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Abstract: Graph-based indexes for high-dimensional vectors have become the mainstream solution for large-scale approximate nearest

neighbor search (ANNS) due to their high efficiency. The search process over graph-based indexes typically consists of two stages: the
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first stage rapidly navigates from an entry point to a region near the query vector, while the second stage searches for the k nearest
vectors within the localized region. However, due to the need to store a large number of adjacency relationships, graph-based indexes often
incur high memory overhead. In practice, this leads to storing the index in external memory, where vector and graph data are loaded on
demand during ANNS. This results in frequent I/O operations, which have become the primary bottleneck, accounting for over 90% of
total query time. Existing systems exploit the fact that entry points and their nearby neighbors are frequently accessed, and adopt static
caching strategies that preload these points and their multi-hop neighbors into memory to reduce I/O during the first stage. However, this
study finds that the second stage contributes the majority of I/O cost, as it involves accessing a large number of graph vertices related to
the query vector to ensure high recall. Since the accessed vertices in this stage vary dynamically with each query, static caching strategies
fail to capture them effectively and thus become nearly ineffective. To address this issue, a hybrid caching strategy termed GoVector is
proposed, which integrates both static and dynamic components. Specifically, (1) the static cache preloads the entry point and its frequently
accessed neighbors, while (2) the dynamic cache adaptively stores high-locality vertices encountered during the second stage of the search.
Furthermore, to align with the similarity-driven search behavior of the second stage, a vector-similarity-aware disk layout strategy is
proposed, which reorganizes the storage order of vertices to cluster similar vectors into the same or adjacent disk pages, thus enhancing
data locality. This dual-optimization approach significantly improves cache hit rates and effectively reduces overall I/O overhead.
Experimental results on multiple public datasets demonstrate that, under 90% recall, GoVector achieves an average of 46% fewer I/O
operations, 1.73x higher query throughput, and 42% lower latency compared to state-of-the-art disk-based graph indexing ANNS systems.

Key words: high-dimensional vector; approximate nearest neighbor search (ANNS); graph-based index
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MR 2 MBS, BN PR T | T BRE T E55 1 B, AN SR RN S S R
G50 19% F1 63%; MTESE 2 M B, iZarH ZKIE T, 008 4% M 9%. Mok, seitoh RIrR A, 5 2 B &
FEITIEH (5 5 AL RN R 80% DAL, B IZ I B O i 20 A 2 R0 11 3 L B RS

100

100

_ — BIR _ — BINR
L g b - SE2BT B St -= S2W B
i ;8
& 60 € 60 3
2 ] \
i 40 E 40 ‘\\
® o B3
=) £ 90 M
B el L .
) i 0 -
16 50 100 50 100
IR H HhIRF AL
(a) SIFT (b) GIST

Bl 5 DiskANN 100 646 J& Fh § s G A7 o P AR 28 (k=10)

N T ERNHLILARET 2 W BRI, BATVHE 25 S0 0T T AW B R A T A 5 80 2 1 5 23 A
Pl 3 JR ORI SC e B, TE M B, SR I T p E 2 o 5 A OBE B A P T — AR X 1
. BB, FBL 3 0 2 VR . B d (', ) Fom 1 R T 5 2500 B 2 DO BEL 8RR IR 3 (530 5
T4 i < d(p*1) < - 3o, i 0 i 23 315 SR BT I 25 5480 60 2 2 AL 5 /5 B KB B e B 7T O,
552 BB A S RS BR LB RAIZE AL g gl FARTEIEN [d ] FOFFI X S HEAT Y. AR T2
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AT e ], 2R P DX 3 P A 1) A S 18] S DB, RS R BT 1) LA T B T AR SR . K 6(a) JR
VBRI R R . T R, WRER 2 B B B R e R AR T X K R, 0 AT
Fe L AU R S NI BEAT il A J5 , A A7 AN 5 48 L 5 R R BR 322 X3 78 i Pl 5 D 2 1), DU K il 5
/O Fir A it v #) 1va) ofg BA S v RSB I R, AT 2 35 BT G2 A i b 3%, D TUAR 1/O T, SR, 24T
T T REAL IR 51 7595 (0 DiskANN) FEA%2 3 R i DR 02 e B SRS, (500 282 224 i 47 Jo& T P 1 1) i A8
T, FRAEFRIGZ I 0 1) B 5 40 s 45 S5 SLRIH AL AF F IR, R 158 2 Wi B o 4 R T £ 17 B 2 1] ) 3
SEVERFAE, AR BEAT ROR U ) A r £ 2 18] Jm 0, AT AT 66 51 A s RIS 1/0 4. PRI, 28 1 B Be i & if it
REATY AT R F A% Gei A5 SR AE AL, T 56 2 [ BOU SEs BLAT M n LA Stk BEvH S8 A8 T )= 8 IX I3 G A7 WL, LA v 2
S A AR AT T ] AR A XK

Camssnx BN EAFAE I T
o—— AR A, WEAT T IIAR o> GEdreh, ELH MR R

| Vo l Vs | V6| V4| V7| Vs | V2 | | i L5 A A1)
T

|
B [VMVS]J [vovlvs]‘
I ...... l —>[v3 Ve v7]<- [V3 Ve v7]<-
T 'm ' s
HRIAT QOOOOOOOO® s tngiE e
(a) 2 B L R (b) T A AL PR (7 02 7

6 ZhEZAREE

4.2 THRARSEFRIT

BT 41 WO E R, A0 T — M S -2 8 6 MR G ZANLH, BRI 1 BCR S EAF
HMg (L% 401 Beam Search —£0), i T IEAR MG A A7 ), M RN 2 MBS, R40UR B AL
], B AU ) RS RCR N R AT. BART &, 128 2 B B4 gl B b, 0 T A7 R A b 46 R T A1, GoVector
S 2B SR A 2 2 A P B, Ak — IR s R AR, o AR IX 4k N I 2 A ) B2 — I NGB N 3k 2 3h 7
A7 TR IR P SR B TE 7020 FH 40 R 2 ) ) 2 (AL AR, 58 5 482 8 () TO A B ] R i v R A7, AT S 385 02D A
LHIBENL VO AR AT R BIPERE 4. Wl 6(b) FR, A RGHR R TIA vy B, BT ZAE R, REMRIE AL M=
AN AR I, — IR vs v R v, FTTE IR AZ DU B BN AT X . B TARIE AR 6 BA B (0 T s A R =i i
RN, R )G90 R E T Re A 2 H 2 AN E A7 03, B0, 2446 BT ve F v, B, 0T R 247
e HILETHRE v, B INEN A, DT AT Bl v, 5o 35 5 B WA U5 10, AT S 355 S P AR AR 8.

N T BIZBN A ZATHLGI, GoVector Wit T — R AR I A0 B IS . S T SCHEIBUF L & N2, GoVector 7E
RO MR BO ) SR AT 1 AR R, AR AR R 4L Sk AT R o S AE e, A TTEED R I S
RGP RS . PR, PESAT S BUR AR, RGBS LT U7 il (1 77 2058 A AH DG DU, AH EL A& S I BEAL /O FH45 5
K. AR BN B (K DG ETE T, S0 RN R RN B AR TS, RABIEHIE HLITR B KL NAE, H 4
AT AW B, VR A IE S B IX(R], SIS 4 R 5 ) A, BAAOR U, R H B bR A
i, RG0E Jailil B AR TR IS (HFRZR), TS 6 28K/ S0 e s e b AR A 2, F 5 e 1 IR 12 B
AR DX 8], SEPEE LR R I L B I EAT . B & AR B LH ARG LT 3 2R © LA B AR SO O, RS n R
HATE 2 BRI AR T A @ 75 M AT ICi i 2 SRR SR B, Ao AN BRI B AR AR IS H A FE N8 T0 £; @) AR IE 1
B AN R AR

Bl 7 JoR 1 SEbR B TR L 3 R i s, R UK/ 4 FEIEIL 1, BRI N T Z A2
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A, BILLvs P, RG] EHEMFE —RPIMBABET va s vss vor vy X 4 DT, S8R A MG AF IR,
FENEDL 2, T H AR (K 3) B, TCIBOI SR A7 01, R G0R LK 2 b, RIS A TSR 2 w5 H AR
FHABHITIRL (vy); FETEDL 3 H, 25 ELERAS I b 3 J N 5 B 2 5 B304 A5 152 s ] 0 2 3 B R 51 S, BRIk R g
AT I FAS I 5 R B LA, DLIGE S i R, W R S IUT N B IE R .

ENEINEEREC NI

1 A Y 2 S D A Y K A Y K
R —; . J
T 1 BARER =4 T 2: BARFERh<4 L 30 T 5 je)

K7 R I S s LA s

TEF A ZAFHHI B B, GoVector HIRGIN T B MR NZNAE X, HH TER BRI TRES, ZhE
ZAFX IR B AR AT RAN K, YA B ENEE LIRE, REFIAT RS HERE. i,
ARG D BN AT R AR, SCI T 3 PR Sk e S Y (first-in-first-out, FIFO). BEAL &
(Random) LA K A2 K {5 (least frequently used, LFU) SRHBS. 38X 3 Fh B (XS L TAY, ek # LFU 1EA3)
AT VB INE e SR

BAVE SR AHEI B T AR5 3%, Hk, Gl dEwi iR 50 w6 B B 3T s o SEB i R R 1)
B, AU % T PANNSE AR SR B RU J5 7%, B4 06 3% A B o HE 44 BT & R T A5 2 A U B ) RGN
552 M B SR, 7ESE R AR, 1208 5 SR NS A AE B 0 S, RO SRR S T R AR I A SRR R A
BRI E). Gl 3 R, 76 SIFT A GIST F4m4E b, FH 28 75 ) xS fi (9 ) & 43 i M ILTE 56 16 50058 8 %6, HIEE 1.
2 M B FLSEET 6, T PANNS U (05647 23 2 0 R IRAE 35 27 56N EE 16 58, 7 s I3 47 s R g F5 X — 1)
B, A SCAE SRS ESIN T — AN RIS 0 (0<0<1), B2 {50k BAZ t HE BT 0- k M T0 3 S8 U7 IRl I, 48 &R
HENGE 2 BB 0@ an T A e IEHESE P LI 1% B0 [ B, DA I R R L R
) LSRR Ak (BD & IR V7 ) Top-k B &1 A & IR 80, 456 PANNS JriEtHE AN TR S k. B4 A
0 = k/k 175 ARAF S B W AT BT S 3, FT AR B8 R M B, AT SC B B e i . xR 7 vk BE s
TSI R B AR, B3 SRR s R B IS 1) 721 3 B sEEe R, AT PANNS, GoVector 7E SIFT il
GIST H# 8 H A B 4T 5543 BISR AT 9 400 5 %, B0AE T iZ 7 Ik 2.

FNASEAFHLEINT ANNS AP RE I IRALBUR, AU T 92 47 SRS I B v, 38 5 i S A A4 R 1 R M AR A
BEYVF G, 5 MR B e 6% SR A ) — R A, DG 5 S e im0 1 B SR A BT R U5 L, AT HE— B4R T
AP PR R, PRALA A R LABE T 1/O (5 [ R M, BONZBAEMLI 2 A 57— SRR i . Sk, R —1f%
AR T R B AN R 5| EEHET

5 ETEERMMENERSIEIEHRF

5.1 1O HEEB 34

TE KRB ) B R RAT 55, WAL 1/O UL AE By PR ) R 4 14 B (0 DG B, 650 — IR ERIAE T ik /O 1
BRI 2R AR, BT RS DA TN B AR5 5 B, SR GUTE U 0 AN T AR AIE B4 J 5 SRR a6 250 4 0 812 T o
TETU AN 2R B % U ACE D B S L b 2 5 2l 72, AR SR o oA B, 18 ps S IR o N T 4448
R IAAE B, REATEAEINER T IR UL, W51 R HSMOREL VO JFRY. CAa T it 'Y, 7€ DiskANN
FRE, B T 2 94% MITHRURAEUT i), B R A I 92.5% BT A T A4 /0. 1% 1) HE
ANNS EHEE 2 BrBOUAR H, B B A BIHE 7 5 2w f el VI aa sk, B8 1 — BRI R, 1T
o E HL AT T 1Y 1) 2 (B R BEAT SR NP . A R 2 40 R T s 5 Ll 0 110 JH At 1) 2 B P A2k T [ — R i T
W, &R &G — R 1O #:AE sk BE N4 2 A T Re A vh 1 ) £, A7 R T+ 50X /O R 28, I/ TUR RS V7 7). 4%
T, B AT 3 B A R SR e Ay B T R S5 M O R LU, W1 Starling R4t KA BNF (block neighbor
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frequency) S35, 5K B I AR AT T ol SR AEAE [F) — B epr SR 5 ik 240 1 RS 5 1) o 2 1) 2 TR (R 45 ) 25 57, ik
FEA RAEARACL T B P ER AR UT M, HETTBR B T /O Rt puit— BT, | 8 JBIR T R LRI A )5 5 2 1%
A gL (RS A B A ZAT). I 8(a) NER 5 ELEH; K 8(b) B2 T DiskANN. Starling 55 GoVector 7% A7 )
gESR PR T 2 284N 3 AT 1B 8(e) B T M L s TP AT R B3 R RS, JFie R TH IR I A
fl et S BA B, LA 2410 DT 2 5 iy o R — AN B T s. SERGIERE A, MO 05 vy R, RGER IR B 15 vo, v3, v6,
I P g BA B FH T v BE B AR RO, ISR 3 500 B ve SR HENEE 2 R B, SR AR IEBA B A (v,
Vo, Vs, vy b, B AR B A v, #5 K DiskANN BIA7 68 SR, BT v 55 vy £708 T AN RIBEASE DT, 2377 A5 5 YR 4
/0 #4F; LAJCTE Starling W46 R R, 2 43 Aii AN [F) DU, WP 75 P O REASE 1/O #0E. B R A0, WiFp A7 A1 =
BRI A G H, SRR VO BRI 2T . R AT L@ i K A7 25 B3 N 25 L R /% 1/0
TR, (H QR R T H A R 3R 51 A0 R 7 58, 4 DA R A B A B8 2 2 (1 P B R T

| . R AR AR T AT
F } B PR TIAT 12 BA S
%‘ l ﬁﬁﬁﬁiﬁmﬂ }} f il Disk ANN Starling | GoVector
DiskANN |  Starling | GoVector Vo V3, Vg, V) X v X
I ! V3 Vo> V7, Vs, Vi X X v
Vo, Vi V2 ] : [ Vo, V3, Vg } : [ Vo, Vis W8 } Ve Vo Vo Ve Ve, X v v
V3, Vg, Vs ] : [ Vis Vo, V7 } : [ V2, Vs, Vo } :4 :7’35’38’ :1 : i :
| | 7 55 V2, Vs, Vi
Ve V7> Vs ] ! [ Vis Vs, Vs } ! [ Vi V3, Vs ] Vs V25 Vo, Vs, Vi X X v
! ! V. Vo, Vey V. X X v
| | 2 9, Vs, V)
w iy L m ] Tw vy X | x | X
I I Vg 2 X X v

(a) R 5| EIL# (b) AR5 A7 A A7 =)

K8 T AR R S K E A

(c) R AL et

52 ETEEHEMMNESIBEHFSE

EEXT LA A R TR AR AE M R PR, A SCHEH T —Fh g & i AR S AR EE RN R 51 B A SR A Ak e, LR
TSRV E 8RS ARG R PERE. BARKE, GoVector it LL T BIAN B SE I 51 B (i EHEFF.

(1) FAALE T 2B B T i A 18] R RK E BE 8, S k-means SR 384092 L2064 30 1 B R 3 9 2 AN v AR A
JE 2, AN FEE PN 0 1) SR A ) 2 D R AR M

(2) R PRI B TER A4S AN 1, 56 R 51 B FR 0, 15 R — 5% P9 109 1) &R 7T R 43 e 22 A IR 50
BEAHAT A% DU, AR KR B A e 2 v 14 388 T 1) A .

K 8 R T ZEHT AN R SR, B4, RETEFR I R & 25 (8] R k-means TAEH L, BRI N
25 12K 3, X PR 5 B & 8(a) Fis. bl JiE, fEREAN SRR, RGuit— 51T B 4 T 2 1] )3 5 1
BTN EHE. LA 3 ), A & TS SR A A { va, va, vs, v}, 1B E T TEEL DU K /NAZAEBR 1], RGEAEHEP R
P L vy, vs, v VAL LULE ] — T, DRORIX 3 AN AR T v, B BRI FTE R0 B0, TR G5 T A v, DU 22 HE
ET AU, & EHEGE A5 45 2 a8 8(b) B GoVector fizn. fESZFr 22 T, GoVector REWS A T
BIR VO EHEF 2. 140, LAM%ES Beam Search V241, 240 BT AL v, BF, RE NI v, FIERIRAALTL. 85
RSLIH R TR A ve, T v 5 v; 7 GoVector 7266 AT A F AL T [ — R4 0T, BRIk ny LLs > — WRBES: 1O, AR T
= 10 w5 5. B 8(c) X b T AN FIAZ it A J=) SRS R 1R SE PR AT i B L. DiskANN {5 [ 246 N5 B BE AL
O3 A 7 SO AT HE B AT, 50 4 NG i) B2 (A AR D6 R, S 37E 2 v A e, AR i) A A 4 0 B AN TR G2 T
W AEARBIE, BT R AN R A AR TE IR A P 2 W T, DR TR AT B £ 0K VO AR, i RAR K /O 4. Starling
K FH BRI S5 MR S o0 AT AR, K PR A A0 R AT e TRAE T IR — WA S U b, fe s — e R FE b 2R M % Uil . (L7
ANNS [J28 2 BB, #h R BE A2 B n) B 5 7008 02 IR (R AR Bk 3, 1T 3F BR #h b 4l M e 19, B T B 45 0 S A A
GERE 2 A1 AN 2 — 5, Starling (A7 J5 77 2CHME LIRS 1A 25 SRR U7 1] 3% 47 Hh AR e BLAG 2% ) SRR M ) A s IX 33, GoVector
T 38 I SR 28 5 VAR H 1 ) P s AR ACL R R X I, SRS TE AN R N A S BRI T R HET 5 T
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TBC, FEARAE PR A AR, ARACL ) B AT R JIN AR A (R — R O e, XA SR S A 5 2 B B AR AL
S 0 AT, BRI, GoVector (KA1 J 75 2ATRAR T 1 #IK /O B A 2R, A5 T — 0 R TIUA 5 X i
0 SRR A T [R] — R b, AT /O JT RS IR $ T B it P RE.

6 SEILSIHT

6.1 LIWWE
6.1.1 SEIGIREE

A 2R AE — G MR REHR 55 8% b 58 B, %R 55 23 BL 4% Intel® Xeon® Gold 6248R 4bF %% (3.00 GHz, 48 1%
i), 32 GB DDR4 FIAE (3200 MT/s) PA S Wik 1.7 TB SSD, i3 5 5 5 fi% v il 75 500 MB/s. #:/E £ i Ubuntu
22.04 LTS, 4iik#hiiA A GCC 11.4.0.
6.1.2 SEERHHE

SR 6 NMATTFIE Sz EHIEAE (0% 1), 3% SIFT, Text2Img!. DEEP®. Word2Vec™, MSONG™
A GIST, S e B i 55 R . SCAS S 5 AIURIA] ) B 22 Fh 2 R, i) 44 55 N 128 &5 960 A%, CU ) 12 T
WAE ANNS R4 HIPEREEAS.

AEE S Hlm A I 5 44 B ) E AR A
SIFT float 128 1 000 000 10 000 E&
Text2Img float 200 1000 000 1000 BSOS
DEEP float 256 1 000 000 1000 E&
Word2Vec float 300 1 000 000 1 000 1] )
MSONG float 420 994 185 1000 B

GIST float 960 1 000 000 1000 E&

6.13 XTLLRGMSHIKE

A K GoVector 5 YT PRI ML E T BB T ALl i i 444 3 R 4, DiskANN Al Starling #EAT X EE.

DiskANN 2 FH UK IT & B — R 3 T 1R ) v RG2S ANINIS 792, SR P s 28 3 R S, MUTIEE RO 0T A5 1R
WS EIAT LS M B I B A . O T 2D /O TT4Y, DiskANN 7E W AT 51N T S S SAEHLE], TUmEv a5
BN OIS S KA FBRAD R RSO LI S H0R BT 47 SO R 51 ST BN 1%, BRIAAT
Top-100 £ i, EIHREEANTI s AR IR EL R 2 32, R LFEH T h 32.

Starling A2 4E KA H 1) — Pl £ 3 BR B 22 5 B R 4L, 1% - Be VB A R AL T i S R 5. AW
TR o SR T B g A 2 S, AT TN SR I B8R, B B PR 15K 5 /O SR, G Ah, Starling B T ¥ 4544 51
NBEHEFEIEL (BNF SRES), A48T s R E R T W — R U, 427 /O FIFH 2. 7EA ST SL 530 BRA E HE
J¥ %W 9 BNF, KRS E 5 DiskANN {REF—EL

GoVector f&A CH2 H 1 — b 2 IR A A7 50 ms . B B S 5l S S A 1P, ZER 88 m A7 & H
IRTHR T T 1O fir R 5 AA B W F L. GoVector HIA% 0y AR 36 T 1A & (A UL LX) & 51 #HAT W BEAG R AR
k., FHFE AR I FE PR R B AR A AH AR TR SR T BE 4R 7 A — WAL DT P, AT T/ 3B 1 (X 51T Starling 3R $h
MO EHEE). ZRPRENSEN: B SEFE5EEEAREFET AR PG RN 2:8, KASHE
DiskANN —Z.
6.2 REERFTI

K 9 7R T ANE] ANNS J5iEAE S R0 A 3 1) 2598 YR 2L (queries per second, QPS) 5 A [B1% (Recall) 2 8] I PERE
XFEG. HoHr, GoVector-hybrid 7R A # S S5 SZ AN HI AL A0 GoVector (& 5B Z A LA 2:8),
GoVector-dynamic MR /R RAF S AT (FFSZAZT S ECN 0) WA IUA GoVector.
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«9- DiskANN -%¢- Starling 49- GoVector-dynamic <@- GoVector-hybrid

1500 1500 1500
Q--—uc STTe- 2 .
m—m——— - E‘: i~ 1
rooo |2 “‘&(\a% 1000 oo tooo |- SEL_0®
»n - & % =g‘—:9; %) O~ \\\ 42N
[ e a S E‘% a Sl
o XEI o \\x\ 9 o4 ﬂ\ =
500 - go__ P 500 "G\G\ S 500 | ‘&G .
ooy ©oesy \
0 | 0 I I 0 ! L |
99.0 99.5 100.0 85 90 95 100 85 90 95 100
AmE (%) A% (%) HIEE (%)
(a) SIFT (b) Text2Img (c) DEEP
1500 1500 1500
1000 | 1000 | 9::38::-9,@ 1000 | ©<_
\E \\\
g 2 ‘Elaq % O-._©-g
i} S o N
500 | 500 | O-Ligx ] 500 b el E\%E
\eg@% \":@:m
0 0 I I 0 I I -
65 85 90 95 100 85 90 95 100
Al (%) HIEIE (%) HIEIZE (%)
(d) Word2Vec (¢) MSONG (f) GIST

9 EIRELI

LTS 25 AT LA H, GoVector 7E-5 HiAth ANNS 75 V5 FD0 b A R 3 B AL 5= (48 R 1tk e, JCHAE =1 3 Bl 337
FTNMAFERNWAE. BT S, 728 B R AMET 90% 24T, GoVector-hybrid 7 QPS #H Lt DiskANN 27 T
2.61-4.59 £, M ELF Starling #2717 1.10-3.97 fi%, ML+ GoVector-dynamic $2F+ 7 1.06-1.50 {%. ¥t — W 2]
G0, Bl A O 4R FE 3R T, GoVector MRARTRTF T 50 m BAE R AEE, T Starling M1 AEHLIL T DiskANN, X752
GoVector (115 3R A SR A7 HEHE LU T 0] B AR U AT R A4

ERERNE, 70K A F RIS (W0 Text2Img F1 DEEP ¥4l 4E) #, Starling ) QPS B&ft T GoVector. iX
RRNTEZR SR, RN 1 B3R T KEB 0 FERT, 1 GoVector fT 51 N HIBIAS AL EZAALE 2 BrB
(5 Il 22, DRI FLAR 3 R 78 40 KA.

HAN, BATIE RBAEARE B 5 F, GoVector-dynamic 148 2 48 I BAKX T GoVector-hybrid, 3= % R K 7E
T GoVector-hybrid 728 1 B B AE BIFR S SAZ TN EL T N DS 2 BEARE, A Rdem 7 a2, B R T
L/O Vi el v, IR T T 8RR Re. e B B R 50N, BRI RS IR, 58 2 BBl EZmBN, M 3)
BEAHHAIFEE S1EH, I GoVector-dynamic #1 GoVector-hybrid 7F %375 F R I
6.3 ESENSEFLLGIN S

AFTLE SIFT Al GIST WA TF A EVPAl 1 AN F S 5 30 S A7 LD 8 R R se s, 25 24~ A [
R EARAT T S5 AR R 10 FroR. HEFS2i0BdE o4, "R H LT 3 /AN AT .

O EHEAE N B H RN LA R, USSR EANLILE1N 2:8 (W& EF G
80%) I, FEANTR A [F1 2 R ¥ RESRAR AL L R PERE. 7F GoVector W, S F B A ST 1 M EHIH R, T
NEEA TN 2 B BBIE DT M. U S 5 L 80% I, B A L% A7 AT b 28 & Ak il L e 78 0 42
FAND SR HZ B el g, S S808 RYAHME LR thoA D8, 28 1 B SRR . RGNS EAEN
552 WY BUROR G AL, AR A IR AR A 5 1 B BUSCR N BT B T 24K 1Y QPS. IX R, R & B ZAF I B T
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DAYE M BB -5 03 50RI T 2 I 0k 21 (R 47 1) P

@ ZNAZAFHIVERESEFHE . TEM R BRI R EM T, 5INDEINASZAFR AT B E 5T R G B A R R,
filtn, 78 SIFT BPELEF, SISEIE H LM 0% TS 10% B, RAEMEREIRTT T 1.31-5.04 &%, X030 7 5h& %%
TERLHRIAE AT ) R 38 B 2R R A2 A8 Ay T P v ke

@ BRI NREE GG EN: B — S0 KW, EAREA FRKE R, ShE%RA7N R BEA R,
R R rIfaE . A, EERIEFNEEAZ L LR E T, RANBRUERIN T 528887 (&%
17 AT EEA 0%), 3X Ut BA BN &S RATHLIRITE 2 PRk 280G B 75 SR 08 L 4% 5 0t 14 368 PR P AT 0 7 2.

1500 1200
OO g O, O B0 PN N N
V4o S o ©--o ! ©
rooo S ©—or o0l
4 /’B"ﬂ\ g ,r’/ o6 SEN
o [ F-B-g-E-g-g-g = o | o OBy \\@
/7 é / )
e Recall=95 B T
DS a7 - Recall=95
/ -~ Recall= 7
i el ~& Recall=99
0 - . . | Recal99.9 0 ~E- Recall=99.9
0 20 40 60 80 100 0 20 40 60 80 100
BIASEALTT i Al (%) ENASLEAEIT 5 Bt (%)
(a) SIFT (b) GIST

B 10 RFEESZHEZAF BT 8 R

6.4 TREIEFERKEEHZIM I

T FRE T A A7 R B 4 550E, A SCHE SIFT BUS4E b2 WISTAG T 3 Fis SRR (PR RS R B A
ZH A (LFU). Seikse ! (FIFO) MIBANLE #: (Random). B 11(a) &R T EA R B EZEE T, 3 FhE i 5Eng 0f
IR RV e R B 9264 SRR, LFU s e B ik vk fg_H R I AE.

1400 60
c) @ LFU EAFIFO [EEZ¥Random [F] DiskANN
1200 + RS ey SRR cp
""""""""" fff‘ _ 7
1000 RSN £ 40 4
Q| & / z
@ 800 1 4 7
© & & ‘ 7 %
600 A & 2 2 7 7
3~ LFU n =27 /: /
400 - A 7 U
& ko 0 Ny z
A A A
L <> Random 7 7 & 7 I =
00 © . . o A48, L GREL O Tl | e A
98.5 99.0 99.5 100.0 250 300 400 500 600 700 10002000
A (%) S BAFIHC BE
(a) A [FI AT 15 4 SR T4 R R (b) N F) AT B 4w 1 AT h 2R
Bl 11 AR AF B 4 s ) R 3

B 11(b) 2P R T AEA RIS IAICEE % Bl sing (8 A7 b 2. ¥ 5k, BB TR SE S IHK EZ KR N, GoVector
AT i h RG24 B FE T Disk ANN BRI 8 S 247 3RS 1X— IR UL, sl S AF L RE 6 S8 Ruthi&
o7 I R R ) SR A AR AL, B I A PR A AR TR, AT S 35 e A /O BR A, SR TR R Mk RE. Mt
', Disk ANN {3 H] (¥ 8 25 G2 A7 N ] 58 T 2R 4, ToVARE 2 BR AR M Zh AR (b AT A A8 TR 8, R 7 LA d b
MAGRER I BB HRTE. DR, SRS AFI D 250 I, 3 Fhahas G2 A ¥ e SEms (0 G2 A7 iy o R AL A
B, HARRMERE BRI R DR A U G2 A7 W R i R R AR, A7 MR A TR AR, AP0 se ABI K B 7E
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300-600 Z [B]i}, LFU 5 FIFO KBS 28 £ At 28 B ANKR . 3X 2 1T LFU SRS BAL mi S 7 1) Hicdis 72 R R AT B R
V7 IR, T FIFO MBS 8T N A4 B8 nT e 4 P XU 10 76 24 A 148 3B U R, 2 R b A Uy il (1) 2 Bl
IR AR, T BRI B I AR IR, P R R U BT — B AR, AR SR A R AR S &
700-2 000 i, LFU KBS iy Hh 28 5P RE R 3408 2 B I, JE RIFE T, FIFO AR Iz i [a) i Hh B3 4tk 5K, 25 50 VIR
073 BRI AR AT B A v U T B I < 7 SR R T, E T RIS T AR I A6, T LFU R % B8 vk fff b OR BE
AT ) R DS ERTOR,  RRTH AR A7 i o ZE A R ME R
6.5 [k ERZZI 54T

A4t T GoVector (Bl GoVector-hybrid). Starling I Disk ANN #£ A7 Top-k (& U ¥ 10. 100, 500 Al
1000) BEE T, 7EAHIE 99% A IR ATHE T Frik BRI & i k2 (QPS), SLIR 45 F ik 12 fin. SRR g R T,

4 k=10 B}, GoVector ] QPS /& DiskANN [1] 2.47-4.18 f%, & Starling [f] 2.49-2.58 fi.

2 k=100 H}, GoVector [ QPS j& DiskANN [f] 3.69-4.03 fi%, 52 Starling [1] 2.18-3.46 .

%4 }=500 FF, GoVector ] QPS /& DiskANN ] 2.17-2.34 %, /& Starling #) 1.71-3.69 f%.

2 k=1000 i}, GoVector [f] QPS #& DiskANN [ 1.86-2.50 f&, /& Starling [ 1.77-4.36 £

3000 800
> GoVector ~/ Starling {~} Disk ANN

> GoVector ~/ Starling {~} Disk ANN

600
200 F @ SN
2000 a 100 P
(CN .
4 100 b G o 400 b
o R o R
1000 i
200 M S 500 | 1000
0 0 L
10
Top-k Top-k

(a) DEEP
12 ARIEA 99% B ANE k {E XM QPS K I

IR gE R TR B, TR E AT R i i 4 K /NBEE R, GoVector 5 JE B H B i AR & MO B Mk R, EHI IR = &
[e 26 () [ B S S5 4R T T RS ARE BE 71, T8 I0UE T GoVector 7E 2 FEAL R 22 RS 5 77 SR 3 5% v (10388 P e R v i .

(b) GIST

7R £

AR T WA A 1) B AT AR AT R (ANNS) il L, St 1 — b3 T e AR AR ) VO R B2 A7 3R
%, GoVector. iZ 7AW ANNS 2 IR HIPI A Beisc it 1 aS-sh 45 & IR & S A WL A2 77 170 il
TNEN VT i B H TR AR &, F T I a6 B B &R X I0E A ZhASZA7 B 7 AE R R IR v B 3 I 3 22 A7 i
T T S A 7 52 ) R R (A 4RI T, BASR T ok 1) B 4 R B BEA i v 6. B4k, GoVector i 51N T 46T 17
EACIE 2R 51 P E HE P S 5 8 SR S O LR, DA 5 2 A7 Hs (K0 22 0] R e ok, 2k — B RRTT WA R
VO firHh . SR S5 SRR W], GoVector ££ 2> JF i 4 L1588 25 0T 210 i AR R 51 773 (W1 DiskANN 5
Starling), FEHLH RLEFHITEREL IS ST, IR G SAF L i S 5 3 S S AT IR B LRI T N T8 e, X LAE
AR A W AR 70 AR SEBUR R IC B AE AR TAE R, ATV 51NN 5 2 e M D K0 ) 5 3 R 2 A7
VAEE SRS, LLE Zhif T iR S Eh AR L, i D RTHR & SA LI I8 I 1 5 S R k.
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