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Survey on Key Techniques of Approximate Nearest Neighbor Search in Vector Databases
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(School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract: High-dimensional approximate nearest neighbor search (ANNS) is one of the fundamental and core components of vector
databases. With the advancement of artificial intelligence, vector databases have played an increasingly critical role and have gained
widespread attention. ANNS methods are essential for optimizing the performance of vector databases. Over decades of development,
ANNS has achieved a series of milestones. Rapid advancements in this field in recent years have led to a surge of novel methods and
findings, necessitating systematic organization. In this study, the basic concepts of ANNS are first introduced. Next, building upon existing
survey frameworks, current approaches are further categorized into five groups based on vector data organization methods: graph-based,
hierarchical, quantization-based, hashing-based, and hybrid data organization. Representative works and the latest research advances in the
field are systematically discussed. Then, from the perspective of vector search optimization methods, recent advancements are reviewed and
categorized into eight types. These categories include hardware acceleration oriented, learning enhanced, distance comparison operation
oriented, disk-memory hybrid oriented, data access optimization oriented, distributed oriented, hybrid query oriented, and theoretical

analysis. Finally, based on current research achievements and trends, potential future research directions are outlined.
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) IR R AR, TR A R U AR PR T P AE T SR A T RS . BT XX — iR, FreshDisk ANN' i ot
WerH 58 B S 5 0 B AT 2R, TE AL B SRBL 10 (G BB M 2R S0 B 5 S5 %R, R REFE 95% ULk
) a3

FreshDisk ANN i 17 [ 7 M (A P48 2 ) Sz BRI R 51 R 4E, S FF 8IS 7. FreshDiskANN F#% OB 0 &
3 ERAy. B, R T E AN SR R4 1) B 51 83 FreshVamana, i3 a-RNG 448k 84 90 0 PO 5 1 25 49 11
R NMERE. X R R PR BT SR AN 2 T oA R AT S AL B, R BB B IR B L o-RNG
FIOU] ) B M0 AT e 5 T o o S 3 Ak B 2 28T A, e I AR A R B W A, TBC S SR BB BR U AR
. Hk, ik T o B AR S, KA AR A 7E SSD M K HIE 5] (long-term index, LTI) 5, i A A7 H I
B & 5| (Templndex) 71 57 5 & SE 58T, LTI SR H N & A0 K 4520 8E DL FRAR 25 18] &5 FH, 10 Templndex £ 55 R 46 K
ErEfirERRE. 5, 3R TR EHH L StreamingMerge, I8 BRI B A BOREKE R, &
AN B R BY LI 3 A SR, A 1 B T AR PRI (R S A FE S I 2 LTL S AEAL R W R B R ) 58 e 51
SR, ARLE T A B4 90% THE BT, R il B B S SSD BEALYS ). SIS SR W], FreshDisk ANN
£ 10 LB AR E RTS8l 1800 /s IR ARt M ZRIEIBREAE 20 ms A H 14 Bl 5581 95%. HLL T
WA TT %, R A FEARE] 1/5-1/10, Jyim U A RG24t 7 8 Al g R i) Dk i v 7 2.

22 ETRRWEHEALSE
221 FETWEITE

BT R RTITERE MR I ALR T, KA 2 AT 251 0B, B2t T4 ¢ HE ) a5, 7255 = 4 m)
AT & G M DS B I RCR. 2 T30 07 3 1A% O L R 1) e AR 4 G st 3t R o A A 4, AT
TEBUZ AL I REAR H 235544,

k-d treet 28 LK) 22 HERHE 2R 51 GE A, I BT TR A R 40 BOdE O AR . k-d tree S — AR OB, AN A5
X LA ke 4 ) SR . BN A R [T B X R — N T T, 1% 76 ST TR 2 (1R 43 P A 23 18], 43 Sl 58 B H 72
T AL, k-d tree TEAEMTT m 5207 ZE B KGR RS, X T — /MR i, IR 9T S M N RS SR 4E R E
HUAE foe 4 T P B B v o By [ S B AR A R 5 2 R A R P v o) P T T DAk — 5 K1) 3 A5 ). k-d
tree A R I AR — N TR, AR s T UR, MRHE 2500 i g 75 400 B RN 4ERE LR A S A Er T s R
P18 o) AR AR 0 DR /N 56 R VT T — 28 ) e 1 B - BRI, I 38 80 P4, K PR 1 A S I ) SRl
FEEN, X TR E B RS AL B E AT 5ER A ¢ KRR SRR AR AL, HitEERR g 55
I R 1 2 B R S T PO P 20, SR /N 2 i P S0 B 2, OS50 AT RSP T 3 — 0 9% 25 ) P9 T R A7 7E B 0
W g I s, R R 5 — T,

BT k-d tree Z 4b, IBH 1R £ 4 # T B 1 J572:. Randomized k-d tree® " 54& 4i 1] k-d tree A L, 75X o
MIEE A B AN, A S8 k-d tree TERFANJER Y s b ik 43 2 2 18] P 450408 75 Z2 5 K I 7 1A, T randomized k-d tree
WO o 75 Z 8ok 1 D AN J7 1A BEHLIE B — . R-tree ' M F 5t /N il 4B T H R 503k, PCA tree®? 5 PKD
tree MR 32 2 20T R SE K1l 43 #8 T 1T, Random Projection treel™ AN Y 52 2% B 3¢ e 1 5 20 20 A 05 1%, it
HLPERE (0 75 106 5 Xl 43 B F T 177 M-tree) Gl Py 215 78 26 2 A M R R B R BRAA 45 440) 1 VP-tree™® (XA
R R — I R, IRAEEAE 522 W BE BN R R 4 S A X380y S5 VR U B T R R e AR AR B R 4H.
ZIHHE. K-means tree” 1 Hierarchical K-means tree”™, 3£ K-means RIS EARE KI5~ K A, FEAEFEN %
VAR 4y B B35 2 2 R4 AE (i IR EE . SR B EUR ZS). ANNOY R — AN ST 7 %, A RIRRAS h e 3
7 Random Projection trees #x#k 5 Hierarchical K-means trees #x#k. FLANNCOME: — AN 18 — R B AL BT AT 44 %%
FRIEWIEE, E R ARTE A R B 4225 FR R S M. 3 ZRERT LR AT o5 F B9V #E, MOAS[F] B9 45 Hierarchical K-
means tree 15 Randomized k-d trees Rk LA S 28 M 3148 45 S v i B3R B4 0 J7 4. LRUS-CoverTree! 81t 7 —
FIRARZ B, FEARE HME STt 1 70 5 PR S B8 DA SRR L) B R N AR A .
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222 BT BIHERI

(1) RSN

fIHESC R 5] (inverted file index) i TR 45 7 M R HE LR A M REE, B2 JBR T —MEANLE
H4). e 4k 2 T 3 43 B Vooronoi P12, ) 55 B4 RN SR 2R VR R 43 N TR (Voronoi B0T), Al — AN
OMREE, REI&E 0 LA HARREP O MR EEEE S EE. T8 A ¢, BT ERTH RO
W5 g P B IR A0y, TR 20 /o XoF IO 4D 558 P e 8 P 4 A o 1 ) o B A AT B R R B g ST i) (A
T B AR A 2R 4 A2 IR IR, 4 R ) s PR B AR A R O I, 38R T R VAR B IE R 1 45 . AT
DU 1 2R 2 A AR T 2 45 B0 A 315, (H i TR 1 8 25008, 1R 1058 2002, 51%)% Faiss (Facebook
Al similarity search)™ 5 [ & %48 7 Milvus®ISZHL 7 IVF_FLAT (FLAT 2% thit 5% i 2 R 4l B 47 s Ak i R 4e
Haw) &l

FEWIES

A1 C,
G /o/\
C, [ e
K . D.o : >
C, o ° °°°o°°
C4 v

B2 IVF&#E

— L (¥ AR — AR AR 725, Tribase ™AL HRI 5> T RISTEARYE T R A FRHE IR A A R4 R
Jrid, ST B S A R = A LR T BT R R SCI -4 [T R4k FE B SC-score KT {BLRK FRBE 85, 44
H TR ZE BRI T, R — P N R AESE SC Wit T Suco, — Rl T HEMBR B R 5| SR K.

M i ) B p T R IR AT AR, FEAS B R R R TR S S, BT B OV E R R S R )
WA TARGF IR, STk [66] $ H £ T BIHER % 51 7732 SEISMIC B T b+ E I A L s I R 30k, 1830+
i AL ) B 1 L1 G4 3 2 el /D 0 1) S AL B AR DT RR, 1A 1 P AR T DA E 2D 8 G (R AR AR AT R AR,
T I, AR R AR 51 IR AN B HE 51 2 B e A E AT HE T, BEAT BRI, DR A RN 7
R SR, Il K-means IS BIHES R BEAT 4 P, #2000 B2 1) B R AE 40 R IN A TR AR Bl 34 T Hok 42
A8 ZOH . SRR R A R A B TRD R o FH SN 2 ), 26 DR v 13 B 26 1) ] IR B S R P s 2o

(2) BTN

SPFresh!®™ & — AN SCRE 10 A 1 EAH RSB 10 R 40, kO R 1% S % i B ¥ LIRE. %0 7045t
Y R T BT AR I R B AN S B PR AR Sl R ZUEE R R, SURTHRAL SRR S 4R R R N R
BB ASHEEN L. SPFresh 3 T FH#7 R R 5 HELL SPANN Mg IEAZ 5] 454, 3B i 4e 3 b0 B 00 X I Bas 4840 Bl Je
£ (neighbor posting assignment, NPA), 75 &4 73 7 4 A i % Bof A5 75 06 11 5 X 3 1) 20 B2 1) 3647 49 2. LIRE
WEAER GIF. EEARX 3 R 08RME, K 3 21X 3 REEM/REE, 2o X a4 T BE N, il 2 4 H
ST SR SRR IR A AN BT (X, 3 T 0 S SR G A A R A 408 4 DX P 1) 2 7 20T 6 e/ 2 DTSR P e
ARG IE A, MR TLAR GG BRI 8. S5/ E g EAH G, LIRE 8 Fi e s v Bl (U 2 4y
20 AT I 64 AR JE 4y X)) FIRRAZ FIHL] (4E9 7 B8 R WA S), ¥ F-F A BRI E T R 2 BE AN O(V) B &2
O(1) , A 8 i pfe T 33 R 45 T 3T 5 38011 4 IX 2R AR 2 v A 3 il ) L.

SPFresh 7E 58T /7 HIBEAT T RGAEMI B UL T BB 4% SR F R FG 0 SEmE K 5 1) 5 5N dRlT 41 23 [X, FR4kdr A
MRS 210 SIS M B A 3t 3 Al 2 R I R BT 73 X33 & IF S P A ICARAE, K A000L FE 4 X B ORAIE 5
FU. FEAAEE R T H P St ae, Sl L5 0 KRG EHE L NVMe SSD -, il i 7l 43 fic 2% R Heitb fn ik &
s VO 5 R BA AN S i A it vy 1) Dy SERUAT IR IR AL, R4 G A IR 5105 0 BN, FIHREE RS
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B 55 135 R S TR 2 BOHE (B R . St 45 TR AR B, ZE AL TR 10 12.4% SIFT #3541, SPFresh 7E 15 #% . NVMe SSD ¥
53 NI SZ 4% 4K QPS # R A A1 2K QPS B 7. A% TN 37 538 08 7 i SPANN+, L5 i) vl if R 2 T8
i 15 ANE D A R GERFEETE 4 ms /247, WAL T ShA T T LXK 5] R B i i

/ > / \ >
Q \ o\ \
' Be ) / e LN \ Bo o/ N “Be
Y3 ~
\\_—%——\\ w3 Al ,'l A2\ =zt TN E \_-gi’_o\\
=~ \ - o] ) - O
76 o \OAQO o \\ —> O‘O I\O ° O\\ /6/ . o ), — , 0o O\\ (/ A2.0 O/)
{ Al 0/ N\ "0 o, L ®o/\ oo /A © e HPSIC VAN .
N -
(a) A IFHRAFE (b) 73 2HRAE
o ——— VAREN
- =~ - N N —~
Jog (©°B \ \OB\/ A
e )/ Pox o0 L EHANE e \o \
- o7 ~___% ~ \ > o 0\
—== e O~ — _ — =z ° N — =% ol
= [e] o) PR o o //O O\\\/\ o O/’
e} / 70 \
4% 40 - Al @O )N AZT /Al 0, ~__7
(/ L - \ ~ - .« O
o} - N_ O -~ - -
~N__ __——— -
(c) EAMTT

3 SPFresh f{3EA T #ie k"

23 ETHRANBIERAASGE
BT A (77 22 — P AU R 51 HLZUT I, EREu sl Wi B — A A v sy — R A e L) —

&5 75 (locality sensitive hashing, LSH) F1%% > A4 4 (learning to hash). LSH @i B2 55 75 20K A ALUFI B
R SF 380 5 14 A7 o S SE AT ARl A 4B 48 2R, Fe— MO HHUR TC O 1. 2 o NG 5 DI W B s S 31— A — gkl
St M AT DB i A R B SR TH SR ARBLRE, HZB R8T SR 40 A H R A, AR SRS MG A J5 B 45 R ke
AR S B A5 R —HERI MG A5 . S T I 75 IR ¢ TARAE 453k U O s g VRGN A 48, A6 L 3RAT TR B Ay 735 A
B ) RUNG A P AS U7 THUEAT TR B 48, £ A B1E ) T e A5 R BOR BB AT VA A5 2 J5 Il EAT U &R, S 2 1%
I TT LA S AR ORI 2RIR.
231 JREBURS A

JR RS A5 7ESCHR [9] AR B RS, 6 S — R B DL B B T A IS B AT 9% R 1 RE. 7E LSH H,
(71, 2, D1» D2)-BUBIE A BRBUR o 0 O, TR B — NI A bR HIOHR 9 42 20 MR,

EX 3 (FEBGRIEF RED ™. — A SRR HAEFRA (r1, 7, p1, po)-BUE GE, 1 <1y, py > po), WRSTF
AL PN EE 2 x Fl y, W 2 DL T 2645

W d(x,y) < ry (BPPE s FE BRI r)), WIE AT T4 G A5 B F — iR RER 2200 py:

]gt[h(x) =h()] = p:.

W dx,y) > r, BIPEEEEEN r), MBI 2R — R 52N p,:
Pr [A(x) = h(Y)] < p2-

— NG TR IET p-stable 434Sk BE 1T LSH B, Hog LT,
E X 4 (p-stable 570) . —AN3 i D BRI p-stable (JLH p > 0), AR TAEE n AL v v, v, BUE

3L[F] 43 4ii (independent and identically distributed, i.i.d.) FIFENLZ & X,,X,,..., X, ~ D, BEHL A & ZV,-X,- I3 A 5 )
i=1

n 1p
¥ (lel”] X, J X~ D.
i=1
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T3 Al A — A p-stable 34, SCHR [69] H 2 H A FH e 97 20 A Yo BEALBC R 170 B, 46 v 4 20dim LS SR 4
I e, SEBRRK G2 (6] 1 LSH B8 Beit, J5 850 — R8I TAESR 2 1Al )7 &, I gy QALSH J5 %P
QALSH (¥) H A7 /2 i s 75 478 4l 4 ¥ i 2 Y, b i) A dan C2LSH e, S5 23905 X 498 A5 AV, S i AT e

(¥ 2 A R OR K G0 W A A, P 4 JRE 7 1 PR SRS 19 X3, QALLSH AT LA BE D ey iy 73 3t Xl 5 46 . QALSH
HBE— D PR T RN E IS A (virtual rehashing) BOR, SRz BE B IS A 1 AOTE L, 8 S G 7538, ARk, QALSH
FEAGHE RO L 2 A R B D 2 A AR RO R T T B, SRR AR BRI s AT 2k

0, q 0, o, q o
IR vl
vy 7 vy v
[ 'y [] ‘ [] '] ol 1 ‘ 1 1 1
0 h(0)) h(g) h(0,) 0 h(0,) h(q) h(0,)
w w/2 w/2
(a) C2LSH (b) QALSH

Bl 4 C2LSH™f1 QALSH4% 57715 &

1A, SOSTA I 78] FH 1 75 SR in sk 4 1) 2 O 0T B e K P B 2% il R, SOSTA 1 S8 it 1 R S 5 16 oAy
kR 2 IR G, B 2 AN R R SRR A A R K FL L RS A AR . T A I, B
b B A B, EARYE Jaccard BEES #HAT 8 R . FARGOX BT ¥ it —Fh 4 )5 2 W 3F I (global multi-probing,
GMP) SR, FI) I P9 AR AR IO 0 32 v S 8 PO SR IO, Rt o I AL Bt S5 81 79 /NS ) 7 1 £ RXCT 28 i/ B4 A8 1)
W5y A, B A EE N RIS DLt — B3R R AR STHR [68] X 5E 22 SR SRR A O 5 TAEREAT T 454,
232 TG

5 ] R A 75 8 5 5 ST — W R B KB A g A e —akd FE R, ANT AE AL TR S 1A gt AT s ROE AT R,
TEAREAS 22 M RS 10 [ I RS W] e 88T B S B 0 25 SR 2% SO R NG AR5 1X) QA T S0 o) e v S e 4, 3 A5 AR BL ) 2500
TERRS 5 BAG R LI NG 75 f, B8 2 NG A bR B0 W] LS 26 SR [13,14] IR 2 WA e 5, o3 40E
HEAT WA 75 tiD, Jmi 5E B2 5 7 B AE 5 2] B 75 gl L HEAT # R ERAE, F B Nwids: BTN RRrE R 5%
(hamming ranking) F13E T 1575 F5 2% 51 A48 28 05 32 U1, i 0 Mt T S 7 0 0 A MG 75 R R0 BT A 3508 A A A5 R 2 1)

e Bk A, DR DLE AT I A R AR, R — PR (HR S SRR, SEUSRA R AT
BAROK, PRI R Bt — 20 vt ik - (B HR A U7 FO0 e A 5 BEAT 28 51, 48 2RI R 2980 o (R I A B 42 (B R S 1
THOLHEAT 7381, SR G AEREAD 2 BRI G A5 09 b BEAT BIHER B4R, Sn R T 1045 R EET & IR A5 B e & 1L Ul e
AR K

Horh 22 77 SR 30K (73] 4 I TR LR B T 58, RIS b6 AN g S Bom ST, IR PIAS
R TRV BB B ||h = glly < ry IR ARIRA — DT IR N T 56T Lr/m), 2 T 1, ARG EATAK 75 L
PATFARNTEET Lr/m]) WAL RRAERI AT Hofg ZREBI% 55 70 m DA T8, SRR 5 L — DR Ay
R, AW, FIRER B R AR 2008 m A7, SRR R T i BT IS A RV K, S5 BT (K 45 Rk AT
F I, VRSB DO B, S 23R [ B B A R A B AR I X AR T 3 1 7 A A AR I B

Lb,r) =)’ C},
k=0

WAL G AE Ry m*L(blm, |r/m]), EFPT7 I8 T MR ECR, W js b 1 S5 A e 7 1 O B0, AT RIS T
GPH 75 P23k — 25 A AL 1 0 A S S0 B 7E VO 23 1) EA T AL 2R A PE B, 2 AT 7 V2 5 T S K 1 23 ) ol 43
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5E [RE 730 2 B A D BRI AR I 1) A, GPHL $2 T — ok 2N 69 SR 3, & e v AR K 2 A K1 23 R AS [+
{180 AL A SR s 5 T30 1 i B, e 08 90 £ 34 ) 0 AN T 2 iR PR BB SCHR [32] vk T 28 T e A B Jen 1) 2% [ 1) 43
FBRIAE 23 e SR SRAL AR 2R MR RS, SCRR [74] 33— M8 7 SRR IR B8 R Be A AR B U vk, SOk [75] 4R H T
TV EE A HI KR 43 SRS B 5 A 3% 22 JFUHE (augmented pigeonhole principle, APP), ‘& REW4Jili #1£ 2 1) f sk AP 22 R
SRARALE W IR T APP $2HH T — A 80 HA 25 17) 28 5 HE S DA ST RFSE FE 251 Al KNN 2591,
24 ETESWHBIRALSE

FET R 5 B B BRI o A ), SRAS A SR R MR (R B8 7). e mRG B 1 a e A
KR 7 AT SRR, AR5 TR EGHEAT gD, 70K 2% I AR A7 il () B B0 A W RG24 ) 3008 ORGP R
N, NI RAR R
241 FeE

Fe AL (product quantization)!' ™ 4 i 4 2% ] o (1) S0 A — AT PR FAE AT SRS R B2 ok 0 AR K
Y B RN 2 AMIRYE T3 (8, R E AL, D T REARI &, B R v BRI TR . R A T R 4
filts MOrEAL . EAERONAEE B THRIX 4 AT, B 5 ROR T R B4R AR R R

N5
— ) 2.
wm%a{: . | 332 .l
o o),
'C(l) C(Z)
2 .
C(ZA) <o 2 1 4 3
RO R

B9 Jm A7 ) Kemeans®% 5T 7o | k& TR

(G 3
i — —> - o e Ty 123 .1
3

5 B ENREE

T o e JF R e 10 & (HERE d) SISV m ASF W, GAF 2 R 4ERE N dim. B4n, 128 4R &5 &
8 A 16 477 H). M SrF Al XA T 1A 5 EAT K-means 2R, AE R K AN (W0 K = 256). B4 17 5 5
TGS (1-K) R, A4 T H 8 AL 8EEUmiD. 48 %R RIR I S ELE A m D05 AE (i 8 N F
G TP, EGE T I d MF RBIRE m AR ORI A7 BE B THER: BE B THE 70 XS RR B RS AR XS
FREE B, W T-17 38, 209 ) SRR 122 Hh i ) S 8 P 0O SR A0, 3 Tl S50 1 7 2 V) Joi e P 0 3R 2 3R B SRR,
TN AT Y — AR, 2SR E R E N OmK?); T Ja3, SO b ) S O R R, 20 2R
R AGAE, BRI MM 7E 25 10 BRI 75 25 v S AW A 0O I BE B TR i — AN FE S 3R, BUAMES m D RAG I M E R
O(mK) , 5 £24% Zl T A R SRAN PRI SR AREE 5, 38 WM LB 4. IR VAR S NS S EE B W B 4 FEH N O(mN).
T A S RS 35 BRI A T4, U 128 4k it A7 o I PT FR28 J5OR N 1/64, HUE A T RS M A R M.

TERA I R RAL I BL Al b, 58 2 A VAR k. SR [15] 118 T 1 2 56 T RSN LR, B
{ERBR T Optimized PQ'5j Cartesian K-means'” i) 1F 22 A 4 g 4 2 7] LASRE S 47 U5 A% ; Additive quantization”™™
55 Composite quantization™” F 745 /&) 5 o (IR & T SRAR BoAK (11367 75772; Optimized CK-means™ ", Tree quantization™
55 Sparse PQI M | 1 AN 7] 1) 4w B $55 s LA 73 21 5 vk 1O B 1 45 51 b4, DPQP Y AN EAL T 4 B H il R 0
(Y15 2 2 29, DCPQU M it b 627 S] i 7 i e R AR, RVPQU A RN 125 [ #) B Hh 22 AN A5 P ik 2 R AR 2L R 1)
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W% 22 2 IR R, CHPQU AR 4R B o i 1E SR A AR AR, SCRiR [88] $2H T Fast-Scan KBS K 78 43 F il SIMD (single
instruction multiple data) 484 I EE 5 115, B2 0T BN AT AZH R [15] ITE4HZRIR.
242 WrEEL

PR — Az B R AR R ™, B R I I R AR RS B SR 0D A i A SR, AL R
fen 4 1) B (R A AN 40 B (R T R IR 77 BRI 317G RS B U, AT P B /D R LU AR SR e B . 491 ks 32 A 13 s B
BN 8 AL HIHEEL, W LKAk T SR N ESR I 1/4. AR B2 MR A AR IAET it 45 L, 6 PRBLLE I
AR 2RI R, o T s, 8 20 R b e 8 Tt Uy ) 2, 3R TR e O

b A AP IR (1) B B A L 0 A i R 20 A 18 100, e A el 2 PR o KB e /IME, AR S8 2= 4E
XIE§) BT 5 (2) R A X IE]. MR B BRRS B FIAE A 75 2K, R0 8 T A B BUE X 18] (3) B, KA s St
S5 0T L F) S A0, SR T 2 R W AR 2R RS s (4) 76 IR FFEALPT R E R o8, B85 ETR AR B 1)
AL NEE, UMETEI R I 88083 JR i LS. Ar 5 5 A0 1) SCHEETE T e e 5 2 B e A e i 75 X, B/ ME = AER
ZNAERETTAY. LVQ (locally-adaptive vector quantization) & —AN 53 H & B EHAL 77 15, B 2% IR AR 1A) B R4 A
SRAEETXTHERIRAL, AR T B EANLHIRXXRZE R o — P E IR SR, 584 LVQ.

RaBitQU & — R B (1 B Ak J7 vk, BRI 7 R EAL R R B AL AR A5, B T RS AR, AR TR 43k
R TTE, HARHE T IR Z SR EIR TRAIE. B J 40BN Jd LURR kbl gnhs, 8T T mAtiT 7 ik
Feit S m = E A AR N T RE E AT A, RaBitQ I TR E =N, HE R TR EEMZ 55 5T,
I X — A, T E P SIN T ALE R, T RESE IR TH R RS, SR [34] h AR AL T RN TR, — e ) B A
FACEIR T, 59— R AR B AR 0T 5. AT B I EE RO (3 1E bitwise-and 454 popeount SEHLR
T EL, 5 Sl 456 SIMD 458 2 4R I & R 4R AR R S PR T, SCHR [34] ¥+ RaBitQ N HIZE IVF HokAR
AT AL R T A4 2R IR R, SR 25 SRR B L R 8 3R A5 LU A% G & A0 T PRI A R B2 . SRR [90] £ %) RaBitQ RSC#F
| EERF AL I, 33— D8 B T RaBitQ M SRR G, A8 AR08 1% B0/ R 45 22 SR SR B 0 25 8] o5 FH 3R A8 58 =
B TR 2, RIS CR B T %o B 28 1) e i 1R
25 REBURALNTSE

SEE B IAR A LUT BRSOV BIR & 42T R TVEZ BISRERZ (MO0, B 1R 20 AR R ol
HHAETE AR ITEAR T B — 7 R A E I RUR. B — AR & BB LS, B A&
(1975 TR LAFR 7 M R HE 8N 7 ZR (AR 2, R B ok kb B — 7 R 5 %%, HEIM 4R S B AR R AR, T HRAIN 4
FHRRIHIAR.
251 ETFERBRIHAL T

Ft ot BB ST B e M B T WA B T AR P 7 o TR B 24, Aguerrebere 5 A P H T 35 F EATRAL ) OG-LVQ
Ji ik, BUR T SR RE I PERE SR T, JAbBE 10 {4 2 i A AU PRI RAR B T s R RERR UL 7 . SO E R
VEFIRE A AR T 7 T HEAT B, TR SR D7 T H AR T R B & Rk (locally-adaptive vector quantization,
LVQ) BIJ7i%. (1) %715 T X IR B 2% ST I A v 48 1) 2 23 A0 R 1 0o IR ¢, ddled 4 J 3504 o0 AT Bk 48 2 (1] 43
i e 5, K F 1] i 4 A7 V0 b 2 i A SR, A 1) i ) 000 Y B O & TE HE G v bR, e R A B EL Ry
PR IBRE ). 5EGMEREASS RN (0 PQ) MLk, Z RIS {E JLT- AR KK AT T, ¥4 MR A5 78
FRARZ AR ER 0 1/8. (2) Z AT T R E BN, 5 | REMEREEATEZRIIMPEER, 2 %
B 72 A AU E e s B HE 7 P, T KR IR -AS HE (R RN, (3) TER 51 M ETH, LVQ SEIL T R 46 M & 5%
Fa & T 4R &, FCER AR B 2k R ZE 0 B4R e PRS2 I 2 RS /0 A, it 4-8 ok b R RT O 50 AL R0 1) 55
ROPE, (2R 518 A7 75 SR FRIKE 1/6 T A g 225 &

FEREAFIEZT: (1) 182N, WIT T 2T AVX 82 M AR 5 AU TH R A& A%, B R 4a 4o
TMEAL A SIMD K UFHI SRR, i 835 4 A B 4L floatl6 3R TF 2.1 % (2) ViA7AE Ju Mok, &1 B R 1 BEHL
VIAERHIE, $2 B T T A% & 5 K ) B & R TSR, TiE & K 0L A AEAT R B TLB 2828, SEI 90% HIEAE N
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FEaf SE A 2 (3) FFAT AR M IE I, 380 i P A B 85 i AT BB B e vt 7E 40 B2 IRS% a4 _EAR A SRR IA ik 33 1%
I L. SEIG 45 R, ZTTIRAEOREF 99% R KE LM [FINT, 10 12 8 42 25 ) 75 k- B AL A e {75 4R T
20.7 fi5, WAFTEFEIR 2 1/3. HLAHT 2 AR T 15 SR B 4 2 b9 15 1 R 51 ) 21 0 (R P4, I 2 kAt g Ak
Tt EEFERER AL G 7 5, AT R F BRI R 2 G 5 RGP 1 AT 97 R RS2 3CHF. EAH, DiskANN [
FER— AR T BRI R 51 454, et — AN TR AN AR IR A 1R 51 75 2, 7820 R SSD 1 7 k4 i il
REFRES), E5 3 WRIATEZMNG.

252 FETEAM AL 7%

BEXT IR T R T VEE AR R L RCRASE UL ETT i 2 BN SR B B0 0 e, SCHR [37] $2 i 7 22 T A 45
(38 R SR, 42 B K-NIN P 2R3 DR ORI 28 A, SR FH 20 SR B0 1) 3 £ RAE R SR, R sty e 4 2R i, fme 2%
PRI REGR. LR EE 8 4 DV IR (1) BT R E 6 RS R,; (2) 48 L — 2B ILa_EX] R AR i & A
BB ER (3) AR IR 7 SR R0 5 A I R AR B (4) 2B Lt DT R, 0 B2
ISR ARG, 1B P8I H SRR AR, SITEL G T RIS SR Z RIS IS, 9T ERIRR A 4L
FARML T EE S SR RN HZ AN T IRDTEIUS T ARR A RIYERE ST, DR B3 T IR AR R R it
T EBE KGR, ELPISU R — ANk T AR (¥ 53, 1 e ilid Hercules!” K i 420103 5 AN R, A 75
RN — AN RIS, BHS AT HLAE T S LA E HNSW 22 5], 3 oh Hercules 3@ id EAPCAP i B0t 17 8 K
A AR R SR
2.5.3 BT EMIGA HHTTiE

B S0F P 77 9 T A R A ) S R A 7 A AR AR 17, SCRR [38] $ T 45 A LSH MBI J7 1Y) LSH-
APG R ARG J7E. FEA B I 0) Bt A6 th 9B 0, I8 I LSH 2R 51 PR 1) &1 J 1 26 755 1, 2R S5 AR <0 f 1

G LG VLI TR NAS. TR R, 4h e Bl A ¢ Rl LSH R FIN [ s, AT PR R 1) 21242, ITER &
A5 S E I V5 ) LSH 25841 JERE RS ¢ B (¥ i, A8 2R EE B 1T 5. LSH-APG J&@ it LSH Jnisi i i Flzh & Bk A
Ak, 75 (RALE 25 ) 5T B [T AN, 5 HINSW 25 7 W b, S5 385 A1 17 R 2 i)
2,54 HETEHRELMHL %

IVFADCPL R —Fh 45 & 3 HE 5 AEX FREE B (asymmetric distance computation, ADC) %5 (1) 5 3. 76 i 4b BBy
B, IVFADC #§ N & [ R 5E X =[x, %, x ] RIS N T X = UL X, FF 4l & X, il MURFE C;. X
B—HAE X, TERFHNE—KAE reX,. SIEARKMEMNIRE M & x— C; L FIRZE W E WA E I
il X — 2 B & y, IVFADC 23 5e X0 F b AT & Ak (coarse-quantization), 6% 5 y BE B S&IL I C; H T 55k
ZEA & y—C;. W5 IVF 3T RE B Al i, Sl TR ZE M & y - C; STRAREA G I x — C; I AEXS TR 2E B8 B8 B4 2R 25
. IVFOADC+G+P 7 B2 REK5 AN 51 28 51 A7 BE 1) X 3K 43 BCRE /N 7 X3, 5 A7 it 438 7 X el xR P 7 B Lo 2
SR A 5 It £ 152 A]. H T XA B AR, IVFOADCHGHP it 4320 7732, i DX A5 /0 FH EL AR A 5T 00 1) 7 40 & SRk
T LA INAE R4, BEAh, SOk [34] AE32 H RaBitQ AIZEAL I, 4 H N F B IVF g4y b, Bu4S 7 Eu @4k n e
PR A R RS

IMI (inverted multi-index )" 2K 2% (R K 4 Ay AN~ 25 18] B 8 R R B (258 ) T 70 B oAb hofls 25 10 K1l 90y m=2 A
TAE), H NPT 28 B RDA, MR KAN A K RS, B2 msSe BRI N T KA R RS X8
P9 A SR AR B AL G H ik 22 . Eh T ML A 23 [RDEAT 17 SR 4L 32 0 4, A X3 P9 25 1A v e, ik 1
TR A DA TR IMI 5 YRR KBRS % RS T AR A R, (H & SCiR [95] 8 H IMIT 7144 S 3R
2 7S X IR G B A A A, HAR H — AN WA S AU EEE o 7 VR TR S R 2R R RS, 1E 10 1040
) SIFT #1 DEEP ¥4 4E FHUS T AR MRCR.
255 TG RN AR %

WK T7 v R G 4 20 LSH #8525 BUEE, 1 C2LSH'. QALSHY™. R2LSHY'F| ] B+ i 41 2VH0HR A
A Ja 45 5, SRSV Sl Hrdim 43 5 30 22 4 o 2 ), [RIMESR ) R RERE SR AL ZL8000E . SOk [97] $2H T LSB-tree JR LI
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PUdiEaf ik R, HAEA AR AR I m 3 Z-order (EWARIT, B2 1R 51 51852 tH 2 A3 LSB-tree 4111 LSB-forest.
e Y, TR BT DB AR B (R4 2R HD-index R —ANEE T REAL IR 51 73k, SClik [98] $R I T T
Hilbert"”) 25 [] 34 76 i £& ) RDB-tree Kt} #4247 4141, PM-LSH"*"'F ] PM-tree! "' R 41 415 ) 11 42,
DET-LSH!" it et h 254w iS4 (DE-Tree) LAZw iR 4 408 4 A 5052 i ) 1 i LABRE T 2% 51 (A B 24%, DET-LSH ¥
SIS IR 5 T R S UG Ay 1 T 1 4, I B B R 7 SR T A B R
2.6 N £

FESZ bR B TR R W53 R D SRR R R R 51 RO, IR R M A . 2SI 5 R R A 4E
HMEFE Sy T G S R LT BB /N EE 817 5, Taged S 2R MR 51 451, R B R A 50
(17 ZE kB i A2 LR St — S 4 AR A O B, SR 3T 7 ¥, 40 Annoy ™ 1 T AR 4 5 Bk %
LA 55, T X8 2R K R R (I, T BT, W HNSW. NSG 2577 & (1 75 18 2 M i 0 1 58 ik
KBS AT 5%, (ERAME B T B 7 R IRE A T8N 5%, W3 3 s, RG0S G By W
SRR, AT 10 A2 28 50 RS ) B4 28 DL R B 30 248 TE R A I 5 ), 2 T I 7 vE R TG B R BRAR, itk
BBk T Z 5 R 2 M7 ORI B e 5 &, IRE R MERE . BP0 RS AR S 2 (AN P, 4% B2k
% PRIEAT.

2T A B AR K, i s 10 A2 ARSI B¢, WAE BEVRA IR BUT0VETE P AE HAZ 0 4 S 45080 (1 1% DU,
¥/ PQ. RaBitQ S & Ak Jy A A SR 7T LUGEEC A BRI A7 25 1], OG-LVQ J7 4848 T B BT 4G
77 %, I BANERAE R 51 A SR IR 1 ) 25000, FEAA 5o PR Y A2 1 o5 R, SRASHE v ) 2 vkt 1y [ e R aE —
SE RIRE 51 A BT 6. R 7 T 1] A R 7 28, 38 AT LA Sk 36 T ] 18 28 1 U7 22 AR o P9 A7 2 AT BR A S B0 1 T S LAk 2
A8 10 1 /R, B Disk ANN 8558 TR A A7 R A I 2R 51 J7 15 AT LU R0 58 BT 55 1) 28000 e 78 25098 3 A 72 1L I
55 v T I 26 Ak 252 ST )Pk R, 68T VL1 7 9 T N 55 0 DR %) ) R, e 438 8 T3 E (IVF) SR i e pR . 49
HMeFEAG I ZR 51 AT LR I M P 447 A 5 B PERE DG R, SPFresh Wit TEIHEITEHT 7 REUR T RIFIIRUR.
AR, BB E A TR AT S A 2 — AN EFER RN R TR, REEURGEA 77 % BA B far, 7T
TN PR B A U T3 s R R R A AR T A I M Rl R AN R ST S

3 EERERRMLEE

BEE N TR AR AR, A I B HE ROAHE 1 H R R AOME L, A5 1Bkl 2 i 2% 0E, BT et s
IR 2B, A0S R AN TIT 9™ {1 25 J2 1 W 2 PR B . DAy 7 IS Pk, SIS vt 20 ) 1 R SRR R k™
Z N 5, IR RAR T TAE N2 AN LR, BRI . PR L AR AR Al . B s i) DAL S
FEIT ), FEHUAS T — RBIR R, FERIHESEA A 1 e e 1) AR R A M ok 7 5.

AT RGP AR B EF SR AORIT TT R, MRS A R B B A% 0 22 3, DT [ B s T i 2 2T G 58 L T 1)
PR LUACRAE . A AR A AR S R R BEE DT AU R A A ARG A f AR )
Hr 8 ANT7 DN A R TAEREAT M, 3% 5 MAZ0 88 MRTE . LSRR FRIEIZ 4 AN J5 LSS o 1 R i
(RVIRr

®5 O EMERATTE S A RN
oy HeHfi o0 B A L RrS g JRBR

T o) 58 44 T 1) . AVXFIEA%E. GPUM ety KiE T frnt . o
P PR R 5 . ooamE B BER B A 76, B SR P
T S A R LR 2 5 7 ke i IR NeuraLSH"*], N HOE AT, W VRE A, R A
itk Bl BLISS! "4 DIUAHE R

B e A CBERP R, Wi ADSampling™ i fcpy, R R JEILE

R B BAE UL S A

TERIfEAL AL ST AR ER BT 1 5F PEOs! /4% A5 PSR
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RS AEMRMATT S AR PR (28)

R B sk % R
T AR ) ot DiskANN™, FUFIRES BRI, g oo s oy s g
A O TS TN g b iU RO
WEHR N RABEAMIIRIE  QGLVQP. WM R, AR R, 2
fife Fes RURLEAS SymphonyQG"™45 /b (LA IEIE Sy I AR 0Ps 1 i
WA RIS R Py g, o L AUIR (R
ot i Auncel!""% LULTPN L € e A

. . e L 1 Filtered-Disk ANN!". 3 G380V 5538 48, 03037 5 S 28 Mg i 9 50 s
MR e GG OTRRPRAEE T AcoRNTE, GRG0 L, AR
o e SeRF!" % by 31

EINE LA BT N \ . e e
wipy | ECERmERG R oMM e e i RS R
PRI 0T MR st

hardness'

3.1 EEEEMRAT
3.1.1  FIFH SIMD fnis BE g it 5

FL¥B A Z B PEIR (single instruction multiple data, SIMD) $i K jE it — 45 & R AL BE 2 A4, BERTHTEZ
ERVES MRS, DR CPU 43 30 HF SIMD #21E, Hhin x86 ZEKI AVX/AVX2/AVX512 #5441 THI ARM 224
) NEON!"'*,

FIF 128 £ SIMD %5 47 2% N i+ 5 ) & x 5 170 & y RO RK EBE B9 10 °F 7 (1 — R o7 Z 40P 6 s, 3o, 805
FQL N 4 N ILRMNANFINE D] SIMD T/ . B IET sub #4T HAH z=x—y. FOLFIH fmadd
822 res; = res; +zxz;. O HHEO L BT HATHIX hadd_ps 54K result 7577 88 HHER A REE T
JoEH. T B IE oviss TRAIRIUF A8 H I AN R, RIS

vec, reg, ICiemp I%sull
1 ] distance
X2 M load | X2| @ sub | z2|@ fmadd| b 4
is
X3 X3 Z3 C A
X4 X4 d i
o B (@ cvtss
i®hadd
vec, reg, i i
Vi Vi atb
Y2 @ load | »2 ctd © hadd| 0
V3 V3 0 0
Ya Va 0
TCLresult TCEesult

K 6 SIMD 500 & 7~ 1

W3t SIMD SR s ) & i &z M T B AR R R, Milvas!V 25 ) B0 4 DL Faisst V48 50 22 R
T SIMD AL T LR T A8 B 1. Faiss A 3 ANEUWCHIH T SIMD: (1) X T 5N a1 # 1#1E (Eb anxd w4 1) &R A),
FEARTD S T 22 388 i 50 R e I PR B FH i A DG B {8 15 4 13 48 R 0% B 1T S5 B Al E 4L (auto-vectorization);
(2) FIH T80 C++9 1B 259 & SEILAY SIMD AR B AR 4 (3) i IRAC KR AT J= 5 SvE Tt K S 4 SIMD.
Milvus £F%F SIMD 34 7 A TR AL: (1) 328 AVX512 1644 (2) NANFEZERIE CPU E 3hiR M 3F i Bt B
f) SIMD 54

# 6 JEIR T TEHEAT Top20 B IR 96% F1 98% A B %, 7E Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz
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CPU T, HNSW & 5| £ GIST #l DEEP ##i4E EAdi ] SIMD Jns A4 F SIMDS512 54 52 #E4T in s it 2 1) P B
(QPS), 7] LAF HUE I I 5 SIMD SR EE 2 1153, 7T LSRR IR % 2.6 [t REHR T

#* 6 HNSW 7EF)3 SIMD FIAFJE SIMD Hf & i ¥ (QPS) *T L

a2 96% 74 [] 2 98% 1 [l

PAE/E S DEEP GIST MSONG DEEP GIST MSONG
NonSIMD 542 87 1375 407 54 1067

SIMD 1291 (2.3%) 227 (2.6%) 2518 (1.8%) 886 (2.1%) 141 (2.6%) 1814 (1.7%)

3.1.2 MM Z LT i%

AT C AR S A ETHENL R G, WA CPU KIFFATRE ), RINHAAT 2 AR SETHERE. 2T
Z AR AN AT Ay S, 2 SRE AN 2 2R AL Al I, M I 2 R R R BRI D A2 A T4, R E S
MNERRETHIFATPAT A SRAE, e F P S5 REAT SR BIRA S R B2 LR LR ERRIED N E
INTARSS, SRIGHE 2 DN EREHF IATIAT, Ba s BT K45 REAT &I RE B R A M4 R

(1) i) 2 2efefiiie

BT 7k O N FIAE o S A e b, B R — I 0 B AR 55, S8 1L IR AT BRI &
R — A TIAT 5 2. 24T HNSW B BR324 P A 0t mi 4 18— 2 B N B, Sl R p I, BE054E p
AN R R BAT s 2 TED S NI R, LA T S 1 A 2 iy ] 3 2R SR IDUM IS (R 6 8 e, R I $RAT 0T 2 )3k i 13 A
SERCAR TR . SR (119] S T —FhE T 2 AR 9 B @ 7 ik, M 2 R R P o py el g HL 2 32

B ARSRUL, SR AR B B 1IN 7 vE SR G I A R I s B R IR IR, AR s s b,
TR AL T R A, AT o v B8 v ot B 1) 1, 5 R BE R RS BE K, A e — R ER R 22 R e, AT SR i
(547 BE, TR S N BE B — A PR G0 TE BR 3 K. S8k ik B 7 vk, Sl T 70 R 1 5 R () F T A
PR R R AN R AU AR o, RATEE 1 PR e HARE T A5 (1), 28 2 DR E p & 15 T DUE X 2615 15
(AR 8 (NI, X TR, AL BE b 0 A B8 AR rl AR SRR R Sr A ) AR, RIS A B % T
JE, SR AT IGRAESE 1 DU N il 485 88— Xt H I Fe 18 BT s AT i AR A SR e N, AT S BTGB
[FIFFAT NI EE.

Q) BRI Z LML

% 2R A [FRE AT AR SR D48 2 1, — AR F 2 2R R 1 7 RN T 2 A0 [ B Bk 1 o, BATT AT
DA R B 3AT 2 . iQANTOLR — AN 22 R R SR In s AN 75 0 (R pE R 0 ik, 2R TRk R —ANMERE -
AW b 175 B s (I R, iQAN 1% O AR & IR AT MO AE B P AS B A A, TR RN R 2 AR I A, SEE
I 22 A0 B N BB AT AR 2, SR JE e B 0 25 SR 6 0%, R A IS ARG T 2 a2, 15
HRIRISAIE: (1) BRIAT, B 2N FEN SR ZDAFRNBEASIFTHE, Q) A BY R, AR
BHATB DY R SR o 2 K B A2 SR S I AT IR, S D B B 484 1) TR e 8 1 5 R 1038 3 385085 (3) Ik
DRI, RVFARER) TAERARE B E G 00 5, B T 2R FE 2 (R I [R5 P4, 166 JF0 5 — T 46 R 2 EHRAE.
TEIX S T 5L L, IQAN B SEBL T FI 2 282 R sl 48 2R 72, $2F+ 78 K 16, 7E SIFT1B #1 DEEP1B %
W Il T R 16 fERITEREIRTT.

3.1.3  FIF GPU #HAT &

BT CPU MR Bl BOR AN R 7 R E M4 BB LT AN SRR ZR T 4E5 R A5 K il .
GPU AJ AT A KA AT ZE M R 157 P9 A7t 5 00 D0 38 S P RS, L mT DAL v R 1) 2 R) RO S, S v 4
1 IR A5, A 1R 2 AR T el R F GPU SRR T i AR K.

SONG"'E —AEF GPU N I B AR R R4, % R Gkt w56 T B ik AT 7 IR FEARAL, 1 IR Szl
TETEM GPU M1 RHELE, SONG K18 2 MR 3 AP BL: %1% 2 7 (candidates locating). it #E & 1H5H
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(bulk distance computation) F1 & 45 # 4EP (data structure maintenance). %% 5 7 B BE M B R 51 H BB 24 85075 551
AR JE T s PR S THE M B GPU BIFAT V5 A8 77 v R0 e 1l v 48 1) o FA) P B ok 405 00 445 A 47 B B U B 3
RS BA B FARG A5 22 LAHE 2 T —Fif AR, 8 X — R B TT, SONG K i A 5 47 R FE 251508 (b O I = AT 11 5%,
RERTT GPU tHE ZHEM A . Ak, SONG £14f GPU WAFRRE BT T 2 Ik A4k, 6045 R [ 72 5 ] (fixed
degree graph) 71, WL 4= /) N A7 10 IE S A5 Jm /b R 51 U5 W 48 ; A LN AT R, AR HELSS (bloom
filter) BY Cuckoo i JE# B AL Giha A 3, 76 0V AT R IR AT 5 T b BA7 G 3 B B4R (selected
insertion) F17 M B& (visited deletion) SR, (X PR B -5 24 BT S AR IR A GBI s S S, H4ME A5 3 N AF T FEBR il oy
2K (K N R ZH). AT #— PR GPU M BAFBRS, 51N T B R4 8. Stie g KW, SONG 7E
GPU _ESEIL T BRI ANNS FR) RPN, AH L B2 FE HNSW Al Faiss 73 7 $2 7+ 50-180 £ Al 4.8-20.2 £ FF it &

GANNS!" 2L —A S GPU Jins (1 4030 BT Bl 53 4048 2% 5 M R I AE SR, iZAESRET W L GPU B & J7ik
(10 SONG) TEHE 46 My /e BRI, Wit 7 1 1% 33 (lazy update) S5 AT (lazy check) 5%, LA7E 20 FEiL
GPU AT THE S 77. GANNS ¥4& Gt R AT RINFE EA N WE 7 Fros i 6 DN IFRAT M BL: {83%E B £ (candidate
locating). 2B4F"J& (neighborhood exploration). k& FE E1H4 (bulk distance computation). EH:KE (lazy check).
HEF (sorting) FMEILE BT (candidate update). FH, 151% & A7 B B il 2R T2 A (warp) 2R A A7 FERD 45 A sk 52 A7
REERZR T A ARIE R B BORE A A0 S AT B R NS B I E N AE S AR BB B AT S R e O A
AT A, BERITARVE. 547 A F, GANNS SR A 2 K EEEE (MR35 AT e kit 5, 371 H
GPU AT BIHEF 532 (0 Bitonic Sort) b BUFMRE T mUF . 1IX — B THAUHE B T 335 A7 2B R 2D 4, 1k
IRILZRFRIR (thread block) PY HIBMENL S IUECHE 25 454 1 34T 0. BEAE, SR [122] H48 H 7378 588 GGraphCon,
PR RN AT, FHATHE)RH NSW BEIE2 63, B RS GPU i = 20 NSW K5 HNSW El#g 2.
5286 45 R R W, GGraphCon 7EF 2 NSW I HH b 5262 CPU JrvE Nk 40-50 fi5.

O ks > ARG | @ HMEEEE @ MR E OHF || © BLEH

Y

EMEADARY  WAEASERY AT AR T WREEY R GPUXUAHEF
Y7 i3 R b5 [ g PR Y

K7 GANNS [ TAERFE

R GANNS [fszih gt 5 U2 Hik gt S SONG ML B EEE g T, (1) FER e L, EMHRATRERT,
GANNS [] QPS tt SONG & 1.5-5 1. fil4n, 4 SIFTIM Fdfi4E 4 515 0.795 I, GANNS i %] 458.5k QPS, ifij
SONG 1 Jy 88.5k QPS. (2) £ H [F12E I, P35 FEAH [RIEE £ _Fak BIAR1BLAY B [EI5E 281 GANNS BIFFRAT AR 444
SEOUREE. (3) TEME BRI |, SONG HIHHR B FAE (5 50%—90% I [H]), PR HAR i 5 46 72 Ak R AR 56 2 BA Z1 FHvG
5 %; T GANNS I 5K 0E (lazy update Al lazy check) J/0 S04 AE TF4, 06 29 1H 5 3 S0, 4k T GPU I
. (4) EEAMEREHENE L, MREIAEEL kM 132 100 B, GANNS KA E (SIFTIM L7t
5-5.3 fi, GIST L4&F 1.5-2 £%), i SONG A5 # A M ILE /= k B 20 N B35, (5) BR 48 I 2
GANNS 7ERZ4EEE 5 EPEReERTHTE 2, Wiks GIST M 960 4EF# 3 60 RS, AHET SONG [Tt Res& I 1.5 £
RIFZE 6 £, I AETE 0 FI FH 2R R IR A7 b 2.

UEANEF IR % TAEFIH GPU fRAbt:fig, GENTE! Ll it (81 HE 2 518 & ) 7 il B T4 45 LA FE 20 B GPU 9 9F:
ITFEEE D), IR T — R T GPU SEBLIMME 753 c-PQ AT MR 4 ikt TopK 1E A4S . PQT! %t A it
TR, 3T — Rl OBUZ R A R R A DAY/ D R P IR A R, S el 1 3 IR R LR IR T
HZRYERE, FAH T HT GPU KISZEL. SCHA [125] 2 T 76 GPU _ESZHl IVFADC #7572 RobustiQ! & i T 45 &
BT BAKZ AL BIHER SHETHE R 5 REEHEM T GPU LI ZR 775, GGNNIE T —Ff GPU K
TP LR FE IR B AAE R 07 3R, T8I & 9047 2 FIR A7 5311 s AR B M E e 327 7 7 B 205 F H % GGNN
BT — R E N BRI, S T RS, GTS! R T — R T GPU MRS, %% 5
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BRI R W FBd 5 T R M AT AR, SR T R AR AT s AT UL kA GTS Wit T —Hh
I RAY 2R A UL A7 SRR 51N T — A BAB R LU 9 & 55 BB R . BANGU i 78 40 {a #F 54752 PR (1)
THIL T 8T B GPU A3 K 2404 BANG A CPU 5 W24 EE 2% 5| 55045, IR GPU Jinid B 25 -5, i idid
B BR R PAAT SIS 0L T GPU-CPU Y 73R 947, CAGRAM M [ i 4his GPU Bt i T B Bl i AT R &
i, SRR T CPU _RIJT v, MR T KIEHETT
3.2 mEEFE SR

ANTEERACEH) 2 AT RACEIE E e, Hop % ) M R 5 RIS TR IR, 2 R 5 %
O AR I8 2 S8R o0 i SRR 5| S5 M AN I FR, TR s R4 se. Ml AR 2 TR W7
kAt 4 ) B AL AR R M B, B SR 2 ST I 7V, RERE TR S YA T 1 4k 1) B 19 3 AR ARFAE, AT LR
PR AL, R R 2 o0 B 7 ok A s 4 ) B R 5] R BN T ARSI T O 1 43 A ok SR 47 Hh R oy BE, A
T RERE A T 10 58 R A, A b A7 B A3 2 AITTE X3, /b 350408 i 0 Il FRS. R TRBRAA 2EAH SR B T &R

(1) Neural LSH & 5|

SCHR [103] $2 T Neural LSH 77 20 F A 48 0 2 4 H0Hs 50 47 M Rl 43 9 3B 2 Wb, A6 iR 2828, LSH
A B 7 92 30 DA 3 312 20 5030 PO 40 AR 4R AE, Neural LSH 33 128 0 2 SR 2% ) B (20 AR A, & I BRI o FoR
A WS B2 S iE SRR BRI R 2, B 8 SRR T HAlr mnE B, R N 3 ANEERPER: () ME—4
KNN [, FIH KNN BRI EEE 19 73 AT RFE; (2) P45 BRI 2 BAK B8 55 R o 212 A (3) Ilgh—
AN BE TP 20 0 285 1) 3 21 25 7 P BN B8 2 (D56 BT B BB R AT X043 D9 T 3R B R, R 7 E kb
Rl o3 4k, B R BRI 4 F A 0], St o R BT IX sk, SR fE RS X R OEE — 2 B K 4. Sk 45 SRR A, fEiE I
Neural LSH 73 ) b dEA7 48 2GR0 SO0 T-1& 48 1) SR 2K 077580 LSH 77 ik fRg

) D |

o

BIN,

K8 Neural LSH ¥/ mE

(2) BLISS & 5]

BLISS!" R FH AR ) 5 3R Ak B8 0 f) 4, 8 3k 28 B EAT R TR B AN 25 BRRARAL 40 IX 2 (1) 383 2 ST K 254
et 055 2 FRIA; (2) LARRMAR A S0 S5 18 D A 25 3T 20 TC 2500 . TE VI 2R o B BB o A A 2508 p 2% 2] 3
EEXS AR VP43 bR B, R IRTEVE 2 5 11 K /M AR 33 4 0 /N B SR IEAT B, SR 23IZR R AL e 3. 7
HEBEBY B, BLISS 2 F H0HE mimest o3 A ISR 1) R AN WS BR B AT WU, &AWL 2R 507> BlIE 4% 5 AN SRIREL
fl et SR AR IR L% 38 45 b 3k — 2D 0 e SR SR B S O TR 45 1L, St &8 SRR W, BLISS 7E 2 MR 48 L AT BUE 1
It Neural LSH [¥] 14 B

(3) BATL % 5|

BATL!" ' — AL FP 41 K SR 1 2% 2 B2 IR 43 R 51, TR — AN o AR 55008 o — 2% MR YT R B 7 4
B R RN, BRI AR MAR T AN T i e 2 k71 s 2 N B B AT 55 5 A D 93 S B AR AT 4, R
Transformer 1‘%;&;“miifr?—/\ﬁﬁﬁ%%%ﬁﬂ%ﬁﬁ p f?é%%ﬁﬁﬁﬂ%ii’l‘*@&%ﬂﬁﬁ%%‘? (beam search) R4 I 3P

Eﬁf’ﬁﬁﬁl’ﬁﬂﬁ,*ﬁﬁé Al E’WT R R (B, %11) Xﬂ’ﬁ?ﬁ)ll SRHd, KRS AR Y H [B15 23 2K IR EER H P 51
BRI 2T AT IR, BN UG RE 2 S B IRACH, [ b 2 4, I kit i AR [ 5 i Eh AR, S 45
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1, B BRI FE. BATL Il 252 AR Y DLEE & A [B1 36, SRIG Jeom 7RI ZE . HERR PR N A7 5 F 2 T
BUAR T R T,

(4) LIDER % 75|

LIDER" & — AN T R EHIXUZ Z IR M R 5], e GRS BB ARG, 5 1 24 TR Em
Tl R, BB 2 BYE T RAREEE. X PR, #ELE — AR core model MIZRL, FRLE AN > (1) BRERIE
(2) — AN E TR EE RMIL PR4EREER X 2 N353, EK-LSH A R S8 Wit 5 ol s 5 6, 8 2 40 4L 1 PR R
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FHHTHR, &JG¥ R BB TEEM L R A IFIT £ NS S0R A S84 53R LIDER 5 0F MR IIHLETE T
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R HES R M BCE, RPQU AR T B 5 ik it 1 — 6 i 5 T 03 135 (102 ) SR AR B ph 7 vk, L@ ek RFE I 4R
U B FRARHE -5 30 SEAFAE A TGRS AT A 25, (045 S 20 S T e i S 5 T P ) AL A 4T3 2R Sk [137]
F& R 2 31 B 5 R T T R VO PRAG I T34, B I 2 ) () 7 VR 45 5 S et (PR Ko M3 0 i 4 v 4
25 ) RUAT B — SO Tk BEHLT . Smart ANNS! R Fi 22 51 (1 75 32K i 5 75 48 2R (0 5048 2 F FITE (Y] SmartSSD
S ST v P 12 % R 26

T AN IR ITERIRT
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BARMAEE R 2 22BN 2 et ok B+ o AR Bk et WG (5 e R
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3.3 EEESEERENRK

7E R Z P EAANEM R T A P S TR K E, HEZEEmER RN i S S e 4
1, I AT AR AT AR A R GBI PERE. STk [105] S, 7EAR R B FE o KL R — AN B P IR, TR
PN S AN R B2 /N T — AN «, WS T 7, TR [R5 A 2 B PR PE B, T A 2 e Ak Oy B 28 b Bse B4
(distance comparison operation, DCO), Ji B v1 S 32 B AEAEIX AT R . R T e BUX AR, AT LRI
P S B PR B, AR5 AT /N T v, SCHR [105] 45 tH o6 TR M s I EE B # 2 KT v I, AFZETEHA
R ESEEE S, RBTAWRE /N T ¢ BT, Xk TARGEE B T B L2, Wil 9 Brow, 0E B 43 B 5 9F
5 ME LB, EANE R ESR IS DL T i 28 1k BE B 5, AR A T SARAN

ADSampling!" & H ) F B BER 56 (0 7 V5 R At TP B 15 KT 7, W02 SR B LA B0 5o i 43 5 3
T2, AG TS S EE RS, AR5 A I A W P A s B B TR KT 7, R — BRI R, i A R
FETE 2 (1 24 B RARAL A T OO B2 B 3 s b P B SR B vk B H k. S8 BORTENE IX — 7 VE R T HNSW
FIVE fEslb 18R B8, BEimi it 71 R M RE. DDCUE ADSampling FIFER -, K BEHLAL R SO A FH PCA
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(principal component analysis) 52, DA s/ MU ABLER B9 70 31 SE PR 85 1) 22, SR R 2k TAs v 22 10 07 sUH T EE B AR
1E, B Ja 3 — N e AR A AN E5cais v 2 =) B 538 FH 9 B B s 1R D73, SE58 AR EE T ADSampling, DDC 55
BT 1.6-2.1 5 RESETH. DADE!" & H 7 — 56T 408 40 A 1O BB B 7 ik, MEEIE LIERA T DADE f#E 55
fiti THFE B 73 A £ R TR K. DADE R H 32 523 43 #r 2R A5 1) R R ook #5047 IE AT AR 4k, S 30 Jeos HLRCR L T
ADSampling.
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ng ng
TR EEES dis, <t B dis>t RO dis>t AN B
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# 8 &/~ I ADSampling. DADE F1 DDC 7£ 3 M & T #E4T Top20 AW 737 1E 96% F1 98% A HZ TR
M R PERE (QPS) XLk, «“—RBRBLINSHUT kil BI040 A 1128, 2 T nl LG 2, AR 7 VELEAS R B 4
I RER AN, Gi7E DEEP ##E4E I DDC J5 ¥k RE B B8 I I RICR,, 1 7E MSONG ##E 4E |, ADSampling
ROCR T 72 SR A F o 75 AR B S R 6 5038 14 75 23 DABUAS S R8O8R,
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DDC 1329 281 1183 915 192 -
DADE 1215 208 1650 844 185 931
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V) 647 8 P SR AT AULIEE 25 B 4, AT I oSt — 228 3 (0 P B 01 B, 7E RS AE ©, e ) F edh F) 5 3 BURR s A 7 VR B AT
SRR, #HECT ADSampling J77%, 55 B 2 MAEHARY. 905645 B B R FINGER £# R LMK T HNSW &7+ 7
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e e 5% 75 EURS 1 H S5BE B (AT B 3 5. 5 FINGER A EE, PEOs B35/ T 84N, 2 GIST Hda4E i
6.12 GB [#MK 2] 4.64 GB, [Fl] 9200 45 J R HAEREARLL T FINGER #2877 £ 1.4 fi5.
34 AEEENTRESSEHML

WEEE NAFIR & 3 5t RG] FYIEL N A7 25 AN B DL B 77 i 4 S A= A R AR, oy 718 ) AR ol v J A 0 230
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R MR BN TR K.
341 EETHEHER T
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TREZR G451, SPANN {E N A7 A BIHEFIZR (K57 o sl A DO HDRE BE R 51, R OB B 00 Sl 7 S At v 1 81
B, 10 JEon 1 HIEA M EH . R SR M BOR M 2P IR EE, Tl 2 20 AU Aops St V3 4 5 98
SITEE, 1 MBI HESI R A iR KA B, WD A AR WA A U5 R T 4. BT XTI 50 R 5 E R i R, fe th e
7% G SRS - ot ST 2 A AR B IA S RHEAT ST A7 (e 22 8 RIS, - HH B 1207 i R FF IS
AP T TRI, DUS N 20% 708 T8 BRIV RT A 205 2RI 40 14 2% 3 57 R0 1) L.

B 10 FT0C0Hk [67] JEIR ) SPANN HI&R 5| 4544

TETHARAL 77 TH, SPANN BT T Z ) B AT ) A BYR AL . $8 R B A7 19 SPTAG & 51 (BT 250/
K23 W 5 A0 ) PR e AL K AN SR 0, AR R AR 15 5T 0 1) B 5 s A TR A 4 3R - A ) 5 B3 T o B
TR 22 AE RS FE P BRI HER 26 (I e AR 22 BIME & = 0.6). X0 538 % 55 s 4ok 45 A [ 3k 2 f 25 1 3R 75 22 e
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Disk ANNVUZ I SSD (R 51 5 %, HAZ 028 8 B R 51 5195 Vamana. %5508 18 5] A 0] 5 2%
a (o> D) MR B2 BAR, TEORIE & A B2 0 R0 R AR K. 5 HNSW Al NSG AHE, Vamana (1 & 4514
TE 10 A2 A AR IS W% 2R IR AT R AR BB AL U7 1) B 172173, I SCRFIRIE 24 o RGP R % 5 5
HRMYR. 5 HNSW SELE R 51 AL, Vamana BT o ZEECEL T RIE B % S 5 2K P4 14h, Vamana
T A S A P SR D I T 320 3 N SRS, 3945 R 1 T e, 3 5 3 St A 5

DiskANN G 43 Jv Fl A A2- T B TR A 28 1A 10 SR, 1 10 {20 R 513038 T 30715 5% 64 GB N AE5 SSD 4
B, 5, DiskANN S 203A B 560, Wit K-means BZOKBIEER > N 40 T4, BRSO T E &
I 2 NFAE, HEES FE LM Vamana FEIR S| REGIE TRIEA AR RG], MRS TFHENE K
e, FIK, DiskANN 456 B0 R4 5 20 B A AR A A7 5 A (R SR EAL (PQ) WM BRSHE 32 £
T A7, [FIBAE SSD FF AR A7 48 B 1 B 5 B 45 4. R, @ R R E U Z A A MAL RS B, Wb
SSD BEHLY [ k% HFIF SSD (¥ 4 KB W S5z BURF:, 46 408 1 0] 8 5 4RI R AP0 T [F) — A e X, SE IR =X
HHEF (implicit re-ranking), VA4 71 & 5] S R 7 1), St 208 5 BE 27 AR T [FI R, Ak, DiskANN %
PR R A7 S, O BE B R N 34 Bk Y 10T s BOIE TN Bk AR, 3 — B A 1/0. SEIRSE SRR,
DiskANN 7E SIFT1B ##i 4 F{X 7% 348 GB SSD %[A] 5 64 GB W AE, BIAI L HFEEAD 5000+X recall@] 75 95% LA
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AR EANUE T . IEAE, Starling! & — AN T BEIMRLR MR R 51 R, B0 NREE R AR R 51 B4y, WA
T SR A 97 ] LA S B e A7 3 B ) DX Sk BT, TR A 23 R F R EHE A R BT R 1 R 1 LA
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SPANN Al Disk ANN $413 3kl bz 5 P9 77 51 51 S 40RLEE RERE DT [ R vl 1/O S, SPANN LURIHER 51 A 0,
AR SR . RS TUR RS BB RES U M AR, AR E IR AR N A TR A RS, A E
TR, B 5 B S B TUAR RIS, TR Uk LR AR R AL 2 7] DiskANN DA R 51 AT A, 456 m A R 45 5 00 5
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PRI /O, [RIRE R LAY R RS A ik 3 i 73 1 28, FUE T P 0 v T s g 2 ) AR A ), L DAk 2 51 B
Wit
3.5 EEEIEGEAR RS

17 45 2R 1 R T B 52 B T S ARAN R U 1) AR AN e, R R AE BT I D vk, B ) BE L P9 A7 U5 1)
75 33 cache I TREUERAE R 2K, ok T B IO U AR, s B A 50 5 i mT DASRTHS 2R (KM e AT i ok
IR 2 T VR AR (07 10 77 20, B (1) B0 AT AL, T8 e 5000 7E () 47 i 50 S 3 - 0 1 5 )
PERE; (2) Hts TR AL, Bt PR it 52 5T 4500 B2 A7 bR S TH B 0 U 1) R 8 (3) it R 4t Ak, @ik
2 5040 AR T K/ SR U ) AR

(1) Hodi FwH TR

FEFERAE 2R b, 5 BT U 0 405 5 5 AR, SCHR [143] 48t 40% [ RS FEZE 77 ) b, e A&
B 3R, 40 SR BE I TR AAR DI 8], K BRI R HOERTHE R YL RE, JE T 0k, St T B AT R K 75, i R By
REPR PR ATAT R, A AR A8 5 R 78 N A7 R A I AT i, ) FERE P T ek 2 2 A7 Gk ., NG ek 94 SR A
REAL SR AT AL A Vel 1] A, Ak A 420 e f Vel L s v U PV — D AR, B T ST A IR HE T A
1 Porder HeAT St Ak B (K141 5 45 15, 52645 R W, Porder SEHL T i % 40% [KIAEIR />, A5 1 (1B 2 51 etk
PR T BT .

Starling!"**H& — A ARG AE B 2R 51 7 RO IAEAR TR RAG 5325, BB T — ANk TR 1 B HE T 7 3%, SR IR %K
B U5 1] (0 SR F P, ek B U I P B . 1 S SRR 4 v R iR, 1 P A ) S A PR DA S B A A7 BRSE
BT A A AT R R, DR R /O TRRY. X TR R B, SR FH P K A AT TR R T REAE i TE G — R A B
Hh, BT R O, (A5 B KR 1/O RE N BE 22 AH DCHE. SR [142] 1E W HLE HET 1) B NP A 4R T
Jo AR SR AT IR AR, SRie 45 R A, Starling /7 R T 43.9 fEHIEML 2RI sAb, @ ik J5 ik v]
AN 2% 51 f A o B, Flash!™ V3 o A0 A0 408 A1 Joj [R5 76 43 F I SIMD SR sk B2 51 g ) g 5. PDX! ot
IVF J7ik it 1 3 B A R 7 SR8 2R

(2) B AR AL

HCHE 1 AL U 1) B 1) 7 0 ) B R, (R T DR S 01 T A S 500 1) U i A el 50408 B2 i
BT P ORBETHEAR I U7 1) M . VSAGU R T I TR 44T B4 10 U5 1 A1 Ak 0 T 725, 6 A4 B TR
TR AL FRLERCATE A T A 350, A T A S 43 A 500 1) U i) A ke 42 i n 850408 31 22 47 h 3R 2 A7 i vh 26, VSAG
T B FH R B WU 10 3 R T B 22 A7 b R SR T O P U 10 1R R, A R R A AR R R AT K IR 1) R, ik — 2D AR
T EE T B TR 77 28 SRAR A 1 S0 P TR BN L, 8 S T R AR 1 I ) R B TR S R CPU (i
ST 1) R B+ 0 £ 1 1) M B, VSAG I8 I AR 418 R 55 753 1) 7 8 bR 1905 400 Jt 4 A5 R 800 A0 9 A7 ik 7 32 482 ) A7
B TUA R BAEA# 5 K SEHUUT P A7 17 1.

(3) Htls A Ak

T S AR AL FR A A, TT LA/ N A B e, AT ARG 75 LA R 5 dts e i, LG A 2 4 A
fRfE 1, 18I BAL I 7 VETT DUS 48 30E B AR MR I NGT-QG! 7, 0G-LVQP 1 SymphonyQG! ™. SymphonyQG
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SymphonyQG 7E A7 HHSEHL T 5% 4.5 R A HERESR .
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M5 5, T Y 2 7 IR R A R 43 A1 23 Sk Se e s i A e i AT 2R

(1) FF SRR o0 A A Ak

Pyramid" & — AN 3T HNSW (#1504 50 RAELL, & SCRFRRECPE B . R 92 MBI R K I 2% e il R
FEELHR A meta-HNSW 44 5 K FH B0 B S04 B 4y B R 7 T, 45 Bl SR 2 B /MG A [R) 7 P 22 () BT P B i
W B B o (AR 55140 T 31 P S8 J5 30T 1) B o, AT SE B B SR 1 4 . B TR — AN B B4,
# HNSW 25|, i 15 /i@ i meta-HNSW & A7 AH S HE 148, SR 5 70 IR 25 10 B35 7> 8k BEAT 25 ) b 31, J8
TR R 8 A R TSR BRI, SR AR R T R AN BT, EASE 3 A FEEM: RS R4
UR) PATEE (7 HNSW $82) FI BACHE (Kafka SEIL AT $E3843), 30355 AbBAI 2545 B L.

Auncel""& —AEET IVF (R BEIE R 515, F T e i 5037 5t F fTEVEA SR AL ER 0 o 6 CRAE A0 1) A1 %0
SEARLZ @ I B AN 2 [ 5 ) R T LT R, DA B VA RS B K B 1R SE IR MR 2L (error-latency profile, ELP). IEAE
Ef Auncel BESEXHIE & (AR REAT AL, DAARFRSS (¥ A5 4, 3 2 AR BB IR R AR R AR BUS PRI HE A
IVF 8 R 75—, 75 58 A R BRI BN RN T 40 558, R o R 2R 45 SR ELP SRR 24 5 O 5% 2R,
T SRAR R R sl I PR R R, s 2 b R IR Bl . Ho A s T RRGEEE o B, B AR AT Sy
Jr, SR REEA SR, Auncel FEHLIEIFRANS 1 RURACIEA ). TR0 45 BB R TE I R A R BUE IR FR i 1) [ e
HRRR T EMIEIR.

(2) B FRE LR oy A AL

Smart ANNS!" & — 5l i SmartSSD KA vk 10 1220 5 F L EY 22 10 734, e 2R /M L 2 21 SmartSSD
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CXL (compute express link)!" "V 5 7 SCH AL TR 48 115 4 2 (B (R AEIR | 7l 00 12, T LU AE U 1 okt iz
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MU 43 B, K BT 1 0 AR SR ON P A7t A H 48 2% rp R B 32 1 8, 5 U7 I AT 26 i 1) me IS SR AP AE A N A7

SRR, A\ T BT 14 3. E— 5 M, AT CXL BB E U MRS AT 550 R 50 % AN AT H47 A B2
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SRS MO 4 P AL, T DA 20 M LA B 614, St A o B0 8 A 2, 40
FAY Bl 730 450 2 0 T L BB R A4 o R0 22 o S A 2 o 0L 43044 3R A A BB 1 A
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VEE MR R (hybrid vector search) fF 7[R 25 EE: ] 5 1 A0 5 a0 4T 48 2% A 1 S B i {3 JE2 7 il 2 B R
R, LUEN 2R R W FRK, IR, B RE R, R G R 2 M EHIE ) — N EED)
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(1) BRI 8

Filtered-Disk ANN!"' g —ANJEF R FIR A AR 5| 7 %, ‘B H#ALAE Vamana B FI3ER E, 35 FilteredVamana
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AT R AT BT B SR TR AT AR b, A R R AR S TR DUE RS — RG] N T R
GRS, FEA I G A s A0 AT 8 8 DARRAR AN s i Hh
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UNG! 'L — AN SRR bR 08 A48 R 1015 B2, S B MR bR AT 40 41, SR8 3 AT 1A ToBA R R A b
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Y R R A R R R M BEVE TE — ANVE P, BRI 2 1) E AR 4R R MR TR 4 R Y N 1) 5 ) ) R
ALLF) 1 . SeREM L —ANTH [ ¥ Bl I P A vk, b T2 S, #2107 BY & (segment graph) SAGAL AL ), 33 F
FH TR R 40 J 5 s PR TR SRS HNSW R 51 i shas 40 By, 8 Gy fA- 30 Bl S bt 2 1) o T — ARy Rl A, 42
1) — 4t B ] (2D segment graph) SKANTRE #), Hod IS K48 n A B BRSSP 2 010 B AR, E&H T3S
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Bri¥7 5. iRangeGraph ] ¥ J& LASCHF 2 BYEIG &), TR T 3 MNINEI R B A %37 s 3. &l Re
J71H, BT RangePQ 51N T EALFIAR, HAEZREE 9 T HARJLA /77, DIGRA 5 iRangeGraph 15 = 4E 50 H5 42
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ARG AR HAE T SeRF, DIGRA {EARLERE #dn 46 (L SIFT) LAHEL T iRangeGraph RIS 4.

RG22 BRI Z K. RIS IR THE RAT R ARSI A R TE, i 2 R 2 AL IR TR, 12
THR ARG e S5 e R8O TR 5 2 VA ) B e e ) SR B e B —, IR v SR R T E DL R SR 2
K96 75 ) LA R, ARSR 7 AT T 2 MSCHIT .

RO AMNEHEILEERE R
B

Bk WMEERE FRERE RS I} 1614 2 i A=) (7950
SeRF O(mm’logn)  O(nmlogn) AJREH — N/A 2 7] ot PRI IS SR S S
iRange Graph O(nm-+nlogn) O(nmlogn) 4=JRE N/A WRREE R WHRECRZ BRI A SRR B
DIGRA O(nlogn)  O(nmlogn) JHIBEH  O(logn) R E R EHCEm 78] o5 A
RangePQ O(nlogn) O(n) JAEREEHT O(logn) 2] 5 A R AR

3.8 RO

JH AT AR SR I AR SV AT B 3 AT, TT DA B IR AT B VAR RE L A, 4B B EE BT Rk UL B IR
S ) YRR, B RIZ AR IS E B, MRS Y R IR SR, i A A D TAREX 7 A 1 —4%
B, NHERATEAT AN A,

T 4l 2 T 1) P ) 22 A AR A3 A I AT SCHR [160] B AT T T IR AU AL A A48 2R I BB AN B], B AT T
T AER IR AR S LT (d << logn) B, 78 B g R, I8 A N8 (long-range link) SRINEH R HFE, %
SCHRER 23 47 7 78 B i D Ui 48 R 2 i, 8 2 W 2 350 53 I SRR AL T BE AL IR . 122 SCHRIE ST 24717 LA
best-first-search JyJ:Aili (4 HAH 2 75 AT 73R 404, B8 20 048 2R S A B T st BRI R 4, 3 T PR LY
SOREE, SRR RE. TR S o A, ROR TR R AR S 4 A0 I L. 15 SCHR R ERR A B Ay 2
T AT ALl R AT 4 R AL T HIR LA, B AR AR B A @ A R AR T ORI R

SCHR [114] RS 4 1 I E T B J7 R RIS 00T 1 Be LA 30 R BR . & AR b 3 A Ak 3
P9 THR 23 B 24 0 10 28 F B R 5 R R PR RER IR, 12 40 F 2 8 78 [ R 9 AN T AR N 40 5 B 25 R 4 Jeg PR 504 1,
AL B TR S BENLHI LA 1 [, SR 5 48 2R 3000 H0al A D 53 71 A AN R 38 43 I 1) e D80 S8 4 s A BT 25 SR 4R HY
BT DiskANN BT A0 R J5 i e % ST B 22 S 40N (8] 55 2% BE 2 A1, B (00 7 V2 PE ) A R 508l <) 0 75 R 4R P R bsp
8] 52 2% BE SR AT 2R, {H /2 DiskANN (18 A0 FR 5 VA TG B O(n’) B FE, 1ESLhrrh I AN IE H . BAR HIE 1 Sebr it AE
WA T HE o A S HOR E, (HR AR SCE FI TR 5 RS0, 78 T ANNS Bk iy sebrid i s, NEE:
LS SHORRRA T EES %,

FLURE AT WM 23 BT IR 9. LID (local intrinsic dimensionality)!'®"" 2 Y R4 B B R 4R 4R A0 i B 22 T B, 3
SEAEUE SRIEE R A RIRIS M 5 R, T LA X ASFE FR SR A W B SR AT U AU R A48 2R 1A 5 AR B, SRk [10]
AT — R RSN LID {E R RC (relative contrast)[l(’}]{ﬁ, RC {8 72 FH ~F 47 5 B8 A il 4R 14 P 28 1 LA R T 2
e S FEPE. SCHR [115] 48 thiid LID AT LA & — AN ) KNN A (L2, SO FRATTA B IR X ANNS #8 R i1k
Resr Ttk TIR 2 1 3 AN .

SCHR [116] 3 7 —FhEr e 2 T B (19 5 v B 25 10 Mk B 5 5 7 Steiner-hardness, B 7EfERILE 5 iELE i & 1K
%) 25 V) 52 % BT ) SR R 2. 224 ) 77 vk A Ak 3 L N A A 0 DASRAR AR = 1) T [ 2, RO AR e R R, AR 4t
ff] LID (local intrinsic dimensionality)!"">/J7 ¥ 845 2% RE I B 40 4145 M0 15 U2, XE DS I 7 0 (0 52 2% 1. SCREAEm 1
Steiner-hardness 145 [ i iH B (directed Steiner tree, DST) /= Sk, K HFF 7] @57 4k  DST 9] &, SR J5 R H &
MR 45 5, LA 2t 5 Steiner-hardness. S22 7~ 5 LID J7:AH B, Steiner-hardness 55 B85 75 25 S B 75 1) 52
FRARAR.

39 /2
TN v 4 17 5 5000 v 12 B 0 R DL R B 280 55 3 s O PR AR, 2 5 S5V A HES)) 1 ) 4 R R AE 2 R 4
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SLALHT SR, AR R (0 SIMD 844, GPU HATHHHAMZ &) N EE RS R MERE T REN
PERE AL 2 1) GBI AT R A AR E S Z TR Ak, XSS E ARG B MR T w5 R R . IR
CPU i 3 F# 1) SIMD 1% R FEHLH, BEA% A ) 4 2248 (it R V% =y (W Bl B ) 3045 T GPU AR A5 KRR %
AT BERG RN 7 B8 S AF, TR 33 B i B 1) i B, (LR A TR I 0 5 M T PR R sy A7 25 i 1) 4 RO A 4
PE AL B LK AR B . Aok, i AA CPU 5 GPU WM ELIL %, M HE T R 1S8R
R, VBN ) B P R TR (R DA ).

TESVLZTH, TH R 2 > 38 58 (A 51 N385 S RS S04 40 AT 22 3 @ 88 LG LA [R50 48 e, TR
SR04 DA A 2R 2R B %, RS EIHER B ST IR AL G, DR 2R 5 0. 1 P & LB E (DCO) 1)
PRA 7 2 A% o JELRE R 38 3 7 P 2 T e R R R T 8 A P R T e R, PR A A R EE BT S DL I
VLR ARAL, XL R LIRS . R T (PCA). Bk 22 B TS5 By, 0 AN A2 8] B BE B E AT A 1,
SEA B I0 2 T B, POHU 8 AU R A PRI A, R VR TR T (RIS AR S A I S AT W, 1B
AR EAT A L, B 2R 8 B e Sl AR T o

TR R RS 5 BERZ B s 07 T, WEas- N AETR A 2R 51 (W0 DiskANN. SPANN) #2370 Uik (U1 Pyramid.
Auncel. SmartANNS) #24t 718 [ S\ FI T R M AR v 7 . EATEE AAEESE . AR . SRR
ML, SO T SR SRR T 0 SO LR ). - N AEIR A R B SEIR ML (I EHT . 9847 Y
Beit, LRI VO R R ; A sl U 45 & S0 e 5 RS0 BE, 32TH40 R ook ot 5 B R .

TENTRE RS Z R W FREZEAE =T, BB MM (W Filtered-Disk ANN. ACORN. SeRF %%) 5
WT RSN G R, R R RSB Z fEI TR, 46 B0 RFHEME /IR S
RS2 A 1 285 D 11 VR 2R 51 ) = T DA T ) B ] AR T () Y R £ 9A, FH P mARE B 7 SR T LU A
2 5 58 Al T e R A ).

TE BV AT AE 77 T, B7F 9038 A e ST P R B S Y S B IR R 2 B SR A REAR SR AT T R G4 X T
TEA R T m e AR ANNS SUEIPE RIS, IR 8T T a0 B AR . KA I sRng . 38 ZRALHI 5%
BRI R RS, 21 T 0 LID. RC. Steiner-hardness 2 & £ 5%, Fl DLEAL R 2 A H4F 55 10 A 7
MEFE. I SR B W 5 5 2k B IR B, 3R S AT AN SVE BT R S EOR OB A T RS i FR B RD, YD T &S
M B, SN RGEN T R MRS T B2 B

4 REKMRRE

FEN T REmS AR, 1708 B0 PR A 9 5 B At e o BN SR B0, 2 R H BB T B A A Y, 170 B (ol Rl 4R
FAE I SCBEIATT, KR AR IO 7T rh 4k 8 BBV . i DA B AR AT 7T, JRA T DA LI SE4F R 17
I BGE AR R IR T — RIIRERE, (HIEX IR 3 N (1) IRS5 s tRig g <, i KA 2000 73
S AL ] YouTube 1 & U, SR (AN FIZEAL SR L R 5 S0 2 BEAT RN R BUSEIR
JEIE SRR, 1A B AR A H 2 EEAR T (2) SEi BhAS i sRBORBE 22, R KRB MU, TWW)15 8 558 2
48 7= A 71, TSR N F R 5 B o T A 2 S8 USSR (3) VR 2 TR R R 2, Meiluvs 26 ) R P TR & B R
IF) B R 1) — A R AR 1), SR SIS 4 1) B IR SV SRR LA S S8 A A0 R TR RS iV SC DA B At B 4
R RS R, SR TR A AR . AT 5 N5 SR AR KR 78 5 AT FR 2.

(1) T A R R 2R 51 A A A

WA AR . BRI, AR, R T R U, HNSWE NS R AT A AE 1 T
EAE AR K HUB R AR R R TR, 4T D — L TAREIX 7 TS T 24k, 4 SPANN', Disk ANNE
5, RORWETERLBU T8 S R S5 4, 78 70 M WA AL (R AF A BE 0, BETHBESE P A 45 15 (R R 51 46 4, PRI G A
HL /O FITT 8 PRUEAR ZR VL RE, 8 S DRI REAE 19 R (KO VE BEIRSI, IR 2R FB A 1 ) RAR THE BESE.

(2) AR 5 L

17 B Al A B A ST — N B E OB TS 1), AT R 51 A5 K R AR I, M LS 8 2 BB ST iR



998 HAFFIR 2026 F5F 37 AF 3 A

B, JEHREE T BT i, 2 1E A S0 e b R 0 S 2R 51 7 SR R B A2 i il S EUTHEK.
5 S PF 7 5 - 8 QA VT S SR, SR i RSP M 58 1 ) [ B T AL 24 455 PRI P 5 2 DRl vt 44 [l IR B AR+
S

(3) R R A 1R R AL TT 5

S [Fa) e A 5K B U] 45 45 ) A B50afE 1) 524 M0 1R R 0 P P - SRR A 55, A SR POk LU ) B RO —
BI, N TR ORGSR, 1) B P R S R R R A R, Uil e — S AR/ T AT 1t
J&, T IR S & 1 RBE IR SR, AROR T B P Bk R IR SR A BT R, BT R AR S
A7), BTG — I B W A BEHE R R A SR S 2R M ST, M R R A 25 450, TR EE TR A TR A ) 2
DU s LASE B v 28 ) AT TR 45

(4) THI [ [ 45 s PR R AR

I3 s A KA, FATT AT BAOKE 5 B AR ot B, AT SR P9 A7 R PR, SR THE RV BE. AT D4y — 2 TARAEX
JrHIEAR T st e, gk T R TESE. ROR T R DT TR AU R A BOR, B AR R B R pR
B B R ZE ORI R A TTVE, DARAR IS HOHE (5 mOR BT R RO AL T VA S, 0 M, S 7 I 4 Aol ro 2
il et R R R 51 G ) 5 AR SR T R DS B )L

(5) L ABh R 4B 4% 2 (MBI B 7T

WIS TR IR S AR B, AT BT A R AR PR T LSH U5 b, X TR B AU A
THE TS Z 2 IR TR T KRR ZHE— W FAEA R BT SRR A AU A48 R i B B T, RS
ZNE AN FTTERIPERER DL, BF T ah A HOR T BB, R BN IPA IS SR T A BRI B AR E I, W FEAN R 2 ) S
REFEVEAS B, TR A R B S i SR LB e 4R 4%

5 B %

T B 30T Ak T 40 4 2R A DAy 1) e Ml e (KA Lo SR LA, D 8 4R 5 e TR ORI N 58 38 IO T T AR 2R, A G
TUAEB VR 5 N R I USRI O TR SRR RGN EE 1% U YT HE R, (HI Sk bEE N T
BREMIRIE, MER RGBT Z KR, ANNS SR 2 HH A A ASCHET R e R, 4 4
ANNS $ARAT RGVELRR: BN T RABE, B8 REE . MR, Hndema; gk 5 KREK T
HATTERANT LR G| Z5H0; BET AN . 27 ) 57705 BE R UARGRAE UL . WA N AF IR &350 . Bl
ViR AR RE AW SRATES BT A 70 SRR T R RO RRER; S JE X AR KR 72 5
AT TRV AR B AR & A [ B4 2NN ) B 080 e O E U AN i SR A 225 A 4.
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