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Abstract: With the rapid development of information technology, fraudulent behaviors in multiple fields such as financial transactions,
social networks, and review systems show an increasingly complex and diversified trend, which poses a serious challenge to traditional

fraud detection techniques. Although current mainstream graph neural network-based methods perform well in single-agency data
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environments, cross-agency data sharing and collaboration are difficult due to the involvement of sensitive user information, which in turn
limits the training effectiveness and generalization performance of the model. Federated learning, as an emerging privacy-preserving
distributed learning paradigm, provides a feasible way for cross-agency collaborative training, but existing graph federated learning
methods are mostly designed for general graph tasks, making them difficult to adapt to the class imbalance and data heterogeneity
problems prevalent in fraud detection, resulting in poor performance in fraud sample identification. To address the above challenges, this
study proposes a risk perception dynamic aggregation graph federated learning method (FedRPDA) for fraud detection, aiming to
effectively deal with complex fraud risk event recognition across organizations. FedRPDA includes two key strategies: the typical risk
dynamic aggregation strategy measures the structural risk intensity of fraudulent nodes in the client graph and combines it with a dynamic
weight mapping mechanism with temporal decay characteristics to adaptively adjust the aggregation weights of clients, thus enhancing the
global model’s ability to discriminate between normal samples and typical fraud samples under heterogeneous data conditions; the
diversified risk average aggregation strategy integrates a variance perturbation-based feature enhancement mechanism for fraud samples
with a global prototype-guided contrastive learning mechanism, which effectively improves the model’s ability to represent structurally
diverse and scarce a typical fraud samples, promotes their convergence toward common anomalies in the feature space, and further
enhances the model’s robustness in recognizing complex fraud risk scenarios. Experimental results on several real-world fraud detection
datasets show that FedRPDA significantly outperforms existing graph federated learning baseline methods in terms of detection
performance and training convergence efficiency, and demonstrates good generalization ability and practical application potential.

Key words: fraud detection; federated learning; graph neural network (GNN); diverse risk
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Forb, WS BRI S BEIE B H ¢ B INTTTE S, HoE an R

T=ae T+ 5)
Forb, e 2T 7 i S RS S IB AR R IX, T o8 B HIEAE R IR, o NI B B ZHL, T T-4% I W1 AL B 22 7 (TR AR 2
L5 SR WSO 3. AR GR030), ORI + (AL ek O |, S 9 RURR, O v 2 X B 2 i 1)
HEE. BRSO ¢ (3N, — BTN, S i HE AR X A [R) 20 7 S (RO AR EE 4 PO TP X R4 AR BRI SR S
A PR R 9

N
’)/n
W, = Z S W (6)

S bk ST R 3 25 B SRS, A R R S TR VI ST S e & B K VAR M 1 25 P S Y, 452
S S TR VRS I P AE, B VI AR N BT P07 4720 P S (K1 B0 70, TR 4 2 RER B I R
Sz Akt
32 BHURKRTHRAER

T N 2 2 5 P M0 1 45 R 4 785 T SR e 0V A X 7 5 0 L0 2 B REAL RO, R 8
o SR R 0 A SR AT e SR T L LR 2 M ey TR Vo, WA T A4 5 B 1 4 R A
ML TR O SR/ LS5 A 40 2 5 535 1 TR0 VA I, RS0 5 e e R0 4 e 071 52 81 5 3541 2.
SRS REA T RO L R, TEORAE D R B4 RS IR R, SR VI SRa e 2% 54 4 s
HEVE, e LA TS A SR HE S T4 A9 AR — 1 R, FRATHR th 2 R AL R B P S S, I B A4 R B 51 S
S B STHUR, SR FHBERO T A 5 REAR T3

8 BB R 40T, R 5 5 7 3 ) 0 S KR, R 01 S 5 2 7 S A A 24 50 S
L LA, T35 n 2 P, B ¢ € (+, —) (M BRIV AT IE 3 00 2 o bR e it pe 2 SCAT T
C 1
p= g D ) (7

n

vevy

pa

Lrpr, ve FORE i n RN ¢ IS RTAR S, [Ve| R LR SR, h() RO BRI 2% T B AR 2, il R
A JFE S A RS SR TR B B RN ROR. R IR I ZREE AL S5, 7% )7 s v S5 T 45 0 i 2 ) 5 A Y

op

S AR TS 0, S A 1 B SR 5 SO B, 9678 e K
pey Ml 8
'Zz vel?” ®

GrJR M [ B Pr 5 P R RN IRVE SN 5 IR SR RIE IR R, Ja S H GRS AN P v TR I
R R AR R R AR AR R, 207 S Al I 0t bl sy ST AL s xt JE SO R VEREAR R AR RE 7, 3 — P AL
FERN 2 R o (R RT3k SR, ATV 75 30 0 el ) B PR AN 147 BBOHI VR R AR 0 B 25 S0 o BLS2 31 3 L ) 2K 1)
JH ], T ANSUASE A3V 1 e e A B HAH B2 (R 2 SRR, 3 B I 19 i 30 BRI, D 1 1 A S TR O HE 5 5
JE, BATBETE 1 3 T A2 70 P30 VR S 1 s L, M VA AR 1A JR) S RRAL 2 A1 7 BB AR A, BT 5, 4
R A ZRA minibatch P, SETHZAL N VEST S RRHIESIE ), SXTT 2 02,
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1
fop = =7 D h ) ©)
|‘/n,b \*EV;'J_
1
o2y = = O, () =)’ (10)
V"’h VeV,

Horh, v, RORE N n AL b HEUCH BIVE ST SR A 25 R B RO (1 B 3 BT S DL R SR A
JIA T s, O T AR N AR T, AR A Fa BB RE 30~ 35 77 U0 9 s g Gt i
Moy = (L =m) s+ mps,, (11)
o-iy,, =(1-m) o-i,H +m0'ﬁvb (12)
Hrp, m NREENE NS EESEL, w0 M o2, 70508 LHEK K EANTT 22, A 02, 20 9009 R At R )
BT 2. T UL B G- A iR R VE T SRR SR &
ﬁ;h =y + O €, €~ N(0,1) (13)
Forr, e NMARAEIERS 340 N (0, 1) HFRAEIIMERS, TN BAIHERE, o, PRSI & . 8 A8 7= 0 B R VERE A S
BLSHRVEREAR TS RURFIER & 3, TR BUE 58 J5 R 2
h(vy,)={pju{reve vy, (14)
2GR AL T 5 SR VE T o5 (R BT I A X L SR, DA IS AN I SRt FE . AR
bl 2 TR B, R R 38 a5 4 JR 2l R AL 2 [a) [ BE B 5k RIS BHE 5, W TR Sy, H5280 ¢ R
PR B2 SUN:
Dy =lh(v) =PIl (15)
Horp, D FoRW S S VER AR B IS, Dy Fon T AU IR R R EE . X T IRVENT s MK R S P
(RE B, K P (K RE B, 1R A AR . 383 Softmax BT H T 5 R R 2850 B B (6 5 B 00 A, T 3R1S
VA — AR ZE MRRE, JF DLAE U0 2R EAT e B
Lp=="[nlog(s)+(1-y)log(l - s,)] (16)

s, = Softmax(—Df,y“)) a7

TR BE B A S K28, BT I 2 R A ARG 35 SR 6 SRl 3B Mol T U S M T 2k . BE R
D ITIRVETS s RAERE ). X — SRBS 151X LS IR VERE A BB 75 42 ) SR B R 48 5 71 78 R AE 25 (8] 5 ) B AL R VE R
AFEIT, MITEETT 7 BB (R R AR PR EE 1. BhAah, 23R MR 3 o BB/ I 5 5 W R A 22 18] 1 (X 43 e
77, T CRAS R A TR AN AT S5 B K S8 B 85 ORI R PE .
3.3 gz

I A R KRS B 7S TR A T TN 2 R A RS “F- 35 SR & SR, FedRPDA HE S 2 = vy AN b U1 280 il 55 4
SR RA AR AR 1 FE k2 bR,
=878 W ab )= El S uwi
N SRRSO trer, MRTEERE 1, 55 FEI0 R SE w, VT GANIE R R 2R E M P, P},
JAEEEIE G, = (V. E,. X, Y,), A&y,
Wit RS | R pr, e, IRV BT 50 .
I W — w;
1. for epoch = 1,2,..., Iter do
2. Lcg < CrossEntropyLoss (f Wy, G,), Y,); /] THET 528 U 540 5%




MRE F: @E BN 6 RS Bdosh AR A B FE ) 1519

3. ift>1 then

4 RABE A (13)s A0 (14) SHRVEST AU AR 5 P ahd AT 2008 1 58
5 R A (15) THHEAT AN S { P, P I ES;

6. WI/AR 16). AR (17) W IERN LK Lp;

7. else

8 Ly=0;

9 RIEAR 2). AR Q) IHFAXHRVER M H, ;
10. endif

1. L, =Leg+ALp; 1/ HHESL

12, W e—w, —nVL,; // EHEA 4

13. end for

14 ARIE AR (7) Al ERSEE pr, pr )

15. Return wi,, pt, p,, H,;

Hik 2 Sumi R R A

BN MEDEEERR G PR SES (w,wh,. . wh ), & SRV AR A (H), Hy, .. Hy), %7 5
FOMARIEES (pS, pss. . D)
iy RS W, RRER{ PP

L ROk B BT & P i A S S (e ) o SRR AY (e} LA ARG IR VE S FR 45 (HL Y 5
2. MM (H, Hy, ..., Hy) RIG AT (6) THEZ 7 0 R SRR

3wﬁﬂﬁﬁﬁﬁéﬁﬁﬁ§ﬁwm—22]}w;

4RHEAR (1) A (12) HFARERL P o1
5. Return w’g*‘, P, P

TEYTARALBT B, A% 7 s SO 55 3 B A (0 & SRR AT AR 2500wl FH T 1R RSB S 2  di H =5 FA SR31 X
58, HTI BN KA FUAR SCHRAE. RRTE s e A b I ZRad R v, %% 7 S N ik - A b 1) P 45 40 B8 G, AT
TR FALSS, FIRISE SRR Lop X RIFBBE S HOIAT SR, 12 LR BE, 20 i VP 0k 12 i 1) 5 44 128 DXL i 22
S5 RS bR 1, F T 20 % 7 S AE 4 R VR A T R A TTHR . AR S KR R I, SN
BBk 1 2 B BIOR A R 55 iR 01 ) 42 R S M e, 3 BN 4R IR SRR P ARV SR SR P AEIX I
SR FE e, KR H 2 B XU P25 58 4 SRS X minibateh FOHRVE T RURFIEREAT 28 73 D2l 1 3 DL 22 A 28 501 A1l o
RSN Z5 (AR, IR 4R B YRR S B K £ 48 S5 224 HL oA B L (10 4 SRR VE S AR R A
A [A] BE A AR RO, RT MR I SR A 1 2 ST REJ) . SR Bk H AR R B0k T i AR S IR X
S SR A 0 At S [ v

L=Lcg+ALp (18)
Forb, A J9E A SO %5 JR A0 LA Ok 2 T AL R R B P IR 1. AR R — R AR 2RSS R, B )7 i P A
b7 R B SRR RS SR pe, IR L R A B R R S M DL VRS TR H H, — I AR B R
55 3.

FE IR S5 3 SR A B B, RS54 B Se WSOk &2 P i ) AR AR L. AR % P i AR R VR S i R B R A (|,
it 55 S 368 3o 115 A 15 S AL ) 1 30 2 A0 B A B B S AR 2 P i A SR B Ay, DASEEILAE I 7 S0 P e X
Br e /7 o A RV i 0 T U T (B A IR o SR . AR SRR, b, AR 55 oo 2 7 i b A% RO 25 gk
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TR &, SRR R — e 2 R S B we . B, W B i LA 10 R B0 S R AR 5 ST 4 JR 01
BIRIR{ P, P ). SERREHT G, RS it A SRR AR T 3 2 %% Py, TR 30 T — e Al 25
3.4 S ET

AHTXTF FedRPDA fEAR M2 A T IS 4s 1 fa ZERO B 70, FFAF th S ELARES LA BB 26 1
BB 1. L-Jai . 8% 3 R H AR e 2 £, (A3 (18)) J& L-Jai i, BIXHE ST 25 w,,, wr, 2

IVL, ()= VL, W)l < LiIw, = w,| (19)
ST R RS
L, (w,) < Ly w2) + (VL (0,), W, = w,) + 5 ||w —w,lf (20)
{8 2. FEARVRR 2. 36 T/ NHEBAOR & T RUIBENUBEEE VL, (w,; &) ek LSRR O TE Gt -
B [VL, (wi; )] = VL, (w,) @21)
B 3. 5 507 2. BENUBREE 7 25 5, BR300, (AT 2 w,
Ee [IVL, w,36) = VL, 0P| < 0 (22)

B 4. A FHARM L. 7785 4L ﬁz > 15 >0, EANMERBH S H w,

an IVL, w) I <l anvzn WP+ (23)
n=1
H, p, = FRA— L IRARE.
Zn ]'}/n
&% 5. Lipschitz ZE4E. 7 SURFAESEEX MR 2% () W /2 Ly-Lipschitz ZE4E:

R (w,:v) =h WV < Lollw, = will, Yv eV, (24)
TEHE 1. FedRPDA MRS, 2T RIRMEBE, AEAR M HR BT, FedRPDA BIAL I T 4218 (5 J5 v] LA 2
I SR ARAIE:

T-1

! =D B [||VL ] < % (L) L)+ 28 LK (D +07) + %Kz 128 Lo +48°AL,G (25)

=0

AEBA: RS ROV I P15 n 95 kAT T
Wi = Wo =1V L, (W36 (26)
TR 1-3 AR S, W LA BT B % P S e 81 V53 0 L o 0 2
n

Ble. o) <£.0)- 3 o 4 - 3 Ive. (e

|+

LK1
5 o+ L,KG 27

k=

T8I IUE ) p A AAE, HIRB)IUZ %, AT LLORIE A5 8 R B
X AR S5 S INBUR 5 30, T LA 3 42 R 40 K (s E B

s LK
0 EDY AR WA AT R

HB B 4 RIBEFE A FLE D 2 max,  |IVL, (w)l, X =02 T — 1 KA, 7T IS5

2
02 + AL, KG (28)

1 N Bl|[ve(w)|| < 4B L(W)=L)+28°L*p* K (D* +0* +2—K2+2ﬁ2L770-2+4ﬁ2/1L2G (29)
T ¢ nkKT ¢ K
=0

Hrr £5 2 min, L (w).
XRPEAENMTETE T, BEEBEF X T FI3IN, FedRPDA 1786 BE VG HCT 77 Fr 42 R B, HUSK P52 744
P MRS DK 2 R E [F] 205 RGN T FE T LS AL
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4 WA

DI BT R H T A R, AR TE 2 A BLSRVE 5 R SRS VT B 4G, A 3 A AR M R VE R
A AR A R B, SR V2 A8 R 0 R 4 SR R 25 7 i B R R B BB S, A AR L I R R A AL
ISR B TR G, TATR @S S a2 BT 3 AN 1) .

(1) A 1. 530 Seit (IR 2 =1 7 AT EL, FedRPDA 2 75 A SITBIL AL FOASLIN 12 it 2

(2) 1)/ 2. 760 BRTHE R, MR REIR T A AT K2

(3) 1A 3. FedRPDA FHELT HoAth Stk 75 36 14 B AR 352
4.1 SLINHIE

PAWE 3 AN MBI ERVERE I3 50 T IEEL T T2 A A A TR R AR, 38 1 4L T 0 FHURERIHAE B

F1 BWEFAEER

Bl gk UGBS RIS UL A4 T RFIERL BRVETT AU HVER (%)
T-Finance SRz 5 P 2% 39357 21222543 10 1804 458
T-Social LA 2% 5781065 73105508 10 174280 3.01
Amazon PHE R4t 11944 4398392 25 821 6.87

T-Finance {4 4 35 22 F 1 4l sg 2 0 48 o (¥ 5735 F PRI, 280 SE B0 T R B SEAS B i, T s on
EAAP, BABFREMRE 5T AFMHEEIIENK 10 NS RRHE. RN P ZRfEEL 5 R R,
R INIER:. X T IRVE . PeBRTE B AT NI -, = Amit A 7.

T-Social $#5 4 MR [ B R BART- &, F TR0 B2 51 /' 8572 % 478, 5 T-Finance $dlE 422511, B
BN SRR —ANEL T, LA B0 Ko Rkt 3 A H B e B g B, B A — AR
T, B 578 J3ANT1 SA 7000 2 75 400, W TIRVER AT 55 BB 1R K EIBkbk M.

Amazon FEE WV TR BITEE R G AT F . %50 4E T S A F TR, A5 R 2K T 7 &
VRS R, P aA A SRR — AN, 35 R A T ELEME T 20%, MIFRC B VE Sk, 5T
80%, JUFLNIEH F . BeAb, 23R SR & 20 - 2 (B8 R 288, ARV R —/ ) U-P-U . E—H
5 AR [E P43 1 U-S-U i UL R PR AU HE4 BT 5% 19 U-V-U i, MR T — AN B 2 58 R 45 MR I =44
FIAZHA.

BT IR 3 ANEE AR, AR B S SR S R AL R 0 00 55 45 ) S A v, FRATISR I LE BRI 2 ] 43k
iz A A U Louvain A1 1X I 40 S0 17 SN 4R 1 4 BEAT R, P R S HOE BN 1.0 IR
K0 2 ORERE, %1190 o M e 8 7 PR 2300, R 4525 7 it 1 R B 4 M ST . 4 s FEAE B TSR A Z-score Bt
AL ER, R IEAT 1 B BRI P 4R A, AR FE B G5 0 SRS BRI e M. R E MR, RES TREEMEY
ShM) EAFAEZE S, AE AR IRVE UG AT A 1 0 5 L — B0 32 IR 5 B 4R M VR RR 2 3 R IR T 0 — 1l 5%
FIU) 5 SRS VR AR, A R T IE 1T A S BV T A5 1 8 A 4 Fe Y Y PR R — B
42 HEFE

B AT, £ BRVERT AT 55 1 BB IR 2 S i Fe AT Ak TR 2B B B, R 2 58— B PP Al b dE AN V2 AT B 2R 7 7.
DAL, A ST BT 7 LA BB 2 5] 3 5% IR P P4 R0 AT 55 P R BLR 57 0 J LRR LA AR (K g A7 %k Ll o
Hr, CAASTRIVEAS BT H 5 9210 R S E vtk

PAZS B FedAvg! " ME A FERL T 1%, FedProx™. MOON"H1 FedProc™* 43 5l 51 AN R Y 2R 20 SRHL 115k
S it b B s S A 5] R IR B (RS 1), R TE VT SN 0 S5l P BB 2 ST 4 R A T R UFR I A, BT
Shapley™ & {2 /3t 5T BRPEAS 7 13240 7 — Rl AT HLEL AR E (10 S A B0 40 L SR, RE RS A B AL AN 5 7 o
ot 4 JR R R i P 2 B TR, AT DAL DT SR A 28R AE IR IR 2 31, FedSage+""f1 FedSSL®7 I3 it 45 4 P& 45
M5 BG4S RA R, $27+ TR TE I BE b 3 R IE e ) 5B i1
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4.3 PENIERR
2 8 B R VE RS WA 25 w3 A7 78 190 7 SIS ) A S48 ) R, S AR A 0 A D 1 B VP 48 A A A 3 LA AT AR
BJABS TR VI G W00 5 T F P A (RN T 0 A T A I 3 5% ol B R T SR AR AR 7). TR, SR AT 4 W48
T o A 2R PG U0 255 R AT A T VA
Recall, BV A [0 28, i A B SERRIRVEREA I RE ), THE A TR N:
TP

Recall = ———— (30)
TP+FN

FoHh, TP (true positive) RN B IEH, FN (false negative) KRB 7141, Recall RN RE M T B SEHRVERE A IE
AR H PR B A3

Fl-macro % %2353 BITHE F1 - BOFECEY, @ TR P 5. FLAELEE7%5 18 TEMZR (Precision)
SRR, € LT

TP
Precision = ——— (€19
TP+FP
Fl=9x PrecisionxRecall (32)

Precision + Recall
Hrr, FP (false positive) FNRIEH]. Fl-macro 7E 1 5LE 0 BRI T A8 [F AL E, A ZFEARZER MM, EH
T RRNA TP 4TS5 .

AUC (area under curve) # %€ XA ROC (receiver operating characteristic curve) [ £k~ 5 A& Fxfil [ 5 (1) THI AR,
ROC £kt e 2% 73 S BIME, Fon BLFHPEZ (true positive rate, TPR) FI{EFH 2 (false positive rate, FPR) FIK R,
T B LR AN [R] BRI E S X IE ROFE AR X 43 fig

AP (average precision) J#id 715 Precision-Recall (P-R) #H14% T B I FRR AT S AR Y 14 BE, P-R i 2k idid oo 432k
WA, S5 A PP BN R A T RS FE S 1 [RIE RE, G R SRR 8, B HEfff S USSR BRVE T s IR I RE .

IR VA FR ARG FEERAE 0-100 (BATE 23 BT 2 I, (H 8K e 2 s A B R R Bk
44 FIRE

ARSI 7E A R S B 3508 F GraphSAGE™ BB 1 kg H i el et 28 I 48 ME R, 2 A A3 ok A 28041215 A 11
Je3 B GEMIRFAE o, B 0538 AN [R] BB 45 4 F) B ER, 7 BB 2 o) rhopgly )2 A 701 e ST i B
% 7 i 5 IR 45 i 1) e BB R IR B N 200, % P AR N 4, AHGERIRECH 5. AR Adam, F T %N
1E-3, AUE IR W B N SE—4. TEARHAE R ZRBN B, K minibatch J5 UHEATAEAY 88 87, T-Finance 1 Amazon ¥
SRt E RN E N 1024, BT T-Social 4 SR B MAEIK, #E2 KN RE N 10240, DLERIE I ZRI S0 2
HiaE . £SO B IT I, KA PSS R RIS E SRS BN R R IUE, X TR A 7E{0.1,0.2,0.5,
1,2,5) PREATH R, BCE U R E0h 1S5 a F1 8 4 BITE (5,6,7,8) F1{2,3,4,5) PR, BT HNZ=E S m
BN E N 0.1, BbAh, ORI LL &5 R B — BRI A TR %, Br G SRR — - & Lig47, St R E A
NVIDIA RTX A6000 GPU F Intel(R) Xeon(R) Platinum 8260M CPU @ 2.30 GHz, X FT 4 1 4 1)I| 3 #5158 [ =2 bt
BLFR T
45 TWHERESH

NIEIZ ) 1, A% FedRPDA BATIIVE REHEAT AT VPAY, H15 2 Fh e b B 2 5] b AT X b, Seii 25
W 2 R, HROR, X SEge 4 AT A AT

(1) K&, FedRPDA TE AT B4 FI VRl FE br L30T IUA 448 732, R I HAR = o g8 ) 5z Atk
fit. FL4K1M 5, FedRPDA ## T FedAvg, 7E T-Finance. T-Social I Amazon ¥4 L) F1-macro 2 BT+ T
20.26%- 6.72% K1 0.42%, Recall 5 5 $2TH T 20.62%- 26.09% 1 2.56%, AUC 73 A& E T 1.21%- 0.95% Al
0.34%, AP 2R T 3.33%. 9.86% Fil 2.41%. AT LRI, BESR—SL AT (1) )5 74 1E Amazon $id 4 b AT ABUIS 5
RAEERIR, 1X E 22 R EER & IRVET BT o LR, HAE MR AR T BN, B AS [F) 25 7 o R b
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SRR, S B R 657G A% o) BURVE ST s RRAE. JR1M, 7EIRVETT S Ll i/ BB 45 44 5 B 4414 T-Social %1
P4 b, B Shapley 77454 R 2 $OA I 5 VERESE A B, 3X 22 BB J7 VR LE T i BEAST-4887 1Y) 52 2 Bl 5 i) s
I SR AEFE SR BR. T Shapley 77 iR FERL Y PERE b iy SR - T 2 DU A IS TR 83 A AR ek 1), Hemiik oY) 1)
SRV 2 R Ko IR 95 i 12 L e B USSR (1 75 R, 7 — LR SERR IS 2% S 3 e i LS . B2 R, ARSCATIR I
THEIE S A5 T AR AR AR I AR = P g, TR ZE R VE T s B IEAA R P, R B T 38 KM Rg
# 2 FedRPDA 5 IEMRE L (%)
T-Finance T-Social Amazon

Fl-macro  Recall AUC AP Fl-macro Recall AUC AP Fl-macro Recall AUC AP
FedAvg 66.53 60.63 9437 78.27 61.69 72.05 94.16 64.19 92.05 89.70 9720 87.67
FedProx 72.45 65.28 94.56 79.32 62.13 73.85 9427 66.59 91.30 90.67 96.85 88.69
MOON 74.94 67.43 9424 79.25 62.39 76.06 9436 67.54 91.90 90.81 97.46 89.25
FedProc 70.57 6421 94.17 78.16 61.03 72.16  93.02 61.89 91.18 90.38 96.16 89.16
Shapley 78.72 71.04 94.61 79.38 64.21 8438 9481 71.32 92.29 91.87 97.32 89.72
FedSage+ 68.66 62.22  94.10 78.29 62.54 72.71 9431 64.72 92.13 90.45 97.14 88.22

FGSSL 57.66 5479 93.81 76.71 49.23 5329 91.14 43.80 90.82 88.43 96.03 87.17
FedRPDA 86.79 81.25 95.58 81.60 68.41 88.14 95.11 74.05 92.47 92.26 97.54 90.08

2Tt +8.07  +1021 +0.97 +2.22 +420 4376 +030 +2.73 +0.18 +0.39  +0.08 +0.36
T IR R A A R, FRILR R kg R

(2) FedRPDA f£ Fl-macro fll Recall 165 FA3 3| T BERS, X EES T AR NS R A KIS HRE. %
TR T8 3 SR A M XS A v ) 2 i, (RSB AR Y SRR S 5 ) MBI VERE AR R SR RRAE, IR AN
A JRENR, 5 FAR Y S AR R A BRVEREAR. (RIS, 6 LA S L@ 4N T 25 T ORSRIEBE ), A O
R TR VRS R A e 0, RS B i R  a  RR RS, TR R T F1 A3 Ak, FEAN R TV
Ehig, BATTRI AUC FabrH 3 f a1, 31X 5 B RN AUC AN SZREAAS P47 LU 3] 1 52 i, Iz B 9 B R X 43 1 £t
FEAIRE ST, BE DGV AR BUAE AN [F) BRI T 8844 03 28 1 8. K 2 BB B TE VI 45 i 78 P BB BN A i 2 BURE AR 1
Sy AL, PRI RS/ SR L1 00 T, AL PR i 238 R0 3 [ 2R R A AR, {H bR T 24 X 43 e 7358, AUC KRR I
RIF. AHELZ T, AP AE XA B FE IR 5l S 501 6T P 28 B A 3 BURK, 5 B B TV ROR AR VERE AR, B FE 3 =ik
VEFEASE A8 ) A A2 i S BT PR (R IR AR A R D IRVEREAS) B35, AP {E#R 252 3 2 2 520, 1X {615
FLHE R S OB TR SRR R VEARL I3 B h IR ). TEASCIN 7, AP fabR R iR & i it AUC, K H] FedRPDA
TESESRIS FRAA IRVERE AR U e 7 1) TR ISF, A7) B 4 REEE 8 19 TE 5 R AR RN B 2, A0 H R 2 11 SE B 2 FH A 1.

(3) #Ht— DVl FedRPDA Y& E B G5 M R VE RN 5 7% b 0z A Re 0, BATIHE R MEZL 5 )N GrbL ikl A A o i
P, KA1 GraphSAGE 3898 4 8 2 2R AL (MLP), FAURIH B H 1 s i@ YERHEVE RN, A oS SEI6 25
R 3 R, FHEYHAISE, BT T-Social 4 48 my B2 AR Kl 2544, RIS 7R 48 vh sUBREE T R A E BT VR o v BLgR
3A BN Gk, B TEAS S0 AN Z AR AR VTG S SR E, AR B 450 R VER I 7 2 RS & BEAR A
SRR, (RS I M i A AR T Se B B S50 T B R 2 X 45 T v, IR SR IATE IR VETTT s il . AU 3R B
Pl 25 4 BT HR AR ) b SO BRI R TE 00 R 5 A KR A AiE B G DB E . (A E R 2, RIS B
ZEKE B ESE T, FedRPDA 3R HUAS T T HAh 7 vE I PERE R I, T0E T H B UL O SR ms 7E R 45 BN Tk
RAZ RIFIZI0RE

* 3 TEARESEWIRVERIIN 75 T FedRPDA 5 A7 1EMERE LA (%)

Jrik:

N T-Finance Amazon
1k F1-macro Recall AUC AP Fl-macro Recall AUC AP
FedAvg 51.41 51.30 92.41 67.71 91.46 87.20 96.90 87.16
MOON 52.71 52.00 92.54 67.95 91.63 90.05 97.00 87.21
Shapley 53.35 52.34 92.75 68.14 91.70 89.64 97.09 88.01
FedRPDA 55.69 53.66 92.86 68.62 91.77 90.42 97.39 88.30

T I AR R B 4
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4.6 HELSHR
N T BB A R 2, A5 LL T-Finance 44 49, % FedRPDA 8% 1 5 4 S M o A AU M e B o R 4R 47 74 b )
Br. BRSOG4 AR 4 Fios, BARS PN T,
& 4 T-Finance F#E4E L AIH L2645 R (%)

BRSNS R A LR RS PR A
RIS R w BB wio B A w A i | mecr Reeall - AUC AP
1 — \/ - v 86.79 8125 9558  81.60
2 - V - - 84.59 7750  94.88  81.01
3 - - - y 83.99 76.74 9487  79.92
4 \ - - - 69.20 6250 9452  78.95
5 - - V - 65.66 60.00 9423  77.86
6 - - — - 66.53 60.63 9437 7827
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£ B AL SREMS S R 1T SR P i AL T AR AR I R B ah A IR B 7 i B RS 0, AR R A LT R O
TERA AR A e U2 7 i, W] LI SR VAT 9 I 2 20, SR THEE AR HE R P 5 I 2R,

(2) X T 2 FEAL AR T~ 220 5 A s, B P RE (1 $2 T 32 BORUR T 45 578 70 BN R VE T R 3 s AL i 5 4
JREAL G S H A 2] SR AL, JBIE X 2 4 251 3. 5. 6 IR ELm DA SR, G 7R X L 2% o1 i 7 op B et
JITAT 5 RN ) R T 2 S 3G P, 3K TR D 7 i 1) 2R3 A 1 i 3 SOV 1Y s AR R L 2 ST i A o B2 B )
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FEIE, HAEA BRI 23 18] 245 BN AT X 73

K3 FedAvg 55 FedRPDA Il Z:75 fRRIE 25 [ % b
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4.7 BSHEMOH

Hof T A FAEA R BARAE T PERE VAN, FRATIE I A% 48 2R 07 SO0 S S Hu AT WAL, B 4(a) RAR T1E
T-Finance (4 4E I, P47 FF A SRSV RE A R0 . SO0 45 BRI HA, 2 A BUE D 2 B, BEAY 14 BRIk 2] e £ 490 0, it
HAZAE 7E P J B0 B R 528 SO Bk 2 TR B R i B R AE A B 4(b) 38— 25 40 07 7 I (R 348 AL il o
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FedAvg 100 1.0x
FedProx 73 1.4x
MOON 19 5.3x%
FedProc 136 0.7x
Shapley 18 5.6%
FedSage+ 84 1.2x
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A UM %3], FedRPDA X5 11 #3815 BI A IL BUAH [ PEBE, AL T FedAvg 35 Ik 1 IRt 7%, KB T4
9.1 fEHIRLRRTE. BLAh, MBI R G, BATHE—DXS L T 2% T7 AR AR I SR At b (K BRI A, B9 %
J7 -5 1 55 S ) LA o P DA R BRI [) 22 P, AR SR A5 RN 6 . W LALEE 2, FedRPDA f£ FedAvg A |
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PR THE ML RE R RIS, R T AU RGBT AE S RAF 9 ik, HL 2 B i S B 7).

K6 BINELEREEIINZRPT 5N A A AR TR A5 %) EE

T3 & S AT B AR JIR55 3t N AP R & R AR 55 B vk B 2 2%
FedAvg O((b+k) f+f2) O(Nf?) O(kmf +nf?) o)
FedProx O(b+k) f+wf?) O(Nf?) O(kmf +nf? + f%) o)
MOON O(b+k) f+Qf%) o(ns?) O(kmf +nf?+Qnf) ow)
FedProc O((b+k) f+f*+cf) O(Nf?+Ncf) Otkmf +nf*+cf?) o)
Shapley O((b+k) f +f?) ON!f?%) Okmf +nf?) O(NY)
FedSage+ O(L(n+s9) f+f?) O(LNf?) O(L((m+5g) f +(n+s8)f2) o)
FGSSL OQ(b+k) f+12) O(Nf?) O(Qkmf +Qnf?) o)
FedRPDA O((b+k) f+ f2+cf) O(Nf2 +Ncf) O(kmf +nf? +cf* +bf) O(N)
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