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Abstract: Adversarial training is regarded as a core defense mechanism for enhancing the robustness of deep models, yet its inherent

limitations significantly constrain its effectiveness in practical applications. Traditional adversarial training methods rely on fixed attack
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patterns to generate adversarial examples (AEs), leading to insufficient sample diversity, limited generalization capabilities, and difficulties
in achieving an effective balance between robustness and clean accuracy. More crucially, existing adversarial training frameworks lack
adaptive control over the training process, resulting in the robust overfitting phenomenon. To address these challenges, an evolutionary
optimization-based adaptive adversarial training framework is proposed, named trade-off robustness and accuracy via adaptive strategy
optimization (TRA’SO). It innovatively integrates a genetic algorithm into adversarial training and achieves progressive complexity
escalation in AE generation through dynamic adjustment of attack strategies across different training phases. This mechanism not only
enhances sample diversity but also effectively suppresses overfitting risks through early stopping enabled by strategy optimization records.
Experiments on CIFAR series datasets demonstrate that, compared with traditional adversarial training methods, the proposed TRA’SO
framework maintains baseline classification performance while improving robustness against multiple attack paradigms and accelerating
training convergence. This study provides new insights into the robustness-accuracy trade-off in adversarial training, offering significant
practical value for building trustworthy deep learning systems.

Key words: robustness; adaptive strategy optimization; trade-off learning; adversarial training; evolutionary optimization
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5) A EAE (mutation): ML R BEH S DM B (anffFe — b i 47 s sh s, By Ik PR RS N R i f Ak
6) B MG (replacement): Hfi & BT AR IR BT 2R, 0 AR BRE i (G2 & B TR eS8 (R
HRAF SARAE).
7) %1% (termination): ByFA5 16 A e bR v, Wk B d KIERIREL T 8 A0 At i ar 396 2 B0 AE 2
F@)=6.
T BRI, FiE 1A T B EER R AR,
=558 WB i/ 3 -85
SN GRS T, IR/ n, 3N B R F, 38 XM p., R p,;
B LAk at
1. BEHLAIIEILEE 0 RAFNEE Py = (a),a,,...,2,);
2. WIEAIEAR IR B £ = 0;
3. While t < T do
4. P=P;

5. ForeachaeP do

6 W Fa);

7.  End For

8. JE IR AR MR Ak IR AR R HRSOn FR) SARA

9. WPEERSARAMA LIER p, AT S SHRAE, LT RIS C;

10. AT c e C IR p,, AT S 80 4E;

11. t=t+1;

12, P, — HRAE B 0K, & I SCARI T AR A BRI, SR AR A 38 N R /INHE P 32 H T A SR
13. End While;

14. 2" = argmax F (a)-

acP;

22 KRR S R )

Wi SR Ml SR T8 SONS T REAS AT W LG 7 I R 75 0 T 10— 2L B AR S 8, AN R Mot 75 v
SHA BN SHIUE TG S AMIEL X T 56 m A SEERPISGEE T, ida = (a',a%, .., a") R m G418 %5
o 7300 N R By S R, AZR LK) PGD Meah M, JLAEHe: BT

X = | [x+asign(V LU +6,w),y), 1=0,..,1-1 ©)

X+Q

Forb, xR OB ISR ROREAS, 1R, o A, Q= (0ll0ll, < e} ARBITEH, [T R BRat,
TEAG— 35 IR AR HE H VG B 3R Sh (B AT B W AN I &, 408 BB R D BT, 153 3 R A ST PR AR X, = X,
M (6) T LLE H, PGD B 3 NS4 EhiRfE e, 315K o, 03015501, HIX 3 MSEH RN =04
(&,a, 1) FRN— AT SRS, AN S EUE 4 A AR R A [F) (0 B0 S0, R AN [ (4 8O SRS e AR b T sl 4
e NELORSEINE TN

Vs SRS 23 ) SHEmE = (R PR LE A 8 — R BT VR R, BT il RE I B ah SR S, F A= (a),a,,...) Fom. —
M, X0 m ASEES IS T, ST G ENR—NES S, TS A =S ,1xS 20X XS g, EIX
m NMEEWE R /R LLPGD Bk Rl st E e MIX AN S, = [2/255, 16/255], 810K o KX
S =[1/255,4/255], BB E 1 WX AR S, = [4, 20] (TELFRIZAT B DA E U EAE), B4 A =5 ,xS xS, Bk K
T PGD {3t S mg == (8],
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3 BTEENERL N EERERESS

AT B PUBCH AR 5 R B S B U S vz, (R TAER LS T X B e AT e il &t
FOINGRMR A . 52 28 TR SR T o L0 A A vl 0 1 A 2 [0 (1 5K R e s 3R B8 T, TR AT v, SR T A gt
FERFRF A (1) 2RI AR BT 5, IR LI AL b3 H T B R SR mE e A 1 B s AL Al 2 )
HEZE TRASO.

3.1 RSN

PRAEXS FLUIZR PGD-AT Fl /- R RACHE SR IR FH B S bk, A0 BARSR: 7RISR R, F 3 A ilxd
i B g EL B PR R BURE AR, R TR R AT T Y S H LA iR BT AR ). BRI, 45 S 4
D = {(x;, v, » PR BB I 22 SR Lop, PANAIHCR L, 0HL, WA A3 (1) FBI400R RS o AR R
JE ARAL IF] R AT 2R 7R A

N "
min > Lo (KL W).) ™
i=1

Za/IMA I R AT SR F AN E A B ARAL SRR AR 1 2, 3 FH [T o 1) 0t 3R 2t = (8/255,2/255, 10) i B & 7t
IEBAT R B, XTSRS x AT PN AL Ot BUREAS x5 B, PRI A B P P A R SUREAS x|
Xo P D 245 AT BE B, BEAT A1 2 R O B Mk

AR T I SR [ 5 ks S M A R HORE AR, A T i e KA o Bt 2R SRAR B A k. R, X —
J RS — AR & BB B e 1 5 T R AR O NS L TR TE BN AS BUET OC &R, SR P[] 58 Bt SR o vk B s
BORYIZR AR, T80T .

1) IIZRENASAVLHL: a) FHAVIZRMT B, BB S BNV 4G 1L, B ae 185, mBGE (K ey av 1) 5RE
B FERRSE BN AR AE; b) JE ISR B, B B iU 88, 8] 5 5 B 1 MUk vl e AN 2 LAl — D BRI I 55 14, S
&R THE .

2) AR T 5 SR mss US4 e P st B =0 W 4 kAT A4k, T BE (ALY i R R N R S .

3) BHR IS R B A (] A SREME AN T AR R R M (R X AR AR, Qe A A I FEAULG R HURE AR RRAE, 47
ST RE A 4 2V B, M LAE I SR SRR 4ERE — 8 3 i Tt

4 BHHUEME: &y o THBUET A TR, BBRA A HEIRE. BB MmN R, B 558 M 5 EN.

3.2 BIEMREEMRL

TERRAEXT FUUNZAEZE P, FATHG PR DA BBt SR 4 22 30— 5 O G A S ARk 1n) R, 76 X Ll 2R A
IR B, 18 3 SOt Fr) e A% BN TR RE U h 240, DASEIURE AL S 1 5 1100 BE 0 P[RR . 2B DI B g R
TRy, TEXT PR RE i T 3l R — SR AT A, 8 b B R AL A SO A 24 AU SR B B A e S, et
5B S BRI AR B AL
3.2.1 Bk REE I S AU AN G AL

HRF I8 A% B9 A M A, FRATTHE O S a AR R Ak, 22 A X0 SRS A AR B P, P A BRI 3R
W 2 (8] (fF 23 [A)) )74, Mo 5 B PGD JivE A% O S5 R, RIARENSRE e PLEP K o MBS EL 1, HmiDh
=t a=(s,a,1), HoH e Tl o 1ESCEGE R P HUE, 10 7 7555090 Bl 9 UE. A T A @ gmig ANl 5, 4% 3 NS5yt
AT SRR, 2 BAR AR RO HURE AR, 6 1 ) N BRI AT, R ARG, TE TR S 5000 N SR B L T S T R
(LHS) £ RGN, B RS M S E i 5 2 5, B avinm R ES BN R W ZE.

3.2.2  IEFFRERAERIR SR B AL

IEPEERAE R F VR A e AR B G BB I R IR MM CRE D), 0 A A A I ek T [ 4 b B gk 7= 2
FLARTE, MR BE AL G A I Ak, R B 3 P ol B B St LAt I, 3 A0 b i 4 T 2 A A B AR
9 n. K AR BATLA T B 1 1 0 R SRR TE AL I R R R, T AR AR S B I8 I 35 4 IR ) SRR PRI 2 RN, SRR
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EEN & e
323 SHEHAS R
TE WA SR (A AR o, 2 50 5 R A0 PR 0 2 RS B 2 e 500 5L R 33 P A o L. 0 g o
W 2 5 SR B R, SR PRI HE1 58 X (SBX) X 2 $OHHAT 2L, 6 A RSB0 R B B2 XU
e AR BL 5 PRI 5, 0T/ A A 2305 O 06 1 0 6, 24 5 A R, 2007 L B i 8.
3.24 EREREMTT
FBEEAL, 75 3 FE R B A 951 2, S50k [33] R, BRATUEH M @ = (5,0, 1) HIE RLEE B HCR:
F(a) = aFi(a) +SFx(a) ®)
Horr, B T 2. P P B PR T 2 VA Tt SR 1 X A
1) S H AR TE: — A0 75 TS0 ol S5 W 87 12 75 280 8 U SR W 242 B 0 DR A S 03— B4R TR (1 5
Y, B2 T S A BRI R A PR T B £ (-, w) SET J R v T 6 () T4 B 77, T L 2k 9 ¥ 5 11
BT £ (-, w') T AR B SR T 2 BRACIRHHTRE AR O3 5
Fi@=-) L, w),)/ID ©)

Horb, at = (8/255,2/255,10) AFRAEXTFUIZRAE AT HE i 550S, D R VEEEE 4.
2) TUFREARE BESR T - — R 75 (0 0k S 2% 5 I P M PR M 2 3 AR B0 T TV REAR 1 1R 51
AE A, SR £ (., w) R TE TIRRE A LRORERE, Tk L3 B R OB £ (., w) X F T RE A it &
F@=-),  Lf&wW))/D| (10)

o, D AR (9) s BT R .
325 FUERHEIS LS

A5 E R BRI FUI R, W EGRAR, REHD K AN AR — . 25 B4 B AR T ek a0 P T
o K AN O PR AR B, LR — R M AR TR AV e B R . S50 R 1 1 3 1 5
W ST HL, (07T B2 X PUPR B bR S A, MO b 502 (L. B0 2 28 th T XU it R R AR
T M 22 i R

BiE 2. WEmORA IR ) B & B SR B AR AL (adaptive strategy optimization, ASO).

BN KL T, FRERAN n, BT SR S 0) A = S, %S xS, SN BRELF, R SEORFEEL M, PR RES £ w), PR
BREL L, 2, TR K o 1 B, PAEEUEE D = (x.))):
fth: UM AN a”, BRI MENE F ().

1. R F LT 88 S 75 Fl e A0t SHEms 23 6] P 3RAG n AN SN F T AIER 4056 0 AUHEE Py = (a),a,,...,a,);
2. WA = 0;
3. While ¢t < T do;
4. P=P;
IV EREE P A AR T W 13

5. ForeachaeP do

6 For each x € D’ do

7. Xo = PGD( f(, W), x,2);

8 End For

9. loss=)  L(f(X,W),)/ID'L;

10. w =w-nVloss;
11.  a*=(8/255,2/255,10);
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2. FR@=-)  LO&,W))/IDL;

B R@=-),  LEEW)L/ID:

14,  F(a)=aF (a)+8F(a);

15.  End For

16. P IRERLE F(a) K/ANHEFIE HET M AN SRBE, JFi8 00 5 bR 261 BN A BEAURE n;
17. P RFAE XOMAR 5 BF A R IR SRR SRR N B P, 3 KPR 2n;
18. Foreach aeP” do

19. F(a) — KIS 6-14 1538 N FE;

20. End For

21, t=t+1;

22, P, MRAEIERIE Fa) KRR P Al n 4S50S

23. End While

24. 2" = argmax F(a)-
acP;

3.3 TRA’SO E &k
331 YIHELE

AT AR FLUIZRE R, SR A ANEZ B R K BT TRASO Bi%k, BT s AE 06 8 2 P4k ] 8 Bt
PR SR RIS 2R, BIRERE K NI IR S0 2 53008 & T B B I S DR o S a, (45 DI B A 28
2 (-, w) HRUE TV RE AR AR BRI HIRE AR, T H & M PR T3 ks B it — B4R T BB Bk, A B, B AR (1)
935 2% R B0 3o AR AR 4R, LAk il R R A

1y .
min - > Lo W).3) (1n
i=1

o, x| =x,+6(x;,a") FOR R Bt % a* BOEREA x, P AERIAHUREAR, () Fom— A RS #1E. TRA’SO

FIPAARRS TN B 3.
BE 3. 3T B E N RIS AL BB HE RS B ALET 24 5] (TRASO).

N WEABIE D = (x, y))Y,, BUREE L, WS E, %203 g, fOR/N B, BAGREL T, FaE K b n, Bk SR H%
T8 A =S, xS, %S, TN E R F, AR E M, TERAIIK K, T 25 o A B, T R 1
i AL £, w).

1. BEVLAIEEALANZ I 2% £, w);
2. NINZREURE D = ((x,,y))Y, FEEHLRAE T 3R05 3R D = (x,y));
3. F(a)=0;
4. For epoch =0to E-1 do
1B B E 3&E B SR A Ak
5. Ifepoch mod K==0
6 a’, F(a') = ASO(T,n, A, F, M, (-, W), L,n,a.,8,D");
7. If| Fa") - Fa)| <!
8
9

Early stop;
End If
10.  F(a)=F(@");
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11. EndIf
11ANZ A
12.  For batch =1 to num_batch do
13 MIIZREE D = {(x,y))Y, FEENURFE— M HKEER B = (x, )12, ;

A EAL
14. Fori=1to B do
5. X!, = PGD(f(,w).x;.a");
16. End For

B *

17. loss = Zi:l L(f(X2,0,,W),¥)/B;
18. w=w-nV,loss;
19. End For
20. End For

3.3.2 YIRS R A TS

TRA’SO J7 %t T4 4% (-, w) IR 22 22 Br Ak, 78 VI GRS R B 3k — ol A 308 A 2 o SR s, i
FFBRAE I T i SR AR U BURE A T AN B ARG R IR 0. AR o, Bl s T\ g 21 st A
AR TR)SE 7 5 R B, 2 KR 408 T A 25 280 1 g e A AR 1D 3E 7 PB4 /N T IR 1, ) 30 5 7E SR 2 18] v © Ok
IR BT A R B SR, IR il A & IR, DB e B AR A B R R AE (B 3 D IR 7-9).
333 MRS

ot b HA T ik, A SRR AT 3R T IR P AR TR e M 7 T A% Co e SR BT LA 79 7 T

1) VB A0 T 0 ol 20 D 28 P A 58 1 Il R0 ) SR PR 7 1 i o 446 X 8% ) 11 5 R ot A R AT & B RO DR A4, DA
RIVEFEE ST 7 1R R oAt 772, AL S DAL Al B Ok 3h 1) R SR 7 3R, 75 75 AT AT B0 FE A 2 1
L BV AL X VPG ) AT SR AR LA, R DAL 5 AR BRI A AT, DA B AR A, SR IR 2 A ] S R
E R MR T3 R R AL

2) FAL AL A BRI SR BERE I pe 3 B 15 SR AL S AL S e AT R TR A 5 AR TR A IR R {0 AR I
FE R RS 2., ST 2 BP0 D 24 7E BE RS T o SR T B M AR RS . AT B 30 (5 B2 (1)1 25
REHAT B 0T, TSI RT3 S e e f it 5.
34 HEERESH

SFRAEXTHUUIZRA L, TRAPSO FIlFH 515 2 18 2% 24 i B e Tl S ef A 40 A/ AR B T RE 9% 3K 30 4B 1) A2 4 i
F BT R n AR KL T B4k, 7R AR SR VP4 T B S 1 B Ak B i, B R A b RN
S, BRI TRAPSO SRFEH T — S 8dls D' = ((x,y)) FI TSRS PRAG. 505, %58 PGD Xl FHbshb % 1 itk s
S 1, FHABBE A BEATE R 2% 5t — URRT A0 A0S RO AR AR A 1] B AS A O (W), T TRASO AHEE T e i 70 1 5 45
AN A B 8 FE AT O(xTx D’ xmin{S ;}xW) F1 O (nxTx |[D’| xmax {S ;} x W) Z ). 4R1, MEA5VE 2 (K2, TRA’SO 7] 45
A BB S SR S AT M A B 1) BAS . L 0 S A U A B s A1 A A P03 7 P AR, 224 19 R AT AL B R AN 403 7
FEAE AN KT, 1 BB 0 48 3 — AN S A (R B0 S mS A5 & A M R0 400 B R B 32 FF, s T 45 1)l
G5, AT T ZETR AR VDA [R) 4.

4 ISR
4.1 XWWE

411 SERHE
AT BAEASC AR H K TRASO J5 i1 2k, JATAE CIFAR-10 Al CIFAR-100 FA 72 I T 553 50
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AR R LT S058. CIFAR-10 #8460 8 60 000 5k 32x32x3 2 EME, HH 50 000 5k T-1IlZ%, 10 000
TR T, Lk 10 2510, A ZRE1E 6 000 5K EUE, XS EFRE ®HL. KR 3 M. . . sk,
5. WEAIRZ. CIFAR-100 #& CIFAR-10 M9 R AR, A5 100 N1 250, BN 2517 600 5K B4, &t 60 000
Tk E%. T CIFAR-100 ff) 100 AN 3850 AT LA 5 A 20 MBS, SRS AR HRAT — NG00 Fn B A — AN HL bt
PRAE. XA BRI B B/MAENFEE, HEAN 0NN EGES — 2 S EESM, a2 T5 8 m T ik
P, WO IR B N R 5 VP40, 0SB 55T R 2 I 265 S5 28 1) (R ST E . (EAE B I R Fit R T 3
DB R0 22 FE R 2 1, RIS 2497 BB Y I 00 &, FRATTEAT T S 38 i A 28, ELAARSR A 7 /KSR A E AT
VI Fh g o g vk,
412 BHEE

FRATR A ResNet-18 VENH T M4 4244, FF| FH BEATLES B T B#32: SGD (stochastic gradient descent) X H 4741
th, FrF N (epoch) B BN 200, ¥IEE 21 Z N 0.1, ZHESH (momentum) 0.9, A EFEIH R E (weight
decay) 4 0.000 5. Ak, 29 T EYIZR)E BAXS W28 S HOIHAT RS A0 VR A2, FL6 P P 25 o R TEI0RBE 35 | o)l o mg
(Ir]) 2T 50 NUNZRE G, #4521 22800 2 H AR RTE R 0.1 fif; 28 2 P sk mg (1r2) fE I ZRJE AL 2] 100 1
150 B, 2370 2% 2] BB 2 F M (A 09 0.1 £, BAE BIEE A Geatpy B SO, PR/ n 12 B 9 30, #ALARE T &
BA20, BERBH M BRERNS, HRSEIIRHBIARE. KIS E A= xS,xS, =[2/255, 16/255]x[1/255,
4/255]x[4,20], & 5B B A0RAA 1 BB A 0.000 1, WAL B R D MINZRE M BEHLRFEIRAR, R/ANBE N 200, &AL
Az K BB 30, FATEERR 10 NI BT — RBRARAE, FERI R 3 Fpoy SR HEAT U 4, 35 1 Pl ik %
ISRt R 1 i AR (final), 55 2 BRI PRI S0 2 b S Uks FE e ALY (adv), 56 3 R IE RIS fE b+
VR BE R ORE FE 2 OB R OB Y. (sum).
4.13  BEBIPRAL

R ATVEAE R SR, AR T 3 8%k ik B PTG BTk B A e, Bk
AL LAL, TR, W R R B, BAVEH L, 85K ¥ FGSM I PGD; X b X, |AMEH L, 5L
LRI C&W; ST R, WE A L, TR AA. IR e 84— % B N 8/255; PGD iR P Kk E
20255, 3BHYE 104 20, 50 M #I AL PGD-10. PGD-20. PGD-50 iX 3 Fh EAKM M di; C&W B W IEH
BN 1, confidence WE N 0, IEARIRE K E N 50, I FWHE N 0.01. FGSM. PGD fl C&W %4 — i
torchattacks FESZH, 10 AA {8 FH 5 SCZ5 H AR A SN I 08 B L A v A =X
42 ZERHH
42.1 555 S R BT VR R REXT L

FRATVHE A ST H () TRAPSO J7v 5 [ 2 T SR R (bl it Ll 45 75 7% PGD-AT HEAT ELK BRAh, N T 56
E TRA®SO I T A My il 5 5w B0 %5, BRATTIE B i35 T 2% 1k 484 K Tl 98 B (9 7 2\ PGD-AT-linear. %5t
TRA’SO, H-P i REL o MIB ¥V E N 2, 28 B AR AR B 2 30 AN IZRFA I, B2 ) iy Rz F Irl; BFxd
PR P 2R PGD-AT, SR F[E & 2501 PGD X at = (8/255,2/255,10) 1E AN BRI T B, 2% 2] F 4 J5 5
W FI RS 3z A el A0 1r2; &5 28 14 19 K SR ig PGD-AT-linear, Hb K o FEH 1 [ 5@ NAniEEAE 2/255 1 10, 38 &
MR G A AL I, FARR A 3 P RBREE, W £, 2070004 8/255. 12/255. 16/255, J:

Eepoch = €POChX &y /200 (12)

22 2R R B FIRHE Y Il A0 12, BB 5 VE7E LR IS F s it ™ AT VR4, C7E CIFAR-10 £ CIFAR-
100 LGRS BN 1-% 3 MK 4-K 6 iR,

138 6 H, final FEAIE R R AR BT ITAN; adv RoniES: PGD-10 Bi - Al %6 d s IR B Y JEAT U
filr; sum F8RIE PG HER ZR T3 LR 2 2 2 R s DR Y AT VAT NR AR o] LU Y, AR R 3B B
[, TRAPSO #I AT LATE RS 30455t o O B P FBE, R I /0 T34 5 B O A P T 232 R L, 4R 75
BT SRS . E8 5 A2, TRASO B3RP final ARSI 20 TArAEXTH1I1 %% PGD-AT, 1 W HAf 9z ar
DASE LT o S 1) 3 R YR, AT S A 20 HH 0 i 0 45 BI™ B (0 i UL, 7S S 2 I P RE R I s AR
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R 1 CIFAR-10 £ 4 b & Fh SR NG B 7 v A58 (final) AOMIARAE R R AT EE (%)
Jrik Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W
Ir1 83.77 52.29 43.43 41.86 41.41 40.07 6.90
PGD-AT (rh)
(Ir2) 84.42 52.13 43.63 42.36 42.07 40.95 7.74
PGD-AT-linear (Ir1) 89.30 50.85 37.58 35.00 34.26 32.26 1.76
(Emax = 8/255) (Ir2) 89.10 53.46 41.15 39.19 38.74 37.00 5.82
PGD-AT-linear (Ir1) 86.62 55.33 44.66 42.39 41.67 38.29 8.51
(Emax = 12/255) (Ir2) 86.00 55.99 46.68 44.67 44.16 4222 7.77
PGD-AT-linear (Ir1) 84.82 56.61 47.16 45.08 44.55 40.54 15.45
(&max = 16/255) (Ir2) 84.18 56.01 47.65 46.14 45.62 43.18 11.60
TRA’SO (r1) 82.04 54.63 47.88 46.41 45.95 43.66 13.12
%2 CIFAR-10 $¥a4E F A& FhSimg R L SRR (adv) HIMAHERT RN EE (%)
T Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W
(Ir1) 82.12 56.61 51.17 50.28 50.00 46.63 24.65
PGD-AT
(Ir2) 84.54 56.20 50.24 49.16 48.82 46.35 16.30
PGD-AT-linear (Ir1) 89.35 51.19 37.58 35.08 34.41 32.23 1.67
(Emax = 8/255) (1r2) 89.22 53.03 41.39 39.35 38.77 36.95 6.44
PGD-AT-linear (Ir1) 86.58 55.37 44.68 42.65 41.92 38.52 8.66
(Emax = 12/255) (1r2) 85.95 56.20 47.01 4521 44.70 42.49 8.06
PGD-AT-linear (Ir1) 84.80 56.78 47.13 45.18 44.48 40.05 15.78
(Emax = 16/255) (1r2) 84.49 56.63 47.99 46.46 45.83 43.33 11.50
TRA’SO (Ir1) 78.04 57.55 54.35 53.66 53.58 48.89 39.88
F 3 CIFAR-10 4L b5 PSR g A B VR 45 G (sum) IR A 2R 060 LE (%)
I Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W
(Ir1) 83.15 56.35 50.48 49.54 4925 46.37 21.24
PGD-AT
(Ir2) 84.90 56.80 50.14 48.83 48.49 46.17 13.16
PGD-AT-linear (Ir1) 89.35 51.19 37.53 35.18 34.28 32.25 1.67
(Emax = 8/255) (r2) 89.22 53.03 41.35 39.31 38.78 36.94 6.45
PGD-AT-linear (Ir1) 86.58 55.37 44.73 42.57 41.86 38.53 8.67
(Emax = 12/255) (Ir2) 88.63 55.55 4533 43.29 42.56 40.60 3.81
PGD-AT-linear (Ir1) 84.80 56.78 47.13 45.18 44.48 40.05 15.78
(Emax = 16/255) (r2) 87.68 56.10 4738 45.48 45.01 42.73 6.92
TRA’SO (Ir1) 82.71 57.67 52.73 51.75 51.56 47.96 28.43
# 4 CIFAR-100 HR 4L b 25 Fh S ui 8 7 v i 2458 (final) (PIIRAERH 255 L (%)
Jrik Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W
(Ir1) 55.93 24.73 20.40 19.67 19.33 18.60 3.08
PGD-AT
(Ir2) 55.69 24.51 20.04 19.43 19.27 18.54 2.73
PGD-AT-linear (Ir1) 64.63 22.39 15.24 14.07 13.75 12.76 0.55
(Emax = 8/255) (r2) 63.07 24.60 18.05 16.87 16.58 15.54 1.17
PGD-AT-linear (Ir1) 61.37 25.12 19.12 18.21 17.86 16.94 131
(Emax = 12/255) (Ir2) 59.57 25.83 21.00 20.00 19.77 18.90 225
PGD-AT-linear (Ir1) 58.65 25.30 20.10 19.03 18.82 17.92 2.03
(Emax = 16/255) (Ir2) 56.89 26.29 21.88 20.94 20.77 19.79 3.16
TRA’SO (Ir1) 51.22 27.69 24.56 23.98 23.92 21.84 6.20
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W

# 5 CIFAR-100 #g4E & & Fh S5 0E A 22 5 1R S AR (adv) HOIIARHERA R AT B (%)

J7i%: Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W
(Ir1) 57.04 29.63 26.32 25.75 25.52 22.84 10.24

PGD-AT
(Ir2) 56.70 27.74 24.08 23.57 23.38 21.19 6.91
PGD-AT-linear (Ir1) 64.63 22.39 15.31 14.05 13.78 12.76 0.55
(Emax = 8/255) (Ir2) 63.07 24.60 18.12 17.02 16.63 15.65 1.17
PGD-AT-linear (Ir1) 61.37 25.12 19.21 18.24 17.80 16.96 1.30
(Emax = 12/255) (Ir2) 59.74 25.80 21.01 19.96 19.71 18.93 2.24
PGD-AT-linear (Ir1) 58.94 25.25 20.16 19.40 19.15 18.02 1.97
(Emax = 16/255) (1r2) 61.71 27.52 22.68 21.51 21.11 19.48 4.58
TRA’SO (Ir1) 53.78 30.36 28.19 28.02 27.92 24.37 14.38

# 6 CIFAR-100 #4la 4 25 M sms i 8 A SR AR (sum) FIIIHKHER 0 EE (%)

I Ir Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W

(Ir1) 57.04 29.63 26.44 25.78 25.61 22.83 10.23

PGD-AT

(Ir2) 56.87 27.89 24.17 23.49 23.33 21.45 6.61

PGD-AT-linear (Ir1) 64.69 22.42 15.14 13.86 13.63 12.59 0.58
(Emax = 8/255) (Ir2) 66.24 23.78 16.06 14.69 14.42 13.33 1.67
PGD-AT-linear (Ir1) 63.30 24.36 17.96 16.64 16.38 15.66 1.17
(emax = 12/255) (Ir2) 63.82 26.21 20.39 19.33 18.88 17.42 3.15
PGD-AT-linear (Ir1) 67.41 21.83 14.31 12.88 12.31 11.04 1.34
(Emax = 16/255) (Ir2) 61.71 27.52 22.63 21.58 21.15 19.46 458
TRA’SO (Ir1) 54.50 30.42 28.07 27.50 27.51 24.10 12.96
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i, RT3 AN G PG L AR A0 5. o, il B S e 1 AR AE R 32 T30 SR it B (P e SR B, 84
2 U300 3o 2 o0 R AS SR AT L AR R 85 T AR e 1. B0 s, RS B ITAS R ] PGD-10 M=
R HUREAS. [ 2 R 3 JRoR T 4% Pl 2507 30T £ H s FE AN T4 K5 BE B I 2R AR AR (e #a 9. ] 4 /R T TRASO
Bt ey S OB BUYE 1 & A 5 2R
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43 5 SOTA 75ARIMERERTEE
NT A4 BAIE TRASO ik A Rk, JATESE T 2 A% SR 0N 2507 183047 36 L, LS b vt s il 5
PGD-AT. TRADES", MART®™, FATPY, GAIRATP, MAILP®. AT+RIiFTV7. B 75 00 3 F M 4% 5%
ResNet18 B¢ PreActResNet18, S A J7 SC AT AL IIRACTE Je BRAN W B 4T 528, B IA S0 E, BI85 E i
AR %%, 7F CIFAR-10 A1 CIFAR-100 5%t 45 %t b gt R an s 7 A1 8 pion, Fh TRASO J5 i[RI I
T FAZHRAY (early) FIEHEALAY (adv) FITRASEE R
7 BN TTVELE CIFAR-10 Fodi 4 b AR IR HER 6 EL (%)

WiRES Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W Time (s)
PGD-AT 84.42 52.13 43.63 42.36 42.07 40.95 7.74 43857
TRADES 83.42 58.77 52.68 5173 51.49 48.65 30.24 44057

MART 82.00 56.92 49.76 48.30 47.83 43.36 22.52 29750

FAT 86.98 53.99 43.94 41.87 41.28 39.55 8.96 45154
GAIRAT 82.33 54.44 50.80 49.65 49.62 32.60 67.03 46276

MAIL 84.03 55.96 51.29 50.64 50.31 46.82 24.19 101026
AT+RIiFT 76.78 44.09 38.57 37.77 37.45 35.19 23.13 127665

TRA’SO (early) 79.06 36.78 51.94 50.85 50.51 47.25 29.42 47694
TRASO (adv) 78.04 57.55 54.35 53.66 53.58 48.89 39.88 47694

%8 BAHTINIZJTIELE CIFAR-100 H¥E4E b AR i vE A 3 5 B (%)

ik Clean FGSM PGD-10 PGD-20 PGD-50 AA C&W Time (s)
PGD-AT 53.93 2473 20.40 19.67 19.33 18.60 3.08 44098
TRADES 55.50 30.56 27.82 27.48 27.27 23.54 14.37 40519

MART 53.17 29.18 26.52 25.92 25.84 22.60 9.26 29877

FAT 61.29 25.60 19.73 18.77 18.52 17.75 1.94 41485

GAIRAT 55.23 24.20 20.12 19.30 19.08 16.36 9.65 42616

MAIL 61.33 31.29 28.06 27.44 2735 22.64 12.56 114857
AT+RIiFT 45.08 20.94 18.77 18.54 18.41 15.38 17.26 125939
TRA’SO (early) 51.41 27.61 24.42 23.82 23.58 21.72 6.52 41827
TRA’SO (adv) 53.78 30.36 28.78 28.01 27.88 24.37 14.38 41827

7RI 8 PRI LR A ARAR IR, 28 2 FO5E 3 LF MR RE A T RIZE AR AR IR, AT LUE i, 7E CIFAR-10
KA 4E I, TRASO (adv) 7E LRI FHRBLHEE 1 MIPERE, TRASO (early) 78 BT Mo N tHSZHL 1Al 3 AOTERE,
BT () _E oA, 454 FA5 5R0%, 15 SRR SRS BU I 2k PGD-AT AH LA W1 34 0. £ CIFAR-100 %4
4 b, TRASO th 0] 7E R X 52N (IR 1) FR4 R 3RA5 — AN ASEE AR, RUES L L S IR i 4 B R PERE A 2 AR
FHAR, (H SRR 2 P PP N R PSS 1 86 2 iIMERE, AT T TRASO J5 i 38k G Rt
4.4 WL

T (5 A 2 0 28 EAT 20 S, S5 2845 3 PR N AR AE — B30 2 va 4 P 110, Mk LA v R84k, TR Uk, FRATIME FH t-SNE
D735 PN AEEAT P 4, FFAE 4 23 1) o kAT AT AL JR . JB L TRASO JHikfE IR v AR 1975 2
AR, 3R PGD-10 4 SOt HiRE AR, FErT Ak 8 43 5l an (] 8- 10 Fiow.

W 8 FTaw, TEVNSRAIH, AT X X BUREAR AR R T B AR 22, 3 L2 >0 2 A ff (1 52 RT3 A 2 S R i A 1)
SN G, FA TR IREARGFFAE ZRAE — 2, TR IR % 22 5 BOR. Wil 9 Frow, ISR 1, BA CL et
XA (LIAE ) (R AR AE B ST AT B i T 02 R, T DA I S I KRR A IR A 402 [FIB, &b T3 R IR 4
FEARWIE R T 89 B %, Hor ISR R IR E BT, a0l 10 frs, RIS 3, BEAL LA RE 04 h 150 8
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