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摘　要: 随着多源异构数据、多模态等在大模型和数据湖等场景的广泛应用, 基于向量的数据检索和存储管理显

著增长. 通过将异构数据映射为高维向量表示, 并以向量索引为基础, 向量数据库将多种数据类型统一管理和高质

量相似性检索, 成为生成式检索和 AI数据库等重要基础. 然而, 现有向量数据库在存储索引效率、索引构建复杂

度及检索准确性方面面临显著瓶颈: 一方面, 海量高维向量导致索引存储开销和维护成本增加; 另一方面, 向量索

引结构冗长, 内存消耗巨大; 此外, 压缩技术失真引发的检索准确性下降问题仍未有效解决. 提出了一种基于权重

残差向量量化 (weight residual vector quantization, WRVQ)的框架. 该方法通过将量化方向与残差长度分离处理, 以

单位向量形式存储残差方向并附加权重标记, 实现了低失真率下的高效压缩与存储. 在索引构建方面, 设计了适配

WRVQ量化特性的三层倒排索引结构——精确匹配层、模糊匹配层与搜索层, 有机结合非对称距离计算 (asymmetric

distance computation, ADC)与近邻搜索技术, 实现了高准确度与高效率兼具的近似最近邻检索. 在大规模数据集上

的实验结果表明, 与传统低维嵌入模型及现有量化方法相比, WRVQ在量化损失、存储压缩比和检索召回率等关

键指标上均取得了显著提升, 且索引构建与查询性能具有显著优势.
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Abstract:  With  the  widespread  application  of  multi-source,  heterogeneous,  and  multi-modal  data  in  scenarios  such  as  large  models  and

data  lakes,  there  has  been  a  significant  growth  in  vector-based  data  retrieval  and  storage  management.  By  mapping  heterogeneous  data  into

high-dimensional  vector  representations  and  leveraging  vector  indices,  vector  databases  facilitate  the  unified  management  of  diverse  data

types  and  enable  high-quality  similarity  search,  establishing  them  as  a  crucial  foundation  for  applications  like  generative  retrieval  and  AI-

native  databases.  However,  existing  vector  databases  face  significant  bottlenecks  in  terms  of  storage  and  indexing  efficiency,  index

construction  complexity,  and  retrieval  accuracy.  Specifically,  massive  high-dimensional  vectors  lead  to  increased  storage  overhead  and

maintenance  costs  for  indices.  Furthermore,  vector  index  structures  are  often  bloated,  resulting  in  substantial  memory  consumption.

Moreover,  the  degradation  of  retrieval  accuracy  caused  by  distortion  from  compression  techniques  remains  an  unresolved  challenge.  This
 

 

*   基金项目: 国家重点研发计划 (2024YFC2607402); 国家自然科学基金 (61972151)
本文由“向量数据库及 DB4LLM技术”专题特约编辑高宏教授、李国良教授、张蓉教授推荐.
收稿时间: 2025-05-06; 修改时间: 2025-06-30, 2025-08-14; 采用时间: 2025-08-20; jos在线出版时间: 2025-09-02
CNKI网络首发时间: 2026-01-08 

软件学报 ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
2026,37(3):1104−1120 [doi: 10.13328/j.cnki.jos.007515] [CSTR: 32375.14.jos.007515] http://www.jos.org.cn
©中国科学院软件研究所版权所有. Tel: +86-10-62562563

mailto:junjie.yao@sei.ecnu.edu.cn
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
http://www.jos.org.cn/1000-9825/7515.htm
mailto:jos@iscas.ac.cn
https://doi.org/10.13328/j.cnki.jos.007515
https://cstr.cn/32375.14.jos.007515
http://www.jos.org.cn


study  proposes  a  framework  based  on  weight  residual  vector  quantization  (WRVQ).  This  method  achieves  efficient  compression  and
storage  with  very  low  distortion  by  decoupling  the  quantization  direction  from  the  residual  magnitude.  It  stores  the  residual  direction  as  a
unit  vector  and  appends  a  weight  marker.  For  indexing,  a  three-layer  inverted  index  structure  tailored  to  the  characteristics  of  WRVQ  is
designed,  comprising  an  exact  match  layer,  a  fuzzy  match  layer,  and  a  search  layer.  This  structure  organically  integrates  asymmetric
distance  computation  (ADC)  with  nearest  neighbor  search  techniques  to  realize  approximate  nearest  neighbor  (ANN)  search  that  balances
both  high  accuracy  and  high  efficiency.  Experimental  results  on  large-scale  datasets  demonstrate  that,  compared  to  traditional  low-
dimensional  embedding  models  and  existing  quantization  methods,  WRVQ  achieves  significant  improvements  across  key  metrics,  including
quantization  loss,  storage  compression  ratio,  and  retrieval  recall.  Furthermore,  it  exhibits  considerable  advantages  in  both  index  construction
and query performance.
Key words:  vector database; vector quantization; approximate query processing

近年来, 信息技术的快速发展以及智能终端的广泛普及, 使得全球数据量呈现爆炸式增长, 显著推动了数据库

技术的不断创新和变革. 向量数据库通过将各类异质数据转换为向量表示, 并利用向量作为数据索引, 不仅实现了

对异质数据的统一管理, 还能够从原始数据中提取特征, 以便进行计算和比对. 向量数据库在生成式检索领域得到

了广泛应用, 其对数据特征的表征能力有效提升了数据相似性检索的质量, 并借助近邻搜索等技术, 为下游模型提

供了更具相关性的数据信息.
在向量数据库中, 向量的表征与检索是两个核心环节. 向量表征直接决定了数据的表示能力, 从而影响整体系

统的可靠性; 而向量检索的准确性则直接关系到系统输出结果的质量. 随着数据规模和呈指数级增长, 向量数据库

在数据存储和索引构建等方面仍然存在诸多性能瓶颈. 当前的向量数据库在存储、计算和检索过程中面临以下挑

战: (1) 随着数据量和多样性的不断增长, 存储索引的效率逐步下降, 并在大规模异质数据场景下带来较高的维护

成本; (2) 传统的索引构建方法结构庞大且复杂, 导致在大规模数据计算时内存消耗巨大; (3) 数据规模的扩张使得

检索算法在准确性和效率方面面临更大挑战.
近期, 诸多研究提出了多种改进方案以优化向量数据库在大规模数据存储和检索过程中的性能问题. 量化技

术作为一种实现向量压缩和高效索引的有效手段得到较多探讨. Xiao等人 [1]提出的逐步优化双粒度文档表示方法

通过对比量化生成稀疏嵌入, 实现了精确且高效的候选搜索; 同时, Zhang等人 [2]开发的集成高维向量索引至关系

数据库, 利用弛张单调性构建索引, 有效支持了复杂的近似相似性查询. 尽管上述方法在缓解存储与计算瓶颈方面

取得了一定进展, 其适用性仍存在一定局限. 首先, 量化过程的失真往往导致检索准确性降低, 使得系统在高精度

需求场景下表现不足; 其次, 索引构建及维护往往较为复杂, 内存消耗增多, 且响应速度难以满足实时性要求; 此
外, 量化处理的灵活性不足, 限制了在多样的向量数据管理场景的适用.

针对以上难点, 本文提出了一种权重残差向量量化 (weight residual vector quantization, WRVQ)方法, 旨在解

决大规模异构数据处理中的存储与检索问题. 本文的工作总体分为量化表征、存储索引和近似匹配这 3 个部分,
如图 1所示. 在索引构建方面, 本文设计了适配WRVQ量化特性的三层倒排索引结构——精确匹配层、模糊匹配

层与搜索层. 在搜索匹配方面, 有机结合非对称距离计算 (asymmetric distance computation, ADC)与近邻搜索技术,
实现了高准确度与高效率兼具的近似最近邻检索. 本文方法通过将向量量化与近似最近邻 (approximate nearest
neighbor, ANN)搜索过程分离, 构建出基于量化的向量表征, 实验结果表明, 新的方法不仅在较低失真率下实现了

高效压缩和存储, 同时支持针对不同数据及特定领域的定制化量化操作, 显著提升了系统的检索灵活性与适应性,
为向量数据的管理提供了一条新路径 [3].

 1   相关工作和基本概念

 1.1   向量表征

传统的文本嵌入模型通常被称为词嵌入模型, 典型方法包括 word2vec[4] 和 GloVe[5]. 这些模型分别采用基于

矩阵分解的统计方法和基于浅层窗口的预测方法, 但由于缺乏对上下文信息的有效建模, 往往难以捕捉深层语义.
相比之下, Transformer 通过注意力机制连接编码器和解码器, 为当前先进的嵌入模型奠定了理论基础 [6]. 注意力机
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制能够有效关注上下文信息, 无须通过隐藏层进行信息传递, 同时并行计算技术的引入大幅提升了嵌入模型的计

算效率.
  

多模数据 阶段 1: 嵌入表征

基于量化的表征表示

向量量化 量化码

正则权重

残差向量

正则化

正则残差向量

阶段 2: 索引存储 阶段 3: 近似检索 大语言模型

基于量化表征的数据相似度搜索

嵌入向量
量化中心 目标问题

中心向量 (Layer1)

中心向量 (Layer2)

准确匹配层 模糊检索层 遍历匹配搜索

目标向量

残差向量
向量数据库

文本

非结构文件

WRVQ 即压缩方法
什么是 WRVQ?

图 1　基于量化表征的向量索引和检索流程图
 

BERT (bidirectional encoder representations from Transformers) 作为广泛使用的文本嵌入模型, 采用基于

Transformer 结构的双向编码器表示, 并利用大规模自监督预训练策略, 在自然语言处理任务上均取得了良好性能 [7].
InferSent 将自然语言推理方法引入文本嵌入 [8], 而 SBERT (sentence-BERT)则采用孪生网络和三元网络结构, 以
生成具有语义意义的句子嵌入, 并通过余弦相似性进行比较 [9]. 此外, 近期的一些研究引入对比学习方法, 以更有

效地指导模型进行正负文本对的微调 [10].
利用大型语言模型的强大语义理解能力, 诸多嵌入表征技术将文本、图像等输入映射到高维向量空间中, 以

支持高效的相似性检索与聚类. Gao等人 [11]提出的 SimCSE 则进一步引入对比学习框架，利用 Dropout 构建正例，

显著增强了句子嵌入在语义相似度任务上的表征能力. OpenAI 在 GPT‑3 中开放的 Embeddings API, 进一步简化

了高质量文本嵌入的获取流程, 广泛应用于搜索、推荐与对话系统 [12]. 多模态领域的 CLIP 通过对比学习联合训

练图像与文本编码器, 使得跨模态检索成为可能 [13]. 通过直接提示和数据驱动调优两种策略不断优化 LLM 嵌入

模型, 以应对长文本、多语言及领域定制化需求 [14,15].

 1.2   向量数据管理和查询

为了更高效地管理向量数据, 向量数据库近期得到了广泛开发和应用. 例如, 阿里巴巴研发了 PASE[16] 和
AnalyticDB-V[17], Facebook 开发了 Faiss[18] 以支持高效的向量计算、查询和检索. 此外, 数据库初创公司如 Zilliz[19]

和 Chroma[20] 也构建了各自的向量数据库, 以满足不同应用场景的需求.
目前, 向量数据库大致可分为两类: 专用向量数据库和通用向量数据库. 专用向量数据库从零开始设计, 专门

用于管理向量数据, 并遵循“非一刀切 (tailored approach)”的设计原则 [21], 典型代表包括 Faiss、Milvus和 Chroma.
这类数据库通常专注于向量数据的存储、索引与检索, 能够通过定制优化达到卓越的性能. 相较之下, 通用向量数

据库则是在现有关系数据库 (如 PostgreSQL)的基础上扩展, 以支持向量数据管理, 并遵循“一刀切 (one-size-fits-
all)”的设计理念 [22], 如 PASE 和 AnalyticDB-V. 这类数据库的优势在于能够集成到成熟的关系数据库生态系统中,
从而提升系统的可用性, 复用已有的数据库功能, 消除数据孤岛, 并通过统一的系统架构降低运维成本. 然而, 由于

需要兼容关系数据模型, 通用向量数据库在向量数据的查询和存储性能方面可能存在一定程度的损失 [23].
在向量数据库的研究工作中, 向量检索算法是核心组成部分. 其中, 大多数近似最近邻 (ANN)检索算法属于

基于向量表征的检索方法 (embedding-based retrieval, EBR). 早期研究主要采用子空间划分技术进行向量近似比

较, 以提升检索效率, 如 KD-Tree[24] 和 K-means Tree[25]. 近期研究则更多地关注基于量化的方法 (如 IVFADC[26]、

IVFPQ[27]), 通过优化查询向量与索引向量的距离计算来提升检索性能; 以及基于图的方法 (如 HNSW[28]), 其通过

构建图索引结构, 将搜索算法的时间复杂度降低至对数级.
随着知识检索需求的不断增长, 研究人员针对不同类型和不同领域的数据集进行了大量探索, 致力于提升向
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量检索的时空效率与准确性 [29,30]. 其中, Subramanya等人 [31]在索引构建过程中通过学习稀疏嵌入, 以优化全局判

别能力, 从而更精准地定位查询向量的潜在区域. 该方法为本文的研究提供了重要启发. 此外, 唐博等人 [32]提出了

一种半有序的高效样本索引方法, 以降低索引维护成本与时间开销. 这些研究成果为向量数据库的发展提供了有

力支撑, 并为未来的进一步优化奠定了基础.

 1.3   向量量化

向量量化 (vector quantization)是为了减少表示空间的基数, 特别是在输入数据为实值向量时, 能够有效降低

存储和计算成本. 形式上, 量化器可被视为一个函数, 其作用是将一个 d 维向量映射到一个离散的量化向量空间. 

x ∈ Rd → ci ∈
{
ci ∈ Rd | i = 0,1, . . . ,k−1

}
(1)

设量化向量 c 为簇中心, 而簇中心的集合大小 k 被称为码本大小. 在实际应用中, 由于单一量化器在向量表示

能力上的局限性, 现有研究通常采用多个量化器对向量进行联合处理, 从而生成多个量化向量, 以更精确地表示原

始向量.
乘积量化 (product quantization, PQ)是一种典型的向量量化方法, 其核心思想是将高维向量空间划分为多个

低维子空间, 并分别对每个子空间进行量化. 最终, 每个向量由其低维子空间量化后形成的短码组合表示 [27]. 在此

基础上, 优化乘积量化 (optimized product quantization, OPQ)通过最小化空间分解误差和量化码本误差, 进一步优

化 PQ 的空间划分方式, 从而降低量化失真 [3]. 此外, 累积量化 (additive quantization, AQ)关注低维子空间之间的

相关性, 并优化量化向量与原始向量之间的计算方式, 以提高量化器的准确性 [33].
同时, 量化器码本的训练过程对于量化器的性能和效率具有重要影响. 针对特定数据源, 训练出能够精准拟合

数据分布的量化簇中心, 可有效降低量化误差. 一些轻量级量化方法采用基于数据源或残差的线性表示, 对码本进

行微调, 以增强量化效果 [34,35]. 此外, 部分研究结合无监督学习的梯度下降方法, 对码本参数进行优化, 使得码本更

新更加灵活, 从而提升向量量化的适应性和泛化能力 [36].

 2   一种权重增强的量化表征技术

本节主要介绍在嵌入模型的输出结果上进行针对性量化的设计与实现. 在传统的向量量化方法中, 影响量化

失真的主要因素是码本的大小. 由于每个向量被映射为单个码字表示, 因此所有向量最终被量化到有限数量的码

字集合中. 然而, 在大多数情况下, 码本的大小远小于数据集的规模, 导致量化精度较低. 这一限制主要源于有限数

量的码字难以充分捕捉数据分布的复杂性, 从而降低了量化的准确性.
针对上述问题, 残差向量量化 (residual vector quantization, RVQ)提出了一种改进策略. RVQ 通过引入残差量

化器, 使原始向量不再仅由单个码字表示, 而是通过多个码字的累加近似得到, 从而减少量化误差 [37]. 然而, RVQ
的整体准确性仍然受到码本训练方式的影响, 且随着码本层数 (即 RVQ 中的迭代次数)的增加, 量化器的效率会

不可避免地下降. 一些研究尝试通过下界排序剪枝 (LBS-pruning)和提前终止 (early termination, ET)优化码本训

练过程, 以提高训练效率 [38], 但这些方法虽然提升了码本的平均效率, 却未能从根本上解决量化损失高的问题.
本文提出了一种新的向量量化方法, 旨在针对传统向量量化方法中存在的问题进行优化与改进. 该方法在残

差向量量化的基础上, 重点提升量化的准确率, 并有效缓解 RVQ在多个量化轮次后准确率下降的问题.
本方法克服了 VQ和 PQ方法的关键局限性, 即在量化过程中可能导致嵌入特征的丢失. VQ和 PQ往往无法

很好地保持嵌入向量之间的高余弦相似度, 使得量化后的表示在后续向量检索任务中的有效性降低. 而本文提出

的方法在量化过程中更好地保留了嵌入特征, 使其能够为向量检索任务提供更可靠的支持. 此外, 本方法在计算效

率上进行了优化, 确保在保持较高量化准确率的同时, 兼顾量化比的合理性.

 2.1   问题定义

向量量化的目标是将连续输入向量空间划分为有限数量的区域, 并为每个区域分配一个代表性的码字, 从而

实现紧凑的表示形式. 其本质在于最小化原始输入向量与其量化表示之间的失真或误差, 使得量化后的表示尽可

能保留原始数据的关键信息. 向量量化的主要挑战在于在量化比和准确率之间取得平衡. 较高的量化比可以有效
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降低存储和计算成本, 但可能会引入较大的信息损失, 从而降低检索或计算的准确性; 而过于精细的量化则可能导

致存储开销增大, 削弱量化的实际效益.
该问题可以定义为: 在给定的向量数据分布下, 寻找一组最优的码字及其对应的分区方案, 使整体失真最小

化. 通常, 失真程度通过特定的距离度量 (如欧几里得距离或余弦距离) 进行衡量, 以确保量化后的向量能较好地

近似原始向量. 如何在压缩效率和检索性能之间合理权衡, 是向量量化方法设计中的关键问题.
为了提高量化向量的准确率, 码字通常不是单一的. 因此, 量化过程可以被视为一个将向量转换为长度为 n 的

码字串的函数, 每个码字代表码本中相应的向量: 

q(x) = f (c1i,c2 j, . . . ,cnk), cnk ∈Cn (2)

其中, x 代表原始向量, cnk 代表第 n 个码本的第 k 个向量. Cn 表示第 n 个码本的向量空间, 即其所存储的 s 个向量

的集合: 

Cn =
{
cni|cni ∈ Rd; i = 0,1, . . . , s−1

}
(3)

基于残差的量化方法对初始向量及上一个量化器的量化残差进行量化, 因此其向量表示是多个量化器的量化

结果相加: 

xRVQ = c1i+ c2 j+ . . .+ cnk (4)

对于量化结果的准确率评估, 我们使用量化损失 (quantization loss)进行衡量. 对于大小为 m 的数据集, 其量化

损失为每个向量的误差均值: 

loss =
1
m

m∑
i=1

||xi− xvq i||22 (5)

除了准确率, 量化比也是评估向量量化的标准之一. 我们都希望尽可能地压缩向量, 同时保持其准确性. 向量

量化的量化比通常不考虑码本的大小, 因为码本的大小与数据集大小不相关. 因此, 压缩比表示为原始向量维度 d
和码字串长度 n 的比值: 

cVQ =
d
n

(6)

 2.2   优化残差的量化模型

为充分利用数据集的特性, 并解决残差向量量化 (RVQ)在多轮量化过程中效率逐渐降低的问题, 本文思路是

提出一种逐步量化的方法, 以提升量化准确率, 并确保 RVQ在后续码本训练时维持较高的量化效率. 该方法的关

键在于对残差向量的长度进行动态调整, 以优化量化过程. 此外, 通过针对残差特性的优化调整码本训练方式, 可
以有效减少训练后续码本时所引入的系统性误差, 从而进一步提高整体量化精度.

每个残差量化器生成的量化向量, 其长度信息所携带的有效信息量往往低于预期. 这一现象可以通过假设模

型进行解释: 当残差向量的方向确定后, 其长度基本上是确定的, 即该长度需保证量化向量与残差向量的叠加结果

仍位于单位超球面上. 这一特性表明, 在量化过程中, 合理控制残差向量的长度有助于提升 RVQ的整体表现, 并优

化最终的量化效果. 

len(quantizedi+1) = len(quantizedi+di×residuali) ≈ len(embedding) = 1 (7)

根据公式 (7), 在残差向量量化 (RVQ)中, 第 i 个量化器的已量化部分 quantizedi 以及量化目标向量 embedding
均已知. 因此, 在搜索码本中最优的残差量化向量 residuali 时, 我们仅需关注其方向信息, 而其长度信息 di 在一定

程度上是可以计算得到的. 尽管从单个量化向量的角度来看, 忽略长度信息可能会导致一定程度的量化损失, 但在

码本大小固定的情况下, 增加可供选择量化方向能够提升整体的全局量化准确率.
为了充分利用数据集的这一特性, 并在量化过程中合理调整码本的“方向”与“长度”属性的重要性, 我们优化

并改进了残差向量量化方法. 具体而言, 在每一轮量化后, 我们对残差向量进行归一化处理, 使其标准化为单位向

量, 从而显著增强其在码本训练中的作用. 在此优化方案下, 码本仅存储残差向量的方向信息, 而不记录其长度信息.
作为一种权衡措施, 每个量化码字额外附加一个标记位, 以指示该向量的实际权重, 即其原始残差长度. 这一
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策略确保了残差向量的标准化, 使得码本训练更加稳定, 同时通过标记信息保留了向量的权重信息. 在该优化方案

下, 对于目标向量的量化, WRVQ 量化器可以表示为如下形式: 

q(x) =
n∑

i=0

quantizedi×
i∏

j=0

d j (8)

这种方法的优势在于通过对残差进行缩放处理, 确保所有残差的长度保持均匀. 在码本训练过程中, 不再需要

区分具有相同方向但不同长度的残差, 这显著增强了量化器对残差的量化能力. 更为关键的是, 该方法有效防止了

随着量化轮次的增加, 量化后的残差变得越来越稀疏的问题. 通过这种方式, 量化器的每一层都面对相同类型的量

化对象, 从而最大化了其区分能力. 最后, 随着量化轮次的增加, 残差的绝对长度逐渐减小, 导致量化器的“系统误

差”也随着残差的归一化得以解决.
在从码字中重构原始向量的过程中, 当从码本中查询到与某个码字对应的向量后, 我们根据相关的标记位进

一步对该向量进行缩放. 最后, 所有与每个码字对应的缩放向量将相加, 最终得到原始向量. 通过这种方法, 我们从

根本上解决了传统 RVQ 方法中的缺点, 即随着码本数量的增加, 量化能力下降的问题. 此策略显著提升了 RVQ
的量化准确率.

图 2展示了WRVQ量化的总体流程. 在对输入的向量表征进行量化之后, WRVQ会对量化残差进行归一化

处理, 并记录标记位, 以确保下一轮量化器的量化对象为单位向量. 因此, 对于每一层量化器, WRVQ会生成两个

码字. 在图右侧的码字部分, 浅色部分表示残差的长度, 而深色部分则表示残差的方向, 指向码本中的一个单位向

量. 这种设计能够有效地保留残差的方向信息, 同时通过标记位管理长度信息, 在这一迭代权重优化过程中, 提升

量化过程的准确性和效率.
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图 2　权重优化的向量量化表征
 

在 WRVQ 量化管理下, 每一个码字均维护了一个半精度浮点数和一个码字表示, 当假设原向量维度为 d, 码
字长度为 n, 码本大小为 s. WRVQ的量化比如公式 (9)所示. 新方法引入对残差向量的模长 (即公式中的权重)进
行建模, 实现了比传统 RVQ更高的量化保真度. 我们不仅考虑了方向 (由码字选择决定), 也兼顾了长度信息. 在相

同码字长度下, WRVQ 的量化比约为 RVQ 的 1/3 左右, 但仍然可以将高维向量在损失极低的情况下压缩成极短

的码字表示. 

cWRVQ =
d

n×(16+ log2s)
(9)

 3   基于权重量化表征的索引构建与检索

 3.1   非对称的向量距离计算

我们在向量嵌入和量化编码的距离计算中采用了非对称距离计算方法, 它与对称距离计算 (symmetric distance
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computation, SDC)有所不同, 主要特点是不直接在查询向量上进行量化操作, 而是计算查询向量与已量化编码之

间的距离. 在需要更高准确率的近似最近邻搜索 (approximate nearest neighbor search)场景中, 我们选择采用 ADC
算法, 确保在大规模数据集中的检索性能和准确度. 

SDC: d(x,y) ≈ d(q(x),q(y)) (10)
 

ADC: d(x,y) ≈ d(q(x),y) (11)

RVQ和 PQ在距离计算中的主要区别体现在内积距离和 L2距离的计算方法上. 对于 PQ的量化结果, 可以通

过分别计算各个量化向量的距离, 并将其简单地组合起来, 就可以快速获得量化编码与查询向量之间的距离. 由
于 PQ采用了乘积量化的方式, 计算过程相对简便且高效.

而在 RVQ的情况下, 虽然可以通过单独计算各量化向量并求和的方法快速获得内积距离, 但计算 L2距离时,
RVQ表现出一定的不足. 这个问题的根源在于, RVQ在处理多个量化器的情况下, 无法像 PQ那样直接分解和计

算 L2距离. 幸运的是, 通过引入一个简单的距离计算公式, 能够有效地解决这一问题, 从而增强 RVQ在距离计算

方面的能力, 使其能够在 L2距离计算中表现得更加准确和高效. 这一公式在计算过程中结合了 RVQ的残差信息,
从而弥补了传统方法的不足.

在 RVQ的背景下, 该过程涉及单独计算各个码字的距离, 然后将它们相加以确定总距离. 尽管内积距离的计

算很快, 但 L2距离需要额外的步骤. 尽管如此, 简单的距离计算公式的应用可以解决这个限制. 

d(x,y) = ||x− y||2 = ||x||2+ ||y||2−2x×y (12)

对于 RVQ, 上述公式变换为: 

d(q(x),y) = ||q(x)||2+ ||y||2−2q(x)×y = ||q(x)||2+ ||y||2−2
n∑

i=1

ci×y (13)

对于WRVQ, 上述公式变换为: 

d(q(x),y) = ||q(x)||2+ ||y||2−2
n∑

i=1

ci×y×
i∏

j=0

d j (14)

在这个公式中, 我们可以观察到第 1项可以在索引构建过程中预先计算, 而第 2项在搜索过程中每个查询向

量只需要计算一次. 这使得我们能够以与计算内积距离相同的时间复杂度计算 L2距离.
在解决了搜索过程中距离计算的基本问题之后, 我们还发现, 相较于 PQ, RVQ具有一个显著优势, 即其码字

并不完全相同. 即便在 OPQ中, 由于码字对应的维度不同, 导致码字之间并不完全相等, 它们仍然保持着一定的平

行关系. 然而, RVQ 在这方面表现得更为独特. RVQ 的码字生成过程揭示了一个重要特性: 每个后续的码字本质

上是对前一个码字的“补充”, 它们在编码过程中形成了一个递增精度的序列. 随着码字数量的增加, 量化精度不断

提高. 这一特点使得 RVQ在索引构建中具有独特优势, 特别是在处理大规模数据时, 能够更有效地提升查询精度.

 3.2   量化索引构建

在索引构建过程中, 我们假设, 对于任何 k < n, 前 k 个码字可以作为簇中心, 而剩下的 n−k 个码字则表示相对

于该簇中心的残差. 这一假设是我们将向量量化步骤与搜索过程分开, 并将其视为独立的表示模型的关键原因.
基于这一特性, 我们开发了一种基于WRVQ的近似最近邻搜索 (ANN)算法. 该索引将整个向量空间划分为 k

个区域, 每个向量由其区域中心向量和残差表示. 在WRVQ量化编码的表示中, 第 1个码字表示簇中心, 而后续码

字则表示残差. 与传统的 IVFPQ算法不同, 在WRVQ中, 表示残差和原始码字的码字本质上是相同的. 这一特点

使得可以使用倒排索引进一步划分残差, 同时, 划分后的残差表示也可以继续细分. 理想情况下, 当码本训练得足

够充分时, 我们可以基于 n 个码本构建一个 n 层的树结构索引.
然而, 这种理想状态在实际的码本训练中难以达到. 在实验中, 如果将所有的码本都用来构建树结构索引, 那

么搜索的性能和效率往往无法达到最佳. 除了码本的训练可能无法将所有向量正确地划分到应有的子空间外, 数
据集的规模也会导致在建立第 2级或第 3级节点时产生许多空节点. 这不仅会在索引构建过程中增加不必要的开

销, 还会使得在第 3级之后的分类搜索失去意义. 例如, 在 10个向量中搜索最近邻时, 根本没有必要在 8个类别内
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进行分类搜索.
因此, 在达到指定的级别后, 我们构建的索引会过渡到使用替代搜索算法. 在这项工作中, 我们直接采用了 top-

k搜索算法, 以提高搜索的性能和效率.
我们将整个索引结构划分为 3个层次, 如图 3所示: 精确匹配层、模糊匹配层和搜索层. 当查询向量进入索引

时, 它首先经过精确匹配层. 该层在本工作中由第 1个码字组成. 我们采用一个可训练的变换矩阵, 它与码本共同

优化, 并在层间传递时调整残差, 以更好地匹配下一层码本, 并校正上一层的量化误差. 这一设置确保了对于相同

的码字, 其对应的实际嵌入始终一致. 基于第 1个码字, 我们构建了一个倒排索引, 倒排索引根据输入查询向量与

簇中心的匹配度来选择最接近的簇中心. 这一步骤旨在缩小搜索范围, 从而提高后续检索的效率, 并确保嵌入计算

过程中无失真.
 
 

查询向量

量化中心 (精确匹配层)

量化中心 (模糊匹配层)
精确匹配

量化中心
模糊匹配

模糊匹配量化中心

搜索

搜索结果

残差向量
top-k 搜索向量

图 3　基于权重向量量化的索引结构
 

 3.3   检索实现

当查询向量通过精确匹配层后, 我们获得了倒排索引提供的结果——第 1层的簇中心和残差向量. 随后, 残差

向量经过模糊匹配层. 与模糊匹配层对应的码字是不确定的, 取决于数据集的大小和码本的大小. 对于较大的码本

或较小的数据集, 模糊匹配层可能只对应一个码字, 甚至可能没有码字, 从而在某些情况下取消这一层的作用.
对于第 1层的每个簇中心, 模糊匹配层构建一个倒排索引, 通过输入的残差向量查询第 2层的簇中心. 挑战在

于, 对于WRVQ, 从第 2个码字开始, 权重是不一致的. 这意味着, 如果严格计算, 倒排索引构建的索引长度不是码

本的长度, 而是嵌入数据的长度. 因此, 倒排索引可能会退化为暴力搜索, 尽管这种方法能提高搜索的准确率, 但其

效率会显著下降.
为了解决这一问题, 在索引构建过程中, 对于与模糊匹配层相对应的所有码字的权重, 我们计算一个近似值来

替换原始的码字权重. 这种近似计算新的残差向量的方法并非绝对准确, 但模糊匹配层的主要目的是进一步缩小

搜索范围. 从几何意义上讲, 经过第 1层计算后, 查询向量对其残差的方向范围进行了潜在搜索. 为了提高准确性,
模糊匹配层将若干簇中心传递给搜索层.

在第 3层, 基于精确匹配层的残差向量进行距离计算, 并从模糊匹配层获得目标向量潜在的多个范围子空间.
通过这些子空间, 搜索层能找到查询向量的近似最近邻向量. 整体的算法过程如算法 1所示.

算法 1. 权重量化表征的索引搜索算法.

输入: 查询向量 q;
输出: 近似最近邻向量: v.

1. //精确匹配层

2. for each c in codebook[:1] do
3. 　central[i] = WRVQ(c) //记录每个码字对应量化向量
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4. 　distance[i] = L2_distance(central[i], q) //记录查询向量与每个量化向量的距离

5. end for
6. code_1 = find_min(distance) //搜索与查询向量距离最短的簇中心码字

7. residual = q − WRVQ(code_1) //计算第 1层残差

8. //模糊匹配层

9. r = residual × d //将残差乘以权重, 该权重是由索引建立时, 根据检索精度和空间消耗权衡设定参数

10. for each c in codebook[1:n+1] do //从模糊匹配层对应的 n 个码本中遍历所有组合

11.　 central[i] = WRVQ(c)//记录每个组合对应量化向量

12. 　distance[i] = L2_distance(central[i], r) //记录残差与每个量化向量的距离

13. end for
14. code_2 = find_min_k(distance, k) //搜索与残差距离最短 k 个量化向量

15. code = [ (code_1, n) for each n in code_2] //计算潜在查询区域

16. //搜索层

17. for each c in data index do //遍历数据索引

18.　 if c[:n+1] in (code_1, code_2) then
19.　　 central[i] = WRVQ(c) //计算真实残差

20. 　　distance[i] = L2_distance(central, q) //计算真实距离

21.　 end if
22. end for
23. code = find_min(distance) //rerank排序

24. v = WRVQ(code)
25. return v

从结构上我们可以看到, 当去除了模糊匹配层时, 算法的主体与传统倒排索引相似, 只是通过WRVQ量化方

法提升了准确率, 从而带来了更高的准确性. 然而, 在实验中我们发现, 模糊匹配层的加入巧妙地利用了WRVQ的

序列特性, 显著提高了搜索效率. 尽管模糊匹配层通过近似的方式缩小了搜索范围, 这不可避免地会导致一定的搜

索准确性的降低, 但在第 3层的精确搜索中, 仍能获得较高的召回率.

O(logN),

O(n×logN)

O(k×N×d).

在时间效率上, WRVQ索引的检索时间复杂度与基于 IVF (inverted file)的索引结构时间复杂度近似, 主要分

为 3 个部分. 精确匹配层在第 1 个码本中查找查询向量的最近邻簇中心, 这一过程的时间复杂度是   其
中, N 是第 1个码本的大小. 而模糊匹配层的检索方法类似, 时间复杂度为  , 其中, n 代表模糊匹配层对

应的码本个数. 搜索层进行量化编码的遍历, 对于每个搜索簇内的向量, 需要与查询向量的量化表示进行比较, 时
间复杂度为   其中, k 表示搜索层对应的码本个数, d 表示向量维度大小, 因此总体的时间复杂度如公式

(15)所示: 

O(log N +n× log N + k×N×d) (15)

与基于其他类型索引结构 (如 HNSW)的方案相比, WRVQ索引的树结构保留了索引构建时间短、索引添加

和删除成本低的优势. 通过这一结构, 我们能够在保证合理准确率的前提下, 显著提升搜索效率.

 4   实验分析

 4.1   数据集与实验设置

本文使用了通用测评库MTEB对我们所提出的量化表征算法进行效率和效果的综合评估. 在性能方面, 我们

选择分类任务、检索任务、 重排序任务、语义相似度任务、文本挖掘任务、聚类任务、配对分类任务这 7个任

务. 在效率方面, 我们对比了时空效率和增量更新的性能差异, 如表 1所示.
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表 1　表征能力评估数据集及衡量标准
 

任务 数据集 衡量标准

Classification
AmazonReviews

AccuracyMTOPDomain
MTOPIntent

Reranking
AskUbuntuDup

MRR@10MindSmall
SciDocs

STS
SICK-R

PearsonSTS12
STSBenchmark

BittextMining
Bornholm

Accuracy
Tatoeba

Clustering
arXiv

V_measurebioRxiv
medRxiv

PairClassification
SprintDuplicateQ

AccuracyTwitterSemEval
TwitterURLCorpus

Retrieval

ClimateFEVER

MRR@10
DBPedia
FiQA2018
HotpotQA

 

在对比方面选取方面, 我们将 Faiss索引库中的 PQIndex、IVFPQIndex、HNSWIndex、Chroma向量数据库索

引作为参考基准, 比较索引的召回率、构建效率与检索效率. 对于 PQIndex、IVFPQIndex两种基于量化的索引, 我
们对齐参数以保证索引与WRVQIndex之间的空间复杂度保持一致. 而为了探索与验证WRVQ量化表征对检索索

引的提升, 我们基于线性残差微调以及残差微调与无监督学习结合这两种码本学习方式对WRVQ量化表征进行了

详细评测.
对于量化表征失真的测试任务, 我们主要采用了 ARPVQM方法组 [36]中的 RVQ、PQ、AVQ作为残差微调与

无监督学习结合对比组的基准模型, 以及 vector-quantize-pytorch方法组 [34,35]中的 RVQ、PQ作为线性残差微调对

比组的基准模型. 在这一任务中, 我们使用 Alpaca_data与MS MARCO数据集作为原始数据集, 在经过基础嵌入

模型 bge-large-en-v1.5后形成嵌入向量, 作为量化模型的输入. 之后对量化模型的输出与其输入计算量化损失进行

比较.
对于线性残差微调这一码本学习方式, 我们总是将全量数据集作为训练集进行训练, 而由于残差微调与无监

督学习结合这一码本方式, 为了检测我们方法对向量学习能力上的优化, 我们对数据集进行了不同大小的抽样作

为训练集, 并总是将训练轮次设置为 1 000, 这使得码本训练的时间消耗被限制在了一定范围. 但与此同时, 对于少

数收敛较慢的情况, 码本并未被训练足够充分, 对量化器的性能产生了一定的影响. 故而在这一测试任务中, 除了

量化器的量化性能, 其学习效率 (即收敛能力) 同样也是纳入考量的指标因素. 在这一部分, 我们使用学习率为

0.001和默认参数的 Adam优化器来训练模型以保证学习效率的相对统一, 当码本参数达到 4 (码本数量)×256 (码
本存储的向量数)后, 我们使用学习率为 0.01和默认参数的 Adam优化器的附加实验进行对比. 同时, 每进行 100
次迭代, 模型会通过线性残差微调对码本进行修改.

本文所使用的实验平台为 AMD EPYC 7R32 48-Core Processor, 主频为 3.00 GHz, 内存为 512 GB.

 4.2   检索索引的实验结果与分析

我们首先将基于残差微调与无监督学习结合码本学习方式的WRVQ (T)与基于线性残差微调码本学习方式

的WRVQ (L)构建索引体系, 与其他索引进行比较, 准确度、索引构建时间与检索效率如表 2所示.
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表 2　不同向量索引方法的查询准确率评测 (%)
 

数据集 索引方法 召回率 (Recall@1) 召回率 (Recall@5) 召回率 (Recall@10)

Alpaca

PQIndex (Milvus) 75.75 79.94 80.25
IVFPQIndex (Milvus) 94.30 94.33 94.39
HNSWIndex (Milvus) 95.71 96.59 97.10

Chroma 94.23 94.30 94.40
WRVQ (L) 95.65 95.34 94.26
WRVQ (T) 96.64 95.87 95.03

MSMARCO

PQIndex (Milvus) 67.19 70.13 71.86
IVFPQIndex (Milvus) － － －

HNSWIndex (Milvus) 90.23 90.98 91.02
Chroma 90.11 90.39 90.56

WRVQ (L) 84.52 83.65 83.02
WRVQ (T) 90.97 89.02 88.87

 

在这一测试中, PQIndex、IVFPQIndex两种基于量化的索引与WRVQ的两种索引均将码本设置为 4 (码本数

量) × 256 (码本存储的向量数), 其余设置为默认设置. 而其他几项索引均设置为默认设置进行比较.
首先, 我们观察 Alpaca数据集上的检索效果, 在 Recall@1和 Recall@5指标上, 基于WRVQ (T)的效果均优

于其他搜索索引, 在 Recall@10中, 也仅 HNSW算法获得了更优的召回率. 在表中我们可以发现, 基于WRVQ的

索引在 3个召回率指标的得分是接近的, 在搜索索引的近似搜索环节中, 我们使用了 top-k算法对候选结果进行重

排序, 使得检索结果的较为接近. 其次我们观察数据量更大的MSMARCO数据集的检索效果, 各种算法的准确率

获得了大幅度下降. 在MSMARCO数据集上的实验中我们并没有获得 IVFPQ的实验结果, 这是因为实验环境制

约下, IVFPQ 索引并不能完整地被载入内存. 相比之下, 以量化表征为主体的 WRVQ 虽然也采取了相似的架构,
但仍然很好地完成了构建和检索, 并获得了较好的准确率, 在 Recall@5指标上的也得到了较好的表现.

我们进一步评测不同向量索引的构建效率与检索效率, 如表 3所示.
 
 

表 3　不同向量索引方法的构建和检索效率评测
 

数据集 索引方法 构建效率 (s) 检索效率 (ms/query)

Alpaca

PQIndex (Milvus) 152 5.31
IVFPQIndex (Milvus) 4 0.27
HNSWIndex (Milvus) 42 0.003

Chroma 844 0.84
WRVQ (L) 5 0.29
WRVQ (T) 5 0.29

MSMARCO

PQIndex (Milvus) 193 35.82
IVFPQIndex (Milvus) － －

HNSWIndex (Milvus) 102 0.003
Chroma 12 507 20.6

WRVQ (L) 44 5.16
WRVQ (T) 44 5.16

 

首先我们对检索索引的构建效率进行评估, 对于 Alpaca数据集, IVF系列的索引构建效率占据了极大的优势,
相比于之下 PQIndex、HNSWIndex 以及 Chroma 使用了更长的时间构建索引. 在实验中我们发现, WRVQ 以及

Chroma索引的构建时间与数据集大小更为相关, 这意味着随着数据集大小指数级增大, 索引的构建时间将会大幅

降低, 但与此同时, 这种索引对已有知识库的小范围更新更加高效. 与之相对的, 其他算法的构建效率与数据集大

小的相关性较小, 这意味着这些索引可能并不适合频繁更新知识库的场景. 而在检索效率方面, HNSW 算法获得

了较大的优势, 但我们的工作相比于大多索引结构仍有一定的竞争力. 而在检索效率上, 由于同样使用了倒排索引

作为主结构, 我们的方法与 IVF系列的方法的时间复杂度相同, 因此在检索效率的表现上也相似.
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进一步地, 我们在不同索引方法的空间效率上进行了评测, 这里的内存占用指的是峰值消耗. 该值指在查询期

间, 加载完整索引及相关数据结构后, 程序达到的最大内存用量. 如表 4所示.
 
 

表 4　不同向量索引方法的空间消耗评测
 

数据集 索引方法 内存峰值消耗 (GB) 数据集 索引方法 内存峰值消耗 (GB)

Alpaca

PQIndex (Milvus) 8.6

MSMARCO

PQIndex (Milvus) 12.3
IVFPQIndex (Milvus) 6.7 IVFPQIndex (Milvus) －

HNSWIndex (Milvus) 15.2 HNSWIndex (Milvus) 22.7
Chroma 5.4 Chroma 7.1

WRVQ (L) 5.9 WRVQ (L) 9.9
WRVQ (T) 5.9 WRVQ (T) 9.9

 

可以看出, PQIndex和WRVQ方法的内存消耗受数据集规模的影响较大, 这是由于这些方法均采用了量化和

倒排结构作为核心索引机制. 量化能够有效减少存储需求, 但在处理更大规模数据集时, 仍然会导致一定程度的内

存增长; 倒排索引的存储开销则会随着数据规模的增加而扩大, 因此这些方法在存储成本上对数据集大小更为敏感.
相较之下, HNSWIndex 和 Chroma 的内存消耗对数据规模的变化相对不敏感. Chroma 在两个数据集上均展

现出较低的存储需求, 表明其索引结构在高效性与存储优化之间取得了良好平衡. HNSWIndex由于基于邻接图结

构进行搜索, 其索引规模主要取决于邻接关系的复杂性, 而非直接受数据集规模的线性增长影响. 因此, 尽管其存

储成本变化较小, 但 HNSW方法本身的索引结构需要大量内存, 导致其总体存储开销仍然较高.
然而, 在百万级别数据集的场景下, 我们提出的方法 (WRVQ)仍然表现出较大的相对优势. WRVQ 在存储开

销上接近 Chroma, 且优于 HNSWIndex和 IVFPQIndex, 表明其在大规模数据场景下具备更好的空间效率. 因此, 在
需要权衡存储开销与检索性能的应用场景中, 我们的方法相较于其他方法仍然具有竞争力.

 4.3   量化方法的量化能力实验结果与分析

为了探究WRVQ对向量表征的量化能力, 我们在两个数据集上对各个量化方法的量化损失进行了对比, 图 4
展示了线性残差微调对比组在量化损失上的对比结果.
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图 4　基于线性残差微调码本的量化器在两个数据集上的量化损失
 

在实验中, 我们对不同码本数量情况下的量化器进行测试, 可以看出在线性残差微调作为码本训练方法时,
PQ的表现并不良好随着码本数量的增加, 即使在 8和 16两种码本选择的情况下, PQ的量化损失也仅有 0.03左
右的降低. 相比之下, 两种基于 RVQ的方法获得了比较大的提升, 但仍没有获得较好的结果, 这受限于轻量级的码

本训练策略. 但值得一提的是, 随着码本数量的增加, 如预想的一样, 传统 RVQ对向量的量化能力提升逐渐减弱,
而 WRVQ 仍保持着不错的量化能力提升, 在 15 码本到 16 码本的变化中, RVQ 的性能提升几乎忽略不计, 但
WRVQ仍然获得了 0.05左右的提升.

轻量化的码本训练策略虽然使码本的训练效率大幅提升, 即使在 16码本数量的情况下, Alpaca的数据集训练
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时间仅 17 s, 而 20倍数据集大小的MSMARCO的训练时间也仅 223 s, 这使得这种训练方法在特定场景下具有不

错的表现.
而对于残差微调与无监督学习结合对比组, 我们同样在这两个数据集上进行了全面的比较. 首先, 我们随机生

成一千条向量作为模拟向量构成训练集进行训练, 之后将训练好的模型在两个数据集上进行评估. 在这一部分, 单
个码本的大小被设置成 64. 结果如表 5所示.
  

表 5　各量化方法的通用量化器在两个数据集上的量化损失
 

数据集 量化方法
量化损失

码本数量: 2 码本数量: 3 码本数量: 4

Alpaca

PQ 0.017 1 － 0.009 1
AVQ 0.016 3 0.012 6 0.008 9
RVQ 0.016 9 0.013 1 0.009 2
WRVQ 0.000 9 0.000 9 0.000 9

MSMARCO

PQ 0.017 2 － 0.009 2
AVQ 0.016 4 0.012 7 0.009 0
RVQ 0.017 0 0.013 1 0.009 2
WRVQ 0.000 9 0.000 9 0.000 9

 

从表 5中我们可以观察到, WRVQ在随机数据训练的情况下, 对各个数据集的量化能力达到了非常高的水平,
比起结构相同的 RVQ 以及其他类型量化器, 其量化损失降低到了 1/10. 得益于 WRVQ 对码本的归一化调整, 其
在低码本的情况下仍能发挥出不错的效果, 而相对而言, 其他类型量化器都没有达到较好的效果. 总体而言可以发

现, 残差微调与无监督学习结合对比组比起线性残差微调对比组在量化能力上有了极大幅度的提升.
之后, 我们分别对两个数据集进行随机抽样, 各选取了 1 000条数据作为训练集在不同码本参数的情况下对量

化器进行训练, 并对两个数据集进行量化. 结果如图 5所示.
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图 5　不同码本大小的抽样训练量化器在两个数据集上的量化损失
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在图 5(a)中, 我们对比了 4种量化器在相同码本大小 (32)下, 不同码本数量在两种数据集上的性能表现, 发
现WRVQ相对来说获得了更好的表现. 但在实验过程中我们发现, 码本训练的收敛速度较快, 这是因为码本大小

过小导致各个量化器的性能没有被完全释放, 这导致最终结果差距不大. 在图 5(b) 的实验中, 我们冻结了码本数

量参数为 4, 通过调整码字的大小对码本大小进行调整, 评估了在不同码本大小 (25–29)下各量化器的性能, 可以发

现WRVQ相比于同一码本训练方式的其他量化器获得了更多的提升. 在 Alpaca数据集的训练过程中, 这种提升

在 256码本大小下出现了削弱, 说明训练集已经得到了充分的学习, 而在MSMARCO数据集中, 提升在 512码本

大小下放缓. 最终在相同情况下, WRVQ在充分学习训练集时获得了 10%–20%的量化损失减少, 能够更加准确地

表示向量表征.

 4.4   量化表征的表征能力实验结果与分析

这一部分实验中, 我们使用了外部测评库对几种向量表征进行了测评, 评估量化表征的表征能力.
测试结果的内容在图 6中进行了展示. 从测试中可以明显看出, 我们的表示方法在所有 7项任务中都取得了

接近基准模型的结果. 我们观察到, 在分类、重新排序、聚类和对分类等任务中, 量化表示并未显著影响性能——
在某些情况下, 量化表示甚至达到或超过原始表征模型的性能. 然而, 在其余 3项任务 (检索、STS和 BittextMining)
中, 量化原始模型可能会导致表示性能的大幅下降. 在这些任务中, 我们的量化方法明显优于其他量化方法.
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图 6　各量化表征在MTEB上的表征能力测试
 

 4.5   量化表征增量更新实验结果与分析

为了进一步评估WRVQ方法在实际应用中的索引构建能力, 我们对其在增量索引构建场景下的性能表现进

行了系统实验. 具体而言, 我们采用不同的批量规模对WRVQ索引进行批量增量插入, 记录每个批次操作对应的

平均构建时间及平均 CUDA内存消耗. 图中横轴为每批插入的向量数, 左纵轴为批次构建耗时 (s), 右纵轴为显存

占用变化 (MB). 为了便于展示索引增量带来的性能变化, 结果以相邻批次增量绝对值形式展示.
如图 7中实验结果所示, 随着批量插入规模的提升, WRVQ方法的索引增量操作在时间和空间开销上均表现
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出良好的线性可扩展性, 无明显的性能突变或瓶颈, 验证了WRVQ对增量索引构建的良好适应性.
这进一步证明了该方法不仅适用于全量索引的初始构建, 也能够有效支持大规模向量数据的在线扩展与动态

更新需求. 我们在原型系统中也展示了这一量化表征方法对更大规模数据的处理能力.
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图 7　不同量化向量表征方法在增量索引的时空开销
 

 5   总　结

本研究旨在解决大规模向量数据的索引和查询挑战时所面临的维度和表征问题 [32]. 本文提出一种量化表征

方法——权重残差向量量化 (WRVQ), 我们平衡了检索的判别能力与存储与计算的时空效率. 相较于近期的量化

向量表征方式, 新方法具有更高的存储效率和检索性能.
我们的研究结果表明, 在向量数据库的数据存取和知识查询等场景中, 量化表征是一种有效的解决方案, 有望

为处理大规模嵌入表示的向量数据提供更可靠的表示、存储和检索途径.
我们通过构建面向生成式场景的多模态音视频实时交互等应用场景 [39,40], 进一步验证了量化表征的性能优

势, 并在大规模文本和多模态等数据集上验证了量化表征的有效性.
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