492:0.016  0.641:0.077 0.641£0.077 0.5170.011
23] Pro-KT 0.779+0.010 0.745:0.010 0.397:0.026  0.635:0.011 0.675:0.125 0.451:0.015
5 TP-MoE 0.8760.023 0.915:0.016 0.280+0.101  0.797:0.087 0.789:0.245 0.320£0.074

SRR T, TP-MoE £ AL HERR 42 L ARae sl 7 A vEm e . R IR RS I B8 1 AR R il L i s efe, fg
I R Rz Atk R S R V. A LI J5 R I8 A7 TE N BE AR TH AR B v iR AE B IO U B /7 5571 15 &, TP-
MoE 7 3 Tfebs LIRS I T AR TR R el 2 =) S5 s K i A iR BRI E R BE ).

5.4 HRASCIG

N T IRNERIE TP-MoE 2 i SC g S5 M B 1 1A Rk, AT T WALV M 48, 43 B ST 45 U i) 3 om
Rl A B S SR L MR Z2 T 1B HLEEAT VR4l X P BEEIL A A T TP-MoE B Rl O, Ho T B 7RI Db By
S AT 45 V)45 (1038 I8 R 75 45 068 28 il S B R AR RE S 0, 330 T 2R AR T S SR 482 2 ) vl L) M R R 502 (IR
k1] .

R 3 RN TR RS BURIRA A B, (R Z 1M1 B T, TP-MoE 7£ Split-CIFAR100 (#E4E I
10 MES IR AR AT LU SR 2, B RTE S TR A L3R B RAF 00 AR vk S5 06 1y, Jud R 7E i =35
LS (155 1415 5) H, BB HER R ACC, FEARYEFFTE 90% LA b, HAES 1 X3 & =i 98.70%, Eor A
TE 5 ST THIAT 55 I B B2 A 58 7 R0 i R R 2 2 3OR.

BEAk, BERLLEAT S5 Ul AR P A RS CRRR B S 1 AUC, (UMT45 1355 90.73%), 1t BH RIS 78 A4 AT 55 g4t
ARIRTHE R, B AR B 45t e i S0 A ) B8 0 5 1 SR B 6 7. X PR Y (0 L SRR BEAL I AR IR 22 1 T4 s T
e — e LR BT & FEER th, 17 AU4EFR AU AL R e v, 16 RIS R ¥ 4R FPR, b, BBI{EREAMT 55 7
F1) b A JE B R A LI S A 7, #E— 25 R W TP-MoE 42 7E 0 B T S5 AR IR AN A 451 T 1 B AR RF 2R (X 43
R E AR B, B AT 55 Hl 3 D Rn 2 ) B TP R, A B P v At 2R D BN, (R AR AT DR RR R AR B
KT (BARA 87.13%), 1 B AUC, JER HBA B N, BT 10 IR T 91.30% AEAE, 1AIT AR S 1K R
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H&FREM ISPk ge.

LEGKE, ZA I L8 45 AR E T TP-MoE A 5% 22 T4 ML % Fa s A U 78 R 4k 15 ) 5 68 1 i AR AR A
FH, [ B 33— 25 ) BT 45 BB R A AR SR T SR B A I B 54T 5538 I 6 0 7 1D ) B8 LA 1.

T4 R TR R G B RARLR MR 22 1 FL 00 26 F A B IR I R ZNL S E — & 2 LR
B 7 SHMESS 5 B RIARER MR HEE ), HAEAES | /I FPR, R % 0.0952, (HAT AN IR L RRARIUAALLE 3 G F
[, AT 45 IR HERA 30 S 00 B B (0 oA 3A, 1145 10 [ ACC, PR & 78.84%, H. FPR, BTS2 0.278 1, SEon Y
TEAT 55 R SR A2 P OGH B [H AR 4 & VAR 22, 25 5 tH ISR (TR, AT 3k — 25 Ut W AR 2R M ik 22 1 T ML
TEAR R AT 2 ) S A

3 TP-MoE 7L AT 55 BUR M3 R Al & SR HE 5 F 4 TP-MoE TEVH Al AR 2R 15k 22 1 Fp L i 7 4

FEBHE4E Split-CIFAR100 &AME 5 ERIRI PE4E Split-CIFAR100 &AMF 55 _E IR
THRBTH L AT 4T Metrics R ALkt Metrics
BRRREE  ACC, (1) (%) AUC; (1) (%) FPR; (1) % ACC; (1) (%) AUC; (1) (%) FPR; ()
151 98.70 90.73 0.120 11551 96.00 86.98 0.0952
{152 95.55 87.64 0.152 {1452 92.05 79.43 0.1435
1143 93.47 88.67 0.150 1153 88.57 81.02 0.1403
fE%4 92.18 87.24 0.178 {1554 86.73 79.85 0.1678
1145 90.46 87.52 0211 1155 84.14 79.93 0.1996
f£%56 89.23 89.17 0.223 {1456 82.75 81.06 0.2149
1157 88.61 89.27 0.239 1157 81.61 81.00 0.2371
fE%38 87.89 89.87 0.248 f£%8 80.43 81.82 0.2478
11459 88.18 89.69 0.272 1149 80.33 81.45 0.2781
f£%10 87.13 91.30 0.272 f£%510 78.84 82.74 0.2781

LEE T AL SO 4 BT AR, AT 55 BUR I SRR B A B AT AR 2R 1 R 22 1 T4E MU ZE TP-MoE Hhite B 1 & SC B
MER, A5 5T & XIS B B 54T 55 WU 00 85 1 3& B, 3R T+ 7 4 % S) tE B 5T A e k.
R 25 1T WL 9 25 S0 B M IR Tkt 1 43 38 Xk — 2D IR IE T FRAT1 3 HE ) TP-MoE B2 78 45 4 3l I
(- PR, B E I B R KA 1) B FRMUE S AR R A B FIE A, SEEL RSO R I G b 2R S IE
Bz L.

5.5 SHERMESHT

AE— P IAE TP-MoE BRI EA R S HRLE T i e S5 1EREE /), A CAE Split-CIFAR100 5 Open-
CORe25 BiANFT U F R 822 I B4 FIT R T R SR . AW, ATER T 3 Ko
SEHE R M RE ARSI L — SRS KB 53RN, Bl 1 B R 4 BRI AT R AR, T H R A /I AT
F TR PERE 2 FL TR AR LR PR T R ML) o 8 P PR 380G R 38 B, L35 ReLU. GELU. Sigmoid F tanh %,
DAt A [R]85 2R 500 % 5Kk e s M 5 3 ERORS B2 B sl JHG =2 1) 48 R 1) 6 8 SR, LU T S e 530S
3 R A 4 ) SRR B S T R R SR I, e R TEAT 55100 BN B A S K 37 557 B R . Dk,
FEARTT R, FATA AL T TP-MoE {E RS BB FIZ RS SRS, NG S EE 5T Rt
TSERHE. A SCEE R 3. 3K S FE 4 s,

Bl 3 BoR T AR KE (prompt length € {5,10,15,20)) 5341 (prompt number € {1,3,5,7)) 44 ~, TP-
MOoE 7E A5 45 b i P HEm R R B MK 3(a) B Split-CIFAR 100 FE 4 _E i AN A 32 2% K B SRR A $
X TP-MoE [P REFA M v] DL H, B S8R N U BUR, U3 ON | 38N %E 3 80 5 B PR AR IRF, 1)
HERH R 84.67% T2 87.35% M 87.50%, BEJGTE 7 A&7 TN, [FIR, $R7RH K48 40 %) 14 BE I A R,
AR R E, K 15 B 20 Wl IR T ARAR, R BRI R W8S RS 5t N R A TR
(1= =-yAR
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Rl 84.14% 81.18% , 76.73% 5- 84.67% 86.39%

< <
gﬂ I 82.87% ENEY b 77.17% E‘J 10— 84.41% 86.56% 87.74% 87.96%
%) Q
1= a
£ g
2 2
~ 15 77.00% A~ 15- 84.99% 86.96% 87.50% 87.99%
s 81.90% 80.62% 77.08% 76.00% 20— 84.75% 23% 87.79% 87.86%
| | |
1 3 5 7 1
Prompt number Prompt number
() NRFETR I (b) N

3 ARERAKE SRR RN 0 TP-MoE B REAR L4 ) &
F£ 5  AFEEGE R BT TP-MoE [ RERZ

T Split-CIFAR100 Open-CORe25
ACC, (1) (%) AUC (1) FPR, (1) ACC, (1) (%) AUC, (1) FPR,(])
Sigmoid 87.69 0.917 0.273 77.05 0.764 0.301
ReLU 86.95 0.910 0.278 78.96 0.748 0.289
GELU 87.04 0.909 0.271 79.52 0.761 0.286
tanh 87.61 0.915 0.280 79.78 0.789 0.320
0.3
» AUC,
FRP,
0.4 0.7 0.65 \ /08
0.5 0.6
(a) Split-CIFAR100 (b) Open-CORe25

Kl 4 BIEXT TP-MoE T UK I R 5 i 7 1% 5]

TMAER 3(b) (11 Open-CORe25 H#i4E [ Af A [F (32 /R K FEAN$R 7R M0 TP-MoE ¥ RE R B, $7R K
RN AN 2H A %o A5 20 1 i 1 e B0 2. U AR SRR AN B0 2 B, AR FE B D T bR, SRR AN 7 B iR
KR 76.73% (K FE 5), BB IS £ B4 7R AT e 7E S A 5| R T HANZ AR 4. AR N, B HRR (KB 5 5L 10)
i A B RANEL (1 8 3) ARSRTT AR (I M AR, R IBTR/RHUHITE A LA R AT IE Pl v 2.

R 5 ARG T AR BE £ (Sigmoid, ReLU, GELU, tanh) Xf TP-MoE 5 R fE 15204, Split-CIFAR100 H1
M2 SRR, S BEOE R BRI HERI 2 ACC, M AUC, 1RARIIA T HBmKF (8T 87% 1 0.91), H# tanh
BB, ACC, 155 87.47%, FPR, #EFFTE 0.281 LLF, Ut HAAE BYGHSE oR £ & 4 M 5, [FIB, Sigmoid 5 GELU
HEILH RITRIZ LRSS, RILZE R AR K. Open-CORe2S5 52U 45 S v BRSBTS bR 45 50 INAIUER, tanh B7EHERfZR
T (79.78%), {2 FPR, i5%) 0.32, B3 5T ReLU (0.29) 5 GELU (0.29), &R 7E FF 1 AT 55 ol B P8 1)
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PO R AT e 2B VG T SRRE, TP-MoE XU iR AUk BB Fa g,

&l 4 JoR T AN A BHE W 8 X TP-MoE A5 BT ks il 68 77 152 . 1€l 4(a) 24 Split-CIFAR100 £ds £ F A A
[ B ¥ E K TP-MoE (TR &% 5, & 4(b) 4 Open-CORe25 $¥E4E b {8 FI AR BIE % 2 T TP-MoE KT
I AR

M 4(a) AT LLWIZZ S, 24 RME % E N 0.3 B 0.4 IS, AUC, IEFIIEAE (0.97 F10.95), 15 B BG4 A TR
SITFEFEA. Wik & BE BT, BRSO 5F, FPR, BFFK (W0 0.21@0.6), {E[R] £ bl 5225 (1 14 56 R Ik (4UC,
R 25 0.87@0.6), 3 HAFLE B B PE Re- KA. ZE I 4(b) H, SRS AAT DUA I, F AR Al 14 B th IUAE BB N
0.6 T, BARRIAI N T2, EAEF K, TP-MoE 7E AR BIE 8 T F I H R 4 037 A8 0 3 5 5w A e 14, 3k 3
TEFFICE [ B AT 2 A0 RE

%E I, TP-MoE HAU/E L WL S H (PRGSO sR 3. BEE ) LRRILB AR, XA RSE
FERTS B B & RIFIEER ), R B R PSS 52 M. FIRE R AR TP-MoE FIEBY B S
BB N IR AL T B S KR,

6 = %

ASCHEGETF TR S 45 2 25 S v T e (KA 55 0 A A%« T ICAN 78 5 P2 A M P I i, AR SO T ¢
FRelf S AT TR AR, FFFE T — R E S5 USSR R IRBI IR & % SR (TP-MoE). M i i 5] AME S5
ISR B S WU 5 AR LN AR BRGSO L G H, SEBL 10 AS R 55 18 SO 2 UL 5 R R R 2, A R PRAE 1
A5 TR A Kb P TR 855 ST 55 6 R R AR 48 5 25 31 BE 0 RN AR KIREAS (R RN BE 0. A SCAE P AT TR T Rk
O IEMERR S B 23 N A SEHERIRLEAT 1 X BLSEG, SRIR SRR, TP-MoE £ 2 ks B34 &2 10T 945
T3k BRI IR T SRR Al A 5 T TR A 80, TS HAa @ 7 it — PR R TR 450 . 0 e
5 BB ARG R AFIE R RE S0, R DU i AT ST Bz (k. KT 5, TP-MoE ST Rpak 2 21 i i)
S5 AN RS AL 1 3T R, RN AE AR . BhASTFIROREE T 64T B R A AR AR i B A
RN SEHT R RE
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