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Explainable Dynamic Incomplete Graph Anomaly Detection Based on Masked Learning with
Strong-weak Mutual Information

LUO Xiang-Feng, GU Jun-Quan, YU Hang
(School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China)

Abstract: Most graph anomaly detection methods leverage graph neural network (GNN) to learn from relatively high-quality graph data.
Unfortunately, such ideal scenarios are rare in real-world applications, where most data suffer from issues such as missing labels, dynamic
changes, and structural incompleteness, collectively referred to as dynamic incomplete graph (DIG). To address the challenge of
performance degradation of GNN under extreme conditions, this study proposes an explainable dynamic incomplete graph anomaly
detection (EXDIG) method. The core is a graph masked autoencoder framework optimized with strong-weak mutual information. This

framework simulates real-world DIG scenarios by masking graph structures (nodes/edges) and node features. In addition, through the

« FEETH: FK A REAEES (62302287)
A RS G N LA ) B R A dr i TR . SRR B A B R .
ORI ] : 2025-04-16; 45X TH]: 2025-06-30, 2025-08-15; 3K FH I [A]: 2025-08-20; jos 7 4% Hi AR I a]: 2025-09-02
CNKI M2 5 &I 1] 2026-01-02


mailto:yuhang@shu.edu.cn
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
http://www.jos.org.cn/1000-9825/7523.htm
mailto:jos@iscas.ac.cn
https://doi.org/10.13328/j.cnki.jos.007523
https://cstr.cn/32375.14.jos.007523
http://www.jos.org.cn

B S K TiR-35 542 B AL 3] 9T IR AR R B FF A 1493

strong-weak mutual information (SWMI) loss, it captures the relationship between structure and features while maintaining structural
integrity, reducing overfitting, and improving generalization. Furthermore, EXDIG enhances the interpretability of anomaly detection in
DIGs by incorporating masked perturbations on nodes, edges, and features, enabling the identification of key components and providing
transparent, trustworthy explanations for anomaly detection results. This study evaluates EXDIG on nine real-world graph datasets, and the
results demonstrate its superiority over state-of-the-art methods across different levels of DIG scenarios and across various downstream
tasks and representation learning evaluations, both supervised and unsupervised. Specifically, on the Amazon anomaly detection dataset,
EXDIG achieves improvements over 13% and 15% in NMI and ARI, respectively. It maintains Fl-score fluctuations within 5% across
dynamic incompleteness ratios from 25% to 99%. Notably, EXDIG is the first method to enable node-level interpretability in dynamic
incomplete graphs.

Key words: explainable graph learning; masked autoencoder; mutual information; graph anomaly detection
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Fy Lo BEA ST/ BT PR 58 B B AR RAE R AR AR A 0, 76 R WA B R, — AN B0 40 BT AR AE B 2k
B, 2 g 25t B 2% A7 T 368 3o 40 0% R AL 25 AT A B IEIE R, Lo W BIPTH LA B, R THG T 645
PE. b T BB A T A RO WA, A FAE B AR N B HAR, IR InfoNCERY 1F 4 H.A5 B F AL
7R, AR R T GEi 3 78 R — R AE 43 18] N EAT XF b2 ST PR3, T A 1 5 2 40E 43 ) M — B 200K,
DA T TR 78 53 6 R AT 55 o e

SEIRAL Lo, EXDIG HESE G855 M 5 45 7 58 B B ¥l 2 =1 6 b FLUER IO 15 5 A5 W 280, NTTER T 49 A0
SEH RTINS T U5 B
3.3 AIfRREMETS

AT #8375 EXDIG HESL RS ITRE, AT T — AT AR P, T TP A5 B AE . LRI 206 S 4
5.

FIRRR T, BT RE A G R R AE . SR A, A BTG B G, ok T AR HERD 181, B 13500 2 [
SR OB, TR LA

sim(Z;,Z]) = 20)

AP = $(G) = 3(G) (22)
XA S T B ZE A AR TN A S, AR EE RO, 2 AR IS AR AL B A o A Y ke SR )
P
REAIE T SR L L P IR R BEAT R AG . X TR RHEAE RS A, 5 SRR AR E S

$i=w A +b, (23)
v, w, FR AL 0 A S /M FE A SR A [ VA AR
Log= (5~ WA) 24)

X1 R RENS A AR AE S 57 AR I o S A Tk, AN ERAROK, 3R WZARRAIE ) B M
e, BATHE T 0 B AR AT S5 RO RO AR S A, ) T, JHL B A I PP S O SR



1500 HAFFIR 2026 FF 37 AF 4 B

A WP BNBURNEAS 21, 10015 5 9 5 A U ey A9 i RRAE [ B X BUBRNGRR Z WP R Ayt AR S R A 5. L
(RIEC T N R IR

edge_score;;=|——

ij

TXAEAR I3 47 T WAL A %o S i A DU e 56 L e . 5 P 5 T
4 SHSH

FEAATH, ATV Frid th 1777 (EXDIG) EA R FIZIZS A 52 K (DIG) 5t T T T 12 B SR Al 485k
By B TE MR DA B4 I AL

RQI: AT EE (DIG) FEE N, AV R B H SO EIER?

RQ2: AV IR FIFEE RIS S A E B B 5t T B WA IR ER R IF1ERE?

RQ3: KE BT FAE S HO6 AN J7 R R e A RT3 0 2

RQ4: BATK 715 £ B RE B AES) S A T B IS T B 58 R IR 8 /12

RQS: TEFNAA R E 5, TAT 722 B et IR RF vl iR 1%, I BLIE B 45 i A se B s 88 A 1 1 ol
N, e B A BURRRRL ) T2
41 SEIRE

o Hde

BTAE 9 D AT R E S T EIHE & FIPA5 prde ¥ 77 %, 45 Cora. CiteSeer. Amazon Photo. Amazon
Computers. CoAuthor CS. CoAuthor Physics. EllipticBitcoin. YelpChi fil DGraphFin. £+, Amazon Photo. Amazon
Computers. EllipticBitcoin. YelpChi 1 DGraphFin /&5 5 &5 il A H - 9UsiAH 5 s 42, A T30 R 3R AT 7 ¥4
XI5 T A . BT DGraphFin B BRI R U, KA A T 56 RQ4. BE 8 MV E4H(E B LK 1.

657
N node score; ,-' ( )

A AR L bl FHE Sl
Amazon Computers Computers 13752 491722 767 10
Amazon Photo Photo 7650 238162 745 8
CoAuthor CS CS 18333 163788 6805 15
CoAuthor Physics Physics 34493 495924 8415 5
Cora Cora 2708 10556 1433 7
CiteSeer CiteSeer 3327 9104 3703 6
EllipticBitcoin Bitcoin 203769 234355 165 2
YelpChi Yelp 45954 3846979 32 2
DGraphFin DGraphFin 3700550 4300999 17 2

o ZA A E R

FEACHIE ST, FRA T8 1 Xof P 500 it I B AL 98 20 B A 1 2505 R e, DL & Fh B A 5 2 8] (DIG) W5t Bk
&, FRATHEHLN B B 46 B 2548 o x% B3R % 755 R, CLSEIRBNAS S M I A se B 1. 5 FAh A 1A 5 3 [T (R4
AN, T SE MG IS A A AN TE R R E IR, FRATIAE B FR B R AE, TR A B RREHE P B
B 2% MMTC R, X PP BB A S AT 55 1 SEBRiG o, B A P RS AATE T 4 FE 10l To ik 3R A8 58 A X 571
ot R B B B RORTE R, MIAGREUE IR, Fth, AR IR EI 2 AR x% B, % 1
TR Z% FIRHIE S, 1531 — N30 e B i . AT 3084 58 8 H 2 (dynamic incomplete graph ratio, DIG
ratio) JE X BB (1. 5 sSURIRRAE) Bt o ) b A3, DA At S BB S 3 35

o I

Fr A S2E& 3L F PyTorch® 'l PyG (PyTorch geometric)™ AT SZB. FATTAE 5 YRs2 i bl 4 7 k4 _E
P2 bR e 22, X T-FRATTR 77 1%, FRAEIR IR R EHAT AR 2R (grid search) PLIEF R SH. T EIH )



AR A TIR-55 542 B AL 3] 49T B AR R B FF A 1501

BT SHAE T T RAERA 78 B VERERS AN 42 3 45 M A S BEMEHE RS, TR I T v P 2 T U iy /M R I 5 (n
PyG H[#J NeighborSampler 5% ClusterLoader). K, ¥+ — L4 K I 4, @0 Bitcoin. DGraphFin. CS
Physics, AT TREHLRAEH 7 Bods #4938 7~ B 1EAT 5256 T SRBe I 7E ML 4 NVIDIA GeForce RTX 4080 [k 4% Bz 4T
4.2 MHEEEE (RQD)

B3 RQL, ATVEIS B ER 75% BT f FIRE (BISAREEHE 75%) it 7 B, DI a5 A 5%
B s P R IS I, B R SEFE B A AN e . BAEZ3A 5 T W T EXDIG FITCH5 BAZ B RIRA (SMI) 5
11 FhEZ v R PERE, SR 45 SR ANER 2 R, o SRRk R S A4 R BARTT &, X T Fra st b s i, &
PR R AU RAE BN ZS AN A LE 2R 0.5, TP A I 25 I Bl = 4R FE 100 64 4, T E 4R RS0 512 4, % ) %4;
— 1% By 0.001, FAFEEF VAR 300 6. FATHIMEELE L.

#* 2 EXDIG 534 775 1) NMI FEFRTERE LA (%)

Anomaly detection General
Method — -
Computers Photo Bitcoin Cora CiteSeer CS
GCN 18.90+4.43 30.07+4.42 0.01+0.00 50.67+2.24 8.22+0.61 5.75+0.80
GraphSAGE 2.89+1.11 4.45+0.89 0.01+0.01 2.90+1.06 2.03+0.73 3.13+£0.78
GAT 36.27+2.66 50.48+4.15 6.55+2.80 16.64+1.19 5.68+1.68 5.89+0.44
GAE 8.23+2.14 11.83+2.80 2.21+£1.94 1.99+0.43 4.13+0.46 2.66+0.33
VGAE-non-neg 24.36+4.01 34.70+2.54 0.01+0.00 21.15+2.62 10.87+1.49 6.59+0.72
VGAE-rand-neg 26.3144.59 31.99+4.49 0.01+0.01 21.7143.26 11.20+2.69 6.72+0.50
GPS 14.36+4.19 18.12+3.70 0.03+0.04 14.36+4.19 27.57+4.26 59.24+3.39
ADGN 15.07+4.32 24.92+4.52 9.32+0.36 16.08+4.98 24.60+2.89 60.48+1.64
EGC 6.72+2.04 6.43+£2.98 0.04+0.02 6.72+2.04 3.21+0.80 3.29+0.45
GIN 8.84+0.68 7.86x1.54 0.03+0.04 0.76+0.01 1.79+0.02 1.32+0.12
GREET 18.04+1.21 19.09+0.21 0.04+0.01 9.69+0.19 11.32+0.07 19.90+0.19
EXDIG-SWI 49.47+1.20 62.55+4.04 8.25+0.33 51.32+£2.76 33.40+2.54 60.02+0.52
EXDIG 47.07+1.56 64.94+2.02 9.89+0.41 55.65+2.45 35.28+3.29 62.08+1.44
o NMI

% 2 T NMI R 5K, EXDIG fE 2 A4 LRI, JCHARE RS PRI T S A TkgE. 75
Photo (64.94+2.02) 1 CiteSeer (35.28+3.29) ¥4 _F EXDIG B8 T fix =1 1 NMI 1553, 36 W] HL7E {45 IR 45 1) i
IS8 5 T B 9RO A8 3. 4R 1T, 7 Bitcoin (9.89+0.41) A1 Computers (47.07+1.56) $3E4E LRI B E 54 /1,
AR RS R H, FBAZ 5 0PI R AE 45 1) B8 52 2 B 22 F 14 B 0 (M B 4R 138 AR . 45 5L R B, /R4 EXDIG
TE/ANEL . SR AR AR I (TR A B A 7 R B 7 5K ) B T, FLAR 34 mT e A6 BT RRAIK.

e ARI

# 3 I ARI g5 Rt — P IIE T EXDIG 78— M AF 55 280 h A2 {74 7€ Photo (52.18+2.81) i CiteSeer
(34.51+3.80) H¥i 5, EXDIG B3 T i) ARI 1557, RIABMEESN S E BRI T, 7 E KR AR = 2GR
A L AERF R MAE S, EXDIG 1E Bitcoin (17.01£0.72) F1 Computers (47.35+1.14) $¥E % ERIRI B 1T, (HLE
KB B R R R M IEZAR T ADGN. [ESE R MZ, 75 CS 4L (46.99+2.71) RIFRILR H, XK W
EXDIG 7 8 88 7 K AT 55 (58 132 B AR 2R 78 0, Rl R 1E — T 45 R R B ik 7. BRIk, R EXDIG
AR FRIAED), (AAEAC TR, 5 2% IS R AT W] B8 32 28 Tt — 2D [ itk

AR, N T B BRAIE % T AR R R AT S5 R SERR X 4 B8 77, TRATANFE T 5T F Ui — 40 2R AR I, B4k
S, FTE R B A B 5e T iR AR S 2, W GRI RE A A AT AT AR 2515 B AR IRl b, BATTH 4458
B AR BRI SCRAER N R — AN T o0 2588 (B #REIA), I8 A Accuracy (ACC) 1 F1EAE N 50 58 b5, S50
gE Bl 3 pros. BBARKE, EXDIG 18 B AR MM Bitcoin F1 Cora FE4E FIJEE T Accuracy Ml F1 {HHI &5
BER, I BRIVFES /). 1E Cora I, EXDIG AHEH A7 V5 B % 5 8] R 1L 34, i 7E Bitcoin I, R4 EXDIG &
IHE S i o, HAR ARSI A4S B B, #40 %F E 7 ¥ (W0 ADGN. EXDIG-SWI) R, B 76 AR H B g5 f A0
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MR 2 AU AELEE— B R TH R A R). KT S, EXDIG LM B &M T NRIEEI L B IFH 25
FNGE 77, BOAIE T B et Sz At
%3 EXDIG 534A LR AR fakrtERE LLEL (%)

Anomaly detection General
Method — -
Computers Photo Bitcoin Cora CiteSeer CS
GCN 9.87+3.55 15.08+2.46 0.12+0.30 16.15+0.56 5.98+0.80 2.38+0.48
GraphSAGE 0.21£1.27 1.77+0.37 0.00+0.08 0.00+0.20 0.73£0.29 0.78+0.58
GAT 29.51+3.42 37.124+4.35 11.49+4.40 8.74+1.91 4.58+1.74 2.37+0.61
GAE 5.97+2.48 7.88+2.38 5.28+3.23 0.22+0.24 0.73£0.28 0.87+0.15
VGAE-non-neg 12.40+3.39 17.91+1.41 0.11+0.30 14.18+2.94 9.51£1.72 3.07+0.31
VGAE-rand-neg 14.24+3.78 15.96+2.90 0.11+0.31 14.16+2.67 9.88+2.65 2.66+0.90
GPS 4.89+3.76 8.18+1.91 0.07+0.35 4.89+3.76 24.83+4.17 42.01+7.54
ADGN 6.94+2.90 12.30+3.25 16.38+0.59 7.25+3.49 18.53+4.19 46.85+3.75
EGC 2.52+1.29 2.98+1.68 0.05+0.08 2.52+1.29 2.61+0.49 1.61+0.59
GIN 0.00£2.27 2.10+0.23 0.01+0.25 1.35+0.30 0.00+0.02 0.08+0.06
GREET 2.01+0.53 11.66+0.07 0.09+0.01 4.83+0.13 7.36+0.03 8.06+0.51
EXDIG-SWI 50.10+1.24 47.37+5.17 13.89+0.09 38.56+2.79 33.42+3.08 42.91+1.82
EXDIG 47.35+1.14 52.18+2.81 17.01+0.72 39.88+1.42 34.51+3.80 46.99+2.71
GCN 760.21 GCN $57.19
GraphSAGE 4 38.10 GraphSAGE —-29.33
GAT $65.19 GAT $63.51
GAE 34.64 GAE 11.70
VGAE-non-neg $67.08 VGAE-non-neg 162.71
VGAE-rand-neg §:65.54 VGAE-rand-neg F62.56
GPS 165.40 GPS 162.54
ADGN #66.24 ADGN 76134
EGC —++49.93 EGC ——45.95
GIN 161.44 GIN
GREET 73.34 GREET
EXDIG-SWI 78.62 EXDIG-SWI
EXDIG 79.02 EXDIG
0 20 40 60 80 100 100
ACC (%) F1 (%)
(a) ACC on Cora (b) F1 on Cora
GCN 179.58 GCN $40.17
GraphSAGE 177.25 GraphSAGE | ]29.05
GAT ¥79.28 GAT | #39.64
GAE 177.27 GAE 29.06
VGAE-non-neg #79.72 VGAE-non-neg 740.68
VGAE-rand-neg $79.18 VGAE-rand-neg F 40.81
GPS #80.61 GPS +40.78
ADGN [ 81.99 ADGN [ 44.82
EGC 179.85 EGC $41.36
GIN 177.27 GIN 29.06
GREET }77.31 GREET 131.25
EXDIG-SWI 81.90 EXDIG-SWI 44.56
EXDIG 82.31 EXDIG 45.01
0 20 40 60 80 100 0 20 40 60 80 100
ACC (%) F1 (%)
(c¢) ACC on Bitcoin (d) F1 on Bitcoin

K| 3 EXDIG 7 Cora il Bitcoin ZU#4E L IHERI R (ACC) Fl F1 B b 78 5256
4.3 EE2FE (RQ2)

FEN SRR oh, B 22 5] RE G S 45 M AR AR B I T R0, IR I R TR 28 20 K55 R AL 55, — AT
TP (U2 AR A1) AT TP A e 2R 1A 5 —— S IC 00 R e s O S e 11 2 S AN HE B R O T [R1
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RQ2, FATIFIAN S 1) 1 2 > 45 5+ EXDIG HEATZEHE MR F AT MR 5 A A Se 4 ™ B2 NS,

T VAR Zh A A TEEE RN T R AT 55 I, FATEA R ERE DR S A wR IR, FHAH 2 i
fliFE bR, B SRR A I R N HEAT R UEAL, TR NI ZREE RTINS, SR )5, (f LGS I S 504 — M8 H
IE1JH 432888, FREEMAREE i BVPAh Fia bR, AT sLIRIIE4T 5 Ik, FRF I E, DI EAF SIS TR LR TH
FoRPE. VAN,

4 #7777 EXDIG 1L 3 MURSE LINTERE, FEE BN AR TR LARAE T sl I ANRRAELE RS B35 S B . P s
FRAFEAERI S (ACC). F1. K% (Precision) il H [F]# (Recall). 7 Photo #(#4E I, A RTE N H 2538 0 #) A
S ML AT REAR FR IR MR BE, RO B S B 4 1. 7 Computers i 42+, EXDIG KRR I R 47, (HTE
Precision F8Hr b B WU, Sl HH O 2514 B 2% BE B BURRE. T FE CiteSeer 4l &R, RS ENEA 788 LA A Wil
I, ZELTY R R TR R AR, R T b IR AR T, X L gk JR B, EXDIG B A BRI S, R
TR LR PERE T REE BT E).

80 80

oo

(=]
o
(=]

%ﬁq —e— Photo e —e—Photo
70 '\"b,\—‘s 70 —e— Computers| 70 70 —e—Computers
o— -— S —e— CiteSeer | <&  — ——o g —e—CiteSeer
= < g — o | ——
<60 g60 k\&. ™ _ o “UEEEEN ——3
QO — B] =
< 50 £50 g0 \H\‘ g 50
—e— Photo 0\\ ~ —e— Photo & ‘\_‘\
40  —e— Computers 40 \'_‘\. 40 | —e— Computers 40
—o— CiteSeer —o— CiteSeer
30 I i i 30 1 1 1 30 i i i I 30 I 1
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
DIG ratio (%) DIG ratio (%) DIG ratio (%) DIG ratio (%)

4 EXDIG fEA A ZZ AT L T X Photo. Computer I CiteSeer F4E £ 11 REAZ 4k
15 324t T Cora # Bitcoin 4B b AUC $RAR1IH 7 B 4347, TEIGSEES =5 sURIZ 1) S 88 4 L e b s AR
b, THRHEAN 2 LU 2R [ 58 N 1%, 1% R TS BUEE AN R R B (1 A S8 B VE N B B k. 7E Cora HdE S, 24717
SR AN 42 FERUIRE, AUC Vo 3 NI, 5B T 450 5o B PExT Tz R R 2%, M2 R, £ Bitcoin $(4R
R b, BT m SE R M RUIR, AUC MRARTEA [R5 B LU 2 R (R FF R 8, R IS B B BR B s A8/, 1X ]
ST B T2 A S B B % B 85 M AR TE.

54.0
100 100 52.0
53.5 51.5
75 ¢ 530 ) 73 51.0
525 s 50.5
52.0 50.0
25 515 25 =495
- 49.0

| -51.0 .

Edge complete ratio (%

Node complete ratio (%)
wn
S

Node complete ratio (%)

Edge complete ratio (%
(a) Cora ¥ #i4E (b) Bitcoin ¥ #i4E

K5 EXDIG £ T 55 H M RE AR I T B G
SRS, B 4 AN 5 K Ses s R, EXDIG EA FIZA MM s A e 8 5 N R RS A 2%, Hik
BEMH T EL AR il 4. I B8 55 AR SC 1% 7 A AL BRAN R R 2 00 485 F) RV (I AN 5 BE W 75 T ARV RE 1, I 0 405 1 Ji
BOR5E & I BRI B )2 AL RE
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44 HRLKIS5EBS T (RQ3)

N R RQ3, BATTHHR H A EXDIG A AHET 1 Al RAE S 0. fEw/o SMIPFLE T, BRI 5
AR (14)-A (18) E LIFI5REAE BRI, £ <w/o WMIPELE T, MAAHHEAR (19). A (20) 2 XM HE
BIRETL HANGRAE AR R

o JHELIT AT

F 4 JRR THE 50% DIG LLE T At gt B w1 5o 8RS 55 B3R ALLE Photo A Cora U 4E
RSB T HADECE, 2 T 3R EAF BAK (SMI) F155 BAZ B4k (WMI) 410 E 2. BRI, 72 Photo %1
PR, 2 Fh WMI AR, BRI A 5635 T B, B WM ZE 43R RRE 5 450 10— S5 T 2) 1 R 8E . 5
— 7T, 7E Cora HHEAEH, Lk SMI A4 5 BUH KR VB T B, X R8T SMI 1EBNA B B A e ity 51015
RS OCRIER. 3% 5 IR T 18 99% DIG LL R Iseit gt . R WMI {E Photo HRENRIE X EE, (HE
BRI Cora BARAEMIFZME/N. HLLZ T, 225k SMI 7558 & S8R 2 68 N B, LR Cora FUHRET, KR

HH B LEAR AR 52K TR, SMI 4R 2 Sh A E5 0 b (5 B E 0 S R 2%
%4 SWMI FVELE 50% DIG HZ ) Photo #11 Cora

%5 SWMI FVELE 99% DIG HZ 1 Photo #1 Cora

B LR AT T (%) B AR LI R I (%)
Photo Cora Photo Cora
Method Method
NMI ARI NMI ARI NMI ARI NMI ARI
SWMI  64.80+6.81 54.67+5.86 54.80+2.89 42.07+1.80 SWMI  63.40+3.42 51.82+6.74 52.17+0.58 39.53+1.42
w/o WMI  65.41£4.57 54.31+£3.21 54.194+3.88 41.01+2.31 w/o WMI  62.85+1.47 51.09+7.40 49.55+3.13 38.07+2.13
w/o SMI  62.85+3.41 50.92+6.87 52.9443.37 38.92+1.75 w/o SMI  61.94+2.35 49.50+7.92 51.70+1.94 38.10+2.23
w/o SWMI 60.54+1.71 47.67+£8.97 50.3343.17 37.64+2.68 w/o SWMI 59.79+1.50 45.98+5.80 48.16+3.76 36.57+1.66
o WS H T

K 6(a) JER TR A+ 4, A1 BCE FRIVEREAR (K. S5 5RRW, A5 =1 & H W E IR AL 1 i1 4, A
[FIFRY Ay R BT OREF T A€ 19 NMI 238 SR1, 3E— P38 K Ay 2 BB P R, 3K T Re it ol Tk P2 o R AR A1
G it S RN S5 A i 2 2 18] R £, S BUSRLE L. (EANE RN, Pt MARZEAE AR S St B BRIt A
fil TR 1 HOnS B A S BE IR 5 (K@ L RE 70, IFHE— IR 1 3R 55 BLAS B BUR ML AR I SR B iz AL RE 77
THT PR 2 R A

/5=0.5 /5=1.0
4=0 “ 11 |38.06

1.0 ] 39.89

0.9 ]35.98

N
0.8 |36.31

0.6 3539
1

|
350 375
NMI (%)

I 1
30.0 32.5

10 |24.15

0.9 | 22.84

N
0.8 | 23.61

0.7 26.11

0.6 | 23.70

18 20 2 24 26
ARI (%

)
(b)  PEREAEAL BT

(a) 2 PEREAEAL BT
B6 A s LA TSI RE
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MK 6(b) KFE, NMI Fl AR - AEARFE ¢ BUE T RILH —E W8S, b, NMILE 7= 1.0 B & &, A
39.89%, HAE 7=0.7 (39.64%). ARI 73 FUNAE 7= 0.7 X B (26.11%), A HAREUE E L. X —#HERY,
B AHE B PE e R B 2 . I /NEE K1)+ T RE S80S B e, TR R AR, 7= 0.7 £ NMI F ART |
BB B, VIZAE A B TP 450 S4FE(S 5, 3R B R gt Ik — B I0IE T 9855 A5 BHURIEARFIES
BRI, Foe T AR ¢ DIRAL e R B B
4.5 AL (RQ4)

TEAT 1, FAVE A -SNE 45 3 N ICERRRIELERE, 4 Yelp A1 DGraphFin #4852 01 22 2 24 WO A G X £y
2 I B T BN A 2 BE A T, T xS A 2R b B R T AN [RIREAE 4 B 2 1) RIS A

S0 158 3 A, FI IR A 442 5. 0 7 B, YelpChi SUHRAA0 7T HALLE T, 12 DIG 41 T,
P 2 VA 4 ) A0 47 WO BTt S T B2 W05 B, TSR AE S5 1 402 b, KA R RN %, 15
B 2 R T e, A 1 0 b, ARG 630 2 A, ROBEELE 95% DIG L% HL{X
(R 1/10 15 ARUARITIL T, BUROSREAT RO ST RIFR. 55 2 A5 3 AERE ORI 1 T BHIRT RS .

Y4EE 1

4% 3

—éO 0 2.0 —2.0 O 2.0 —iO O 10 20
HESE 1 Ei ) HEf 3
Bl 7 EXDIG fE YelpChi ##E4EH 95% DIG ELA T B W] 44k 234

8 Hh, L0t 5 W 0 R 3 ) s S AT IE W T R . P ) ) = 5 B 2T R RN T B 156 3 2
J oy AT A R AT LW B, RIEAE 95% IIBIASAN e B T, AN R AT i 07h 2 B L W S P 23 22 5.
HLEZ N, 18] 8 7R T DGraphFin 48 4R i T ML S5 R R Z B0 SR AR BE R BSR4 FE o iy, (LR AE DIG 2%
PR AT RE CRAE T T S0 20 B, BV OR B 1/300 FRY Rl AIA. BAOR BN T IR SRR B, JCIRAE SR 3 4%
L, AN Z IR 7> B O W RS 1 AN 2 4EFE b, JE 2 MM E &KL R AT — IS TR — 8, R
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B RAEYE I E I > BT, (IR — R (R, IR 1B A B I SRR 1

EARTIF, X L AT S SRR W], BATI AL S S AN se BB R T BV A RO SE MR 2R, 2P il g v
PRI T IF IR 2 00) 43 5 . AR il A B 52 2% RV BE KUK DGraphFin B4 £ o, i I EAT Re DRSS X e 0, ik
—PIAIE T JLAE DIG 50 R I R

YERE 1

YEFE 2

Y3

50 =50

-50 0 50 =50 0
UL 1 HESZ 2

0 50
YEP 3

K 8 EXDIG 7E DGraph $#E5E+ 95% DIG LLfil [ al f846 43 b7

4.6 TFEREMAR (RQS)

BATR AR AR B s 28 SR 0, BIELE A FIFEFE M 2h A 5 2 E (DIG) 358 T, EXDIG HEZ 3SR REM 1
FEAT R, Seat gt FE i AT Ak R T AR AT AE SRR A RIRRIE B LR, (T RE A A R L R S A,
FHAEAFN DIG HLE& TR A& B (AR AR

o A E BN AT RIS W 9 B, TE58 1 AT AL SE 30 A, AT AT S EEMA RN, h. =X 3
A5, B DIG LL3 B FRAR, 1 BT S0 20 A CRFEFAR G, 17 0K 5 2 4 4 me o) 5k J 2H A4 SR IO H B 5 (1 SRR .
1E 99% DIG Lb#%~, BT K& ARG, S0 I KA. SR, RSP ah 5648 T, SR RE iR
Sl e LY A IR T O IR R

o JET- B4 1 B AT AL Wi 10 o, 258 2 AT RAL S ae b JRATTXS S A M A A AT I B Y
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