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Efficient Updating Method for K-nearest Neighbor Graph in Vector Databases

WANG Jia-Yi, XU Shi-Hui, LI Guo-Liang
(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)

Abstract: In high-dimensional data processing, the K-nearest neighbor (KNN) graph is a critical data structure widely used in tasks such
as clustering, graph neural networks, and recommendation systems. However, with the increasing use of pretrained embedding models in
unstructured data modeling and retrieval, embedding model fine-tuning has become a key step in enhancing the semantic representation
capability of embeddings. Such fine-tuning often leads to systematic changes in the vector representations of all data points, which
invalidates the original neighborhood relationships in the KNN graph. Existing research primarily focuses on building KNN graphs for
static data, lacking efficient solutions for adapting to updated embeddings after fine-tuning. To address this gap, this study proposes
FastAdjust, an efficient KNN graph update method tailored for embedding model fine-tuning scenarios. Leveraging the observation that

fine-tuning usually causes only minor changes to individual embeddings, incremental adjustments to the original KNN graph are performed
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by FastAdjust through a local update strategy, significantly improving update efficiency while maintaining graph quality. Specifically,
FastAdjust first employs a clustering structure based on product quantization to efficiently and accurately locate a subset of candidate
neighbors for each data point, thus narrowing the search space. Secondly, based on data density and the magnitude of embedding variation,
FastAdjust leverages their correlation with changes in the KNNs to adaptively allocate update resources according to the degree of
neighbor relationship changes, thus improving overall update efficiency. Experimental results on real-world datasets demonstrate that
FastAdjust efficiently and accurately adapts KNN graphs to embedding updates with significantly reduced computational cost, showing
strong practical value and scalability.

Key words: K-nearest neighbor (KNN) graph; approximate nearest neighbor search; embedding model
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T2 75 T — BSR4 B 5 0 S B

B3R 1 AR OR 2B R EU RS B AR SIS bRIE .

N AR & H PQ S, RFEEE I PQ 4mhid, KA RI{H 6;

i AT B E bR .
. AR R ) PQ D2 B — A2 B B AR AL PQ JwiD AT AIE K
. If ¥ NHT A3F then

1
2
3 Return True

4. else

5. dist— fER H AR RS RAE ST PQ Yfd i SR ULEE 25
6.  dist — BFRSEIAATEE KT RS

7 If dist —dist’ > 6 then

8 Return False

9 else

10, Return BEHLEL (0.1) > LSt dist

11. end
12. end
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MECT RO SRS BR e , 2 SE208  A IR T, PRIFE T 8 A H b i B B 1 . HLad PRI S
PIANEG, B 5, X RE—A PQ iS22 H bn i gn il A R, & 2SR &, OV S H AR i B B
RBER LR, X T AFF G L2 AF 10, B0l SR B AL U DL B 158, SRaEAl T 5 B AR sl BE . i Rk
ABE B EOK (5 HAR RS KT ZE IR T ), WP Had JE s, ATHEHS H AR i i sePrif ey, 45 W4 ki
(RO AABE S, LA— € MR M kAT S P B T 5. 3 — SR B i T 8 2 P04 K o, DRAIE T AL Se A A H b B
IOEAE/R

o BB, WA 4 B, RAA SR 7305, BATANR PQ gt 14U & 1% AN M EL Bl e 7 (T35
SRR D). i, P p R 8 XIS E bR B, BT 3 PQ YRR LA A — AN SR AR B H AR ST AT, (R
PIPAZIX IR A 5 2 5 H s v S SEB it 85 i t DX8sk, e B 4% 8 5 FAR s e B, LA TR
MR AT A, 0B H AR sl BOZ ) A XN g ELECHERR. B 4 (6] 73R W] 1 AR SCER Y (155 RE 6 i RO A
TN 5 b s B BB R X3, T 7 B 3t 4 /0 32 9 L, A R0GRE G S Bl e R S BRBE Y, 3 PR v K
AT P BB AR

SRS

SRAEHHE

M 4 M 322 [ -
%)Huﬁﬁ’]ﬁﬁtio 100%

B4 RN SEANE SR s AR B R

33 ETHREBEENSNSERZRSE

e TS, AN RO R A0 S5 Ok R AR MR A P AN IR DRIk, D 7 B KA AR IR R SR AR, AR5 5
o A R 0% 32 A KL, T IS AR B 408 o 9 2 AR A (K R P AT A 0 A 0 7 PR IR 77 3k B 6 1 BRI TR Y
BT KT AR . SR, 468 2% R AR B2 — MK T OB 5 10 KOOI AR A 72 B S8 m A RE v
THEEIAR R Oy TR RIZ — ), FRATT 7R BRI 0% R AR AR BEAR S PR e ) LAt AC |, S i e B R B AX
A IR F ) BB, AR 3755 A5 TS 22 8 20 .

B, 1N [ A B 2 ol 1 PR3 A P50 Kl o o T ) e B A 5 400 e R R AR AR PEE 1R 5%
BEDI R A BN [ AR AR IR i, LA S % R 2 e AR UK IS Ak T 5000 6 4 1A XISk, 0t e 1A 1) 40
KRS RN [ B RIS A SE AN SRR, TRk, BRIV HRON 1) B A AR /N A Ak, 8 AT BB 408 5% 2™ A 85k 25 B . 461
n, &5 P JE BN [ B AR A BOR A B i, e TTRARRE OC R R A T R AR AR AR R DX, R RN
I B AR BORAR A, AR S R AN LT AR R AR AR A 45, ] o 0 ) ) R i i, 5 €0 2 T B ) 22 5 A
R, BB RIME IR [ B R A T BRI, 4 JE % R A B/ (It 3 ANEARTEROR TG JF 2 4). MR, 78
e 5 PR DX (B PP A0t ), o T B O B AR, AL IBE R 22 R B, B RN [ B ARG
/N, AT R R BB FE R R I B AR (WALt 1 3 M AR A 2 SR AR T AL,

NG LN
® o | A %9
° ! e °
o %0 o | wE | @ e f\.?
= *® oo ® | O @ _0
° Y ) o ©
| | @@ .. | | { ] [
¢ g 0, 00
Y jj. o 0 - @ — { ) ® [ )
— - BRI 3 FEIX 45

KI5 AN[R)SEE R X KO AR 5% R AL L) 7~ 1
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BT RS, ASCHE Y T — R i R KBl ) 5 2 SR SR 2> T A 1% SR T SRR Bl R AR A
0 R L 50 P, A0 B FL 40 J DR R A A R P, I 0 SO0 B Bl B Ak b 0 ARG 288 . S e SR 1 R
AT R B AR A Bl k5 3RS B A A K, AT et I 2 X3 ) KOS 40 P A s 2. 7 x40 AR A
(K DX, A 59 0 AT LAY AN 6 B A 2 KL

N T SRR — SN, B e T O B SR — A AL VAL T v R ORI, 5 HRIE AR R A
P2 KIEABRIAAAE 5 A2, RO BRI R A i 50 28, i AR R RN ) A4k, AR S, AR SEAR O B Y
AR S 5y R EAN R KO AR, I H, A0 X SR (¥ K48 a3 5 80 x i BR RS LB, B E A IHE
25 [ PR B 1 AR 4R, /NI FE AR A T RE B 25 R e AT TR, L AR AR KO AR ) sl K4l 2T Lk
ST, FATRHL K T 4R o 52 J5 R NI AR (1, x5T 100 3L 4B B EE 5 40 AT AR), FHAEH AT HE B A 22 1 5
B Ay B O B S AR A A A 22 K, B 12 e L R RS 2 S UK, B D, AR AR
(B E 5 PR G L. 53— 79 T, Bt s R S AR P AT DB EEE R RO R N 1 B B R R A

FER 6 R, BATTZ ) T DR IS RN R AR AL B2 5 T B LA, B KT AR AR BB i O . 45 2R
W, 1ZFFR K AR A 2 (] B ) IEAH DG M. SX R WZAB BRI, K A 484 A P B B8 A v RERCK.

60 —
= =
v Z 020t
0 5 10 15 20 25 0 5 10 15 20 25
RN IR 5 5 ) ) 25 e A RN ) AR A P 5 ) L R e AR
(a) Stack ¥¥isk (b) Wiki $iE4k

K6 R R AR LS K A & LR S KO 48R SR A O 1

FeF IR WG, FATRAZIRAME AL, AN [F) Bl 5 23 e AN R RO 2 8. S L i fh 75 2K, ST BE i MR 4 48
JE R A BIAALIE L, BhA 1 B2 s sl R B K 0 40 & ok R BUR X3, 70 Bl 3 22 T S B0, A mREAT
SRR G ) 40 e 8 2N S T 40 5% 2R AR A/ ) DX, 0 SR RS AR A 14 53 SR s, AT ko2 AN i BE () 7 50T
B, X AL, A RSB R 015 B B S B 2 S, AT K4 PRI RE 6 1 CRAIE 5T & 14 [R] I S i R R,
T BE AT e S R R 5 RN, [0 PO RN 22 TR 8 4.

4 KB5S

41 ZHRE

N T BRSSO ERAR B, BATEWTT 3 AT 2 0 B Se a4 Hb AT seas.

o StackExchange (Stack) Zi#i4E (https:/huggingface.co/datasets/teven/stackexchange)

o Wikipedia (Wiki) Z{#E 4 (https://huggingface.co/datasets/wikimedia/wikipedia)

e DigiFace ${#E4E (https:/microsoft.github.io/DigiFace1M/)

Hrp, StackExchange Fll Wikipedia A& SCAREUR AR, Bk LLAL, D9 T 98 UF 28 3L 5 2 AE F AR AS S0l b1 i& A,
FAVBEAET 1248 1 0 UG it 45 DigiFace™ EHET 79256, £H5T EUSAS S OB HEAT VEA.

HARERTE S E R 1 PR,


https://huggingface.co/datasets/teven/stackexchange
https://huggingface.co/datasets/wikimedia/wikipedia
https://microsoft.github.io/DigiFace1M/
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J& T Stack Wiki DigiFace
Kyl A A (A

Bl R 1000000 1000000 144000
S35 4 296 715 N/A
WNGEFE 768 768 768
TR T 10010 48T~ 357 i 25 0.941 0.927 6.35
TR 5 100-10 48T ¥4 it 25 0.985 0.976 8.74

WAE RN T, A K Sentence Transformer A7) all-mpnet-base-v2 #5784 $7 BUSCAS 138 LR, BN ik
NI ERYEEE Y 768, FA1E ] STS (semantic textual similarity) Z 45 HZAE R HEAT RO, STS R4 KB A) X
K, TR A FHEARE T — A 0 B 5 BIARLER 7, RPN A)FLEE L LR AR B B 55 T IR L A).
BHPE AR E SUME BORE S R IA TR 3K, AR & AR 9 SCAR BN B B 0R S . RHR AR ELE H STS Hdi S k4T
WO, Be 88 TR THIE BT SCAHABLEE (2T RE 7. X 5T A 2R R SCRRL I AN A S AR B R S5 B A =

P4 B4 i N T 2 1D, A SCSRFH VT (vision Transformer) #5858 P25 45 (N, S A 7E ImageNet-21K i3k
AT TN LR vit-base-patch16-224-in2 1k {E A FT AT, DigiFace BHEAESLHE T AR B A - AW & 17 bR iE,
FAME A E R 42 DigiFace H R B TR N 100 & 00 S50 00030 23, (56 PR T b 2% =0 o TN 25 1 i A8 RS 047 500

FERCR IR, FATTR AR SEAR AL AR R B 3, BB 2 21508 107, BRINEL 16 FIHER /I (bateh size) Xk A B
YN 1 AN IR.

X T aeAR A, TATBE K3 M=4, BUGEA 768 IR 250N 4 DT i, BT M ERERE o = 256,
FAE AL FR B B B34 1) B BUHT 40%, B A = 0.4¢ = 102 AR ES S (R 2K 0. R A REER N 0 BL 0.2,

T ATV A ST E R RUR, AT A SR S LR 3 2 k475t L.

o Stale: ELFEAS FH AT BN M EE A B KT AT I, RG] 8 2.

© NN-descent: 7EfU G PR [ &, MSKFHAT NN-descent H ik K IT4ARA.

© NN-descent-init: PABH AT IR ) B g7 1) K48 BP0 aa I8, 7RO S RN [ B 4k SR HAT NN-
descent H LN K i A0 3T 4.

AL FE bR 5 T, AT A B 2R (Recall@100, BIFT 100 AN 35248 & Fh g IEAfAS 22 ) LeAgl) i AN R 5 vk 48
HE ) KA R P v A e, M 5 R 7R KA AT R . P R G P e e R ) PO B (PR T AR SO R 1)
RN RN ) B2 Bl b v A R B KBS, 3 FHBR IR 25 5 Cosine B BS54, N T IFAG @0 (1) K ar 4 &
M LS5 ESER) K ARE M E R, BATETE T &A1 5SS E0M I 7R 2 (root mean square error, RMSE) #4171
5. B4k, PR AN [E) 5 i R AT 3R, BATTNE SR AR 5 TR AR R ) VR K AR PR T RE S R TR), B TR R A R
VNVR/N AL

it A SEIII7E — & Ubuntu %525 _E5E i, RS 35 1L & S 408 256 GB A7 4 7K NVIDIA RTX 3090 & F,
PL% Intel(R) Xeon(R) Gold 6242R CPU @ 3.10 GHz Ab #1582
4.2 KIiE$BEDEMELLR

AT LA BT T AR A 5, K AT AR B PAT 37 3 min B, AN [R5k BT AR R KO AR I A [H1 R, 25 1
WKl 7 Fis. S 45 R, FastAdjust 76 & MR B35 820 T A0 K I 48 BT R 21 Stale LA R NN-
descent 4T 18 5 5 T [ )75, PL Stack 4 42 A6, FastAdjust (7 [0 KA F] T 96.4%, T Stale. NN-descent Fll
NN-descent-init [ A [ Z53 HICH 84%. 85% Fil 89%.

Stale J732 17 B 268K, 5 T 5t BRI E T~ AT A8 A A i wiy e B N Tr] e A A 1 KA &0 1] |l T s Tl s ) 2 )
SAMCRAESE, FERMERREE T UMM, TR M6 T FE. NN-descent 2 BN EHHE T K T 40HE,
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B2 T I B 1) AR A B A PR A58, MK REIT A AR R &, /5 ZE A 3 KR 1), s LA A PRI 8] Y
SE B AR, DAL T A5 JE I 18] 3 3R A9 (1 KO 48 B s s 5 AR 802, Il R R T FastAdjust. 55— J5 I, R4
NN-descent-init 52 UL I 9 R0 aa A0 S8 i e, {HL A8 PR 45 40 BB i R v, 7598 B0A 26 R8O Al 170
BHRER, P ERBITCAR M5 AT, SBCBARCGER, 5 BR S B 5 Py =R R

223 Stale = NN-descent [ NN-descent-init EEE] FastAdjust

100 100 100
95.5

95 + 95 L
90 | e 90
= [
R T80t T

85 85

37.2
80 70 go L Swle)
(a) Stack (b) Wiki (c) DigiFace

7 AFRTFEEH K AR, 3 min f5 4 815 5 B

AHACT 5, FastAdjust 78 70 F T S50 AT K 40 B 45 84 DL B 17 )5 [ 248 AR B AR BRI — Bt &
IS BRG] T 5 R 48 f R L S N T R A B R BN AS TR BRI, AR T KO AR T e
FBTHE. FEAH [F] (] 8] BR R, FastAdjust BB TE At Do 455 AN FF A SEHT IR S0l S8 A0 1030 &0, AT 76 2804 1) T KT I ()
W R [ 2.

4.3 BHERIERELE

AW AT T AR 794 K4S B B RE A [ 22 BE B R e (A AR R I, 45 SR 8 B, M
A LAFE Y, FastAdjust fi % 75 B R IR B[R] P 2 2848 5 TR ON ) S Al T oA 252 1 e 1 K A 28 ], PRl B2 i 3 A [l
. fl4n, 78 Stack FHE4E L, FastAdjust 7F 2 min PWEIIER] T 95% 1A B, MHES 28 2 ) NN-descent-init 1A F
95% 1A [ 2 UFERT 13.4 min, ATETERCER LRI 6.7 MRS, AR E, 5 A7 iEAH, FastAdjust 7Ei% 2
A B PR B R RE S, R T HAERCE B kR

— Stale — NN-descent — NN-descent-init —— FastAdjust

0.9
S S oo f SN
7 090 fo 2 og | E 06 |
Ro NI i
0.85 | /o 04 |
0 10 20 30 40 0 10 20 30 40 50 0 2 4 6 8 10
5] (min) I 5] (min) I 5] (min)
(a) Stack (b) Wiki (c) DigiFace

B8 ANEIT7i% K A4 P A 1] 2 i ST I (] (942 1

RANFARTFHID T FastAdjust JTR ) — R 51w RO HT 8ms: —J7 i, H2E T SRR AL I $odie 7€ i 75 ¥ g
fif YRR IR0 75 2 SR R DX, 82 D T OUAR TSR 55— T T, AR Bl S 2 2 BOAS R LR, AT i
THT IR R, BT R RCR. X HNg S [F RIS T FastAdjust 7ERCR ARG L2 1R SEHL 1 R AF IR 1.

4.4 ELEHEFHERITME

KA A B IR A5 H15 JE S 1 AN R 80die s Z 18 B AH DR R A%, Bl Un AN ) Kol R N B & 1 HeAE 2 iy h 5
Fot Hods 10 OIRE . — AN R 0 KO AR B, AR AT AR 6 A 0 4 (Bl R S BRI 46 2R, MR A]
RE -5 FL S K A0 P R B A LI B 5440 Dy T VP Ak A ST Y 1) K AR Bl g 4 1 b B KO AR I 22 5, JRATTiE
T T AN RAES B KA BER3 T HRR Z (RMSE) SR M B 1 454 J2 1 BEAT PR AL
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AR A5 RN 9 R, ASEREE SR TT LA Y, FastAdjust ff) RMSE 2 Z K T HABIEZ 5725, thitk, ST [
FUSMA T3 — AL, IE T FastAdjust 8855 PRk 1 B8 K40 1R R 45440, 7EARAE A 1 BE BNF 1) PO PS5 J08 KOG AR
PEURRLAR) P 5, Ao HLad 7 R NSRRI X K 408 P 7 A R s A P AR A

=23 Stale [ NN-descent [ZI NN-descent-init EEE] FastAdjust

50
45.9

o o
% %J 40
& &
iﬁ@ %0t
ﬁ B
:E % 20 +
=2 =
it 10
< <

0

(a) Stack (b) DigiFace

B9 ARIEEEH K A, 3 min 5 SR TR R L
45 TEBHS KEDT A KEEREM
T RIS 3.3 47 e R 5 T o5 B T VAT M 4 B, A A T R AR R S MR K
ARBRHT S A BRI R B, S5 07e 2 R,

®2 ARAARRS KT EAIAH R R A

AR Stack Wiki

A HE S 0.411 0.391
1/(HT 1003548 ()P 25 B 25) -0.365 -0.367

1/(HT 100346 B 25 B il %) 0.223 0.203

1/(HT 10032408 5 40365 48 B 25 (1 bl %) 0.564 0.575
(L RE A 25) /(R 1003 4R P15 2 55 -0.071 -0.182

(R R BE S/ (BT 100451 BE 25 fiH 22) 0.332 0.278

(B FE S ) /(AT 100 A% 77 5 4030L 4% B B3 1R A% 22) 0.649 0.636

MFE 2 AR REAISE AT LU H, AR R KO AR AR AN S 5 A7 7R — 8 (AU, X 850 RN FRAT 148
BET X KT ABEEF AR R N R A SR A1 S SR A R P B (BRI AR LIRS ) 5 KA AN B2 IR AR 55 &
BJ9IE (B14n, Stack A Wiki _EEIAH S REFIM 0.411 F1 0.391), 5 B 2447 #% BE 55 186 K, K AR RIAS LA St
1 F- 19 00, X F 0, BB MOA B B AR W] RE S8 K T AR A5 M & AR R BOTR L. BT 100 JEAR RS 40 JARERES
FIMZ FIRE S KOEAT AR AN SR /R SR A IEAH ¢ (40 Stack A Wiki 43519 0.564 F1 0.575), BLUA T 100 4248
W R 40 I AR RE B 2 B K T AR AN B0 R RS S AS BE B /8T 100 3L ARG 40 JLAREE B A2 = 5 K i
BRAR AN HOR 9 ZR B0 = B A8 5 (Stack A Wiki 4371104 0.649 1 0.636). iX R IX — A8 & 5 K T 40 AR LA 58
B IE AR S, 24X AN BB B ORI, K40 1728 A A% — Mt 55 38 388, DRk, 388 2 1273 A (0 LR N A 45 SR
BNAS 43 e 58 7 BRI, AR 2 O S TR R 2 K, T AR v %o TR R R KR AR, O KO AR AR AR IBOR 3R 4
Ficl 5 22 TR TR R LA R 0GR, AT IS A K 4R BT 2.

BT FEAE RS K AR A EU AR OC R A, FRATR I, B s (007 7 B 25 R 4R BE B9 1) 2 55 F P ik
PRI JE K T AR AL IR A B ), X e S RE T 4 3.3 54 Hh I 55 T 350908 55 12 10 3 4 4 i 52 37 Wt 1) & B
PE. SRR T AT DU — DR 1 A 8 7 S o S P w1 B 5, DAAR AL KA 408 P 58 38 VA TE A R BUE 7 A1 T
FIZE L.
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4.6 HELSKIG

AT BGAIE FastAdjust [ 8-AN3053 098 RO, A8 I LA [F I A0 77 40 AR A S ARG A 3.
B, FATH FastAdjust 55 LR J7 153047 LRI,

e FA-noLoc. 5T FastAdjust /7%, (EANE 55 3.2 F5 3 H A 3E T 3R AR T Ak B4 e B0l e 47, it 2t T4 —
Pa e IR b = A M 7

o FA-noAlloc. 2&F FastAdjust J7 V2 EAME FH 28 3.3 542 H AR s 2 FRAS RIS 2 R B i Ak

® NN-descent-init. 7£ FastAdjust AM8 H _EIR R AL I I % 21840 NN-descent-init, #5072 A AT
)& AL K AR A WTAA B, FEROR S 1 N ) B b 4k S8R4T NN-descent 3255 K140 B3EAT 5857

10 JEoR T I8l A F R A6 5%, 78 Stack A1 Wiki $dl4E 5 3 K LA, 3 min A [F1 R, 451 8
7, FA-noLoc ! FA-noAlloc #H3% T FastAdjust ¥ — @ F2E 1 RS T B, (B398 T NN-descent-init. 2:H' FA-noLoc
HHE T FA-noAlloc [ [8138 F FiliE BE A BE K, 32 ROATE B #7 K 14T IR, FA-noAlloc RESTE R BLi i
T B 40 31 H A [ 58 SO A S K20 0¢ R AR L, AT REAE 7E LA K A48 BRI SE B e, B0 2 R A K 4R
KRBT R, BT IR T RO I 435 B KO SRR A ROR BT A, AT R 9% PR S K IE 40
P ) o

EZA NN-descent-init EEE] FA-noLoc [ FA-noAlloc [EEE FastAdjust

100 100
95 |
_ g ot
< H
90 =
= i
RO
80 |
85 |
80 70
(a) Stack (b) Wiki

B 10 EBEAFEAL G K FastAdjust 7772581 K I AR, 3 min B () A B %

4.7 HERIRESH

KA BIME 0 25 3.2 1 P TR AL W HE E A7 ik i — /NS L e TARIE R &R
AR 5, AW 75 5 S S o R B AT AS I T 5. /N 0 29D S PR R B T A B, AT B R AR, EA
Al AR BT IR 22 R — Sein 40 A 52 AR, BRI 6 2R R 2 0 s AT RS U B, AR PR K,
{H B R AR T8 R T 40 1) XU

AAE DigiFace 4 1L T RS R BIME 0 I, 90 (185 8115 00 L], LA R I % R 26 19 L A3, 45
Wk 3 FioR.

# 3 1E DigiFace SR D AR BIME 0 F kb S PE 2T 5500 5] K s 22 P A =

HI1H 6 D> SEBRER RS T L] (%) R (%)
0.1 76 0.10
0.2 76 0.10
0.5 76 0.10
1.0 76 0.10
2.0 74 0.09

5.0 57 0.05
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M 3 (gt T LU H, BRME 0 43 50 RIS I BUE 25 18], 75— AN 3ER AU 25 18] o 24 m] DAE BRI A IR 2 T,
R B Mg/ S B R B T ST A AR AR SEBRAE A, I — S R BUE S RN AR SR A B A o, WL
JETE— 0 RAR A EH % S HOR AT, SR )5 T AR T s A5 FH BT (i B
4.8 TEIRIBIEE RFZE

B 11 JBoR T4 Stack R4 b, ANRITGAMERE T, &7V EEXT KA A% 3 min J& 1A B L. HORE
FE ST R N B B AN R AR SR IR (epoch) SEEA.

23 Stale = NN-descent [ NN-descent-init EEE] FastAdjust

100 100
95 + 95 +

S SN ST

El El g5 | E g5 |

Ro RO RO
80 80 |
75 75

(a) epoch=1 (b) epoch=2 (c) epoch=4

B 11 AFT7E K IEARE A [ 2R B R i R A 22

S 45 SRR, AT I R AL/, AR STHRE Y 14 775 925 B 0 3R U I R N AR AR K4 B S5 A R, R R S
I ) PRI AR 6 R KR 22 5 TR KA ETAR A TR 3E, 980 1 A SCUVA I e 545 Rt

W 2 ol R A PR B 0, RN T B AR A P2 R B 2 3K, S SRR B R A Sk R AR SR 2 (AR AE. T
P 11 7 Stale J5 9L I R TR, 6T Gl BT SO 19 K ISR BE R N (10 44 21 3R BTE R . % NN-descent
TP, DR SR 20 K AT AR R AR AR, BT A I A B B B T B it 5 2 08, K A8 PR R R L R A
LR O FERT .

FHELZ R, FastAdjust £F TR IR IR BEIRT, 4K 9R BE 5 7R BRI 18] P 58 B K 2T 48 B A O H, L& ik
N I B AR K. SRR TR RIVSE 7 [ A0 A P S R RS 0L, 25V A D RE B A 1 e 5 o mT R 7 A i 408 e ) i
DX 35, F BERN THER R AN [ 2500 ) TS 408 e A2 AR EE, B ik b 73 G 365 24 1A SR DR UL, AT S 335 4R T SR 0.

5 BESRKIIE

BT AHIF TR HH PR e 2 K AT AT B 58T 7 125 FastAdjust, A8 SC8EE T TE IR AN BB G0 J5 1 K40 i B 72
HIRASHIBGR, IR 1R 3 BRGNS AR . St ) s B R B SR, DA B 4 IC BT B3 U, FastAdjust
REAS A ROhIE R AR [F) 8 (AR AL, 8 G 1 A PRI S i it SR A0 e B TSRO 4, 3201 1 SR R e Ak .

SR FastAdjust 5 47E — 52 IR Jy BRA%E, He B AT SRR RS RCR AT 5 X K 48 IR — [ B2 51 10 5T, JF
HLHLTE 3 B AR AR (0 I 52 5 B S e i AR TR )37 5t I 28 SRy BR A 45 H T FastAdjust 37K A
Dy SR R AR ARk — 2B A0 1277 5 038 F B, ) n Dy Al ) 2R 51 S it S, AT S 4 58— B 32
St FFERRAE ORI BE ORI B0 B0 A0 B SR W, 5] G e 52 6F 224 Al W B2 1K, B L 4 S 480 g LAt HR N AR
I, B AR R R R AR T 58 AR A, ARG LA TR K A8 BE B % R AR L. BEAb, S5 A TN B S A B2
WE S, AN A ST ) & AP O T i B AL 2 S A, R AROR EHR R 15 7).
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