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Abstract: Clustering serves as one of the critical technologies for large-scale, high-dimensional vector data analysis. Recently, a density-
based clustering algorithm DBSCAN (density-based spatial clustering of applications with noise) have been widely adopted in data analysis
due to their advantages of not requiring pre-specified cluster numbers, discovering complex cluster structures, and identifying noise points.
However, existing density-based clustering algorithms suffer from high computational costs when processing high-dimensional vectors.
Meanwhile, these methods also face challenges like the “curse of dimensionality”, restricting their practical applications. With the rapid

growth of high-dimensional vector data in the era of information technology, CPU-based clustering approaches encounter increasing
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challenges in time efficiency and scalability. To address these issues, this study proposes a GPU-accelerated clustering algorithm for high-
dimensional vector data, introducing the K-nearest neighbor (KNN) graph index to accelerate DBSCAN. First, a GPU-accelerated parallel
KNN graph construction algorithm is developed, significantly reducing the index construction overhead. Furthermore, to enhance the
pipeline of DBSCAN and achieve highly concurrent vector clustering, a K-means tree partitioning algorithm with inter-layer parallelism
and a parallel clustering algorithm based on breadth-first search and a core KNN graph are designed. Finally, extensive experiments are
conducted on real-world datasets, and the proposed method is compared against existing approaches. Experimental results show that the
proposed algorithm improves the efficiency of large-scale vector clustering by 5.7-2822.5 times while maintaining clustering accuracy.

Key words: density-based clustering; high-dimensional vector; GPU acceleration; parallel computing; K-nearest neighbor (KNN) graph
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AR JE SR, B I RFESE R R, N T 1T GPU BAFTF A, I ORIIE S G0 SRR s U7 7] 1
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R, SRR AR AT T GPU R R I L A7 .

(2) BHE: BT REEFTR AT A8 A7 7E B, MR R ST R E, DR R LA B R AT AN
ME—VE. N T 7O RIE GPU FI MU AT THELAE 77, AR SCR P 2R R (K 347 U HE e S0 ) i kit 45+
IATIIPI PTG R HORU S 2, &R A 77 51, HBT [EE 2 B8 O(logn). XA 775G, AFFIH &6
fie—ANERIE, B LTRAWNZ TR S H AT — Mo s R B F, B A RS AL T L2 A7 ek s 4.

(3) BEETH5: NN-Descent J5 5092 H 15 o5 R 2 25 11 5 B PR AR o AT 3200015 4 P52 BE 19 50 B, X F i 8 S 78
SR GPU H (AT ERAR. 9 T I BE B T H A, AR SC® T T A GPU [/ A HE B TH R 3. R (2%
FEFAT VB 1% S S5 SR AR YT E AU EE . &0 4 1n) e i, AN SR AR AR DME T LA AN SO B0 E . 72T
HE R, T I AR vy ), SR BT R ROR, SRR — RN S AN R, BRSBTS I A 3t
ENAE, NETE R IL K2R R £ 5T I ik BB NIk & 25 A7 A, ZRAR 2 S LR R SR B R S 4 P 1 B
BJE, i CUDA FILRFEIAEAS BB shuf sync() SEILERFE A OBE A0 e, BB 5 2R Rt S 45 R B B e 2%
P AT 2 PR IV 30 45 B 50 P09 PR S T A4 B N AT IR, BRI R v T BE RS B IR, B, N T B RN R 44
JoE SEHT T4, R T R4S B R PE 5 5 2R FR M BT R A 2 A AR 23R A I S KB AT L, BT R T S KR B %
1 R B AN TE BB HTY BAE N ATTE ;U AR R, BRI AN R B /N T 5 K 5 1 ki .

(4) A1 JE 53 16 26 R AT DU HE R S 5 3 55 4% 85 B AT HE T, B 5 B AR JE 5138 45 {38 s B0 AH 44 1R
PE BT A, CREE AT & B 5, R ORI Y AR B SR N 7. TEARJE F RS0 S, 7 7125 58 9 = ) 45
&, LR K AR BRI A5 BE . 7 NN-Descent JE V5, W a4 OB AA U A48 & N AF, e i BT
S IAAR R 5 2 E S A AR JE AT e A HE . AE GPU 1, T GPU i LUSEILBNZAS A2, J= )40 & i) 4 Joid Tl
JetfiE, N T BEAK GPU HIPIAZTTARY, AR K 5745 s (10 1) 40 JE 4 [8 78 Dy &, 24 S ) 41 5 B & i, Jl g iig
B B B, LUOHT 5 mOEE B 5 R B 1 1) 40 R B, R B B /NI T L SR MR TE BRI AT
{1 RV B R T 3 AT PR

L LR T GPU I ) K r 4l B vk, ZAEER IR 4R @ R RS it AT B 1 47), HpEA
LRFRER A Br— AN BT (BB 2 4T). R HHT BT SRR R AR (58 3. 44T, SRR R A HEF E R E (3B
547), ZIS RIS R 5 2B O(log IS ). 35, %o RAFEAS B ARG 1T ;ST 55797 8w IR S (B 6-9 17), HB M4
H PN O(S | xlogd/ Warp), Forb d NTAIRY4ESE, Warp FRoRRFEH LR, BJEXT S I SR E B HT 5 5 Nw) @
FTVAFF, FEEHT u B A AR, FLATE] 82 24 58 Odlog|S |). £¢ ., 5032 1 IR TR & 24 % O(irx |S | < log d / Warp).

E3X 1. GPU K K IEAFRIR 5 K251k

N AR ERSE D, ISAEL i, AR I REHL &
B th: M KO AR R Gl

1. for (i=0;i<it;i++)do
2 for each u € D in parallel at thread block level do

3 Sy X N(u) T M AT AR JE T ST R
4 Sy XF {vlu e N(v)} T M A5 R0 & REAT R
5. S < XF S, us, #EATEE;

6 for each v € S in parallel at the warp level do

7 v.dis = dis(v,u); Fwarp NEZEFEHAT TH5EE g +/
8 if v.dis > N(u) PIBOREE RS do

9. 1E S B v;

10. XS R R R B R

11. N@w) — ¥ S 5 NQu) 1 RHE R A IF;
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12. TR AR (v € N(v)} HIZBJE 512
13. return K 145 &;

3.2 Tensor #%/LEEHIZ B FH1T K-means #5[X

RNT TR GPU ZeREH (Bl (AT 1, A SR 01016 2 1 BAR, S ER SR 47 00 X Ab B, 3543 X FH AN R 28
FEYIHAT AT DBSCAN 2K, [FIF, T 0 1R 55 X BRI AR A, DU S SR8 6 H 1T B8, A5 G B E (R4
YRR R AT KD W aEE T g 3 (6 5 S B 5008 4 10 4 IX, AHe 2RO VAT i 43 5 T 1 3 BB v A )
TF4S. S, AR K-means #0 Bod 423047 8 2020 X K-means #4385 33 U9 58 28 A BUZ R 45 40 8 S 3o s %
P 2 AT K-means 28, W13 21 k AN RISTEAE BT & AST95 55, % T797 55 A 3 F AT K-means RA BT

FETCAURE i Hh 2R 28, AN R dd > sk AR AR L B 2 2R R 4y X

JR4E K-means #5535 A A RS ELE A GPU AT, (EREE MR BN, & 21 S A4S EuE 5
B EIREGE R 0T A BT RS- 80 GPU SRR 264 2, HEm 51 RS v S Re 0 T R 9 T RO I — Il /1, 48 3¢
$EH T Tensor %O IG5 2 (8] 34T K-means M 7 X 5325, % 5020008 HAT A2 B[Rl — 2 B B =19 55, 11 3638 B i)+
HERE, TR GPU BIRIG L =R . O fE T, K-means A 5% )2 B 8HE 5 R2S, [RIGZ 18] HAT 7T S KL FEAT .
B, 5545 K-means PR 8§ 71557 Oy FEaRRiE T, R Tensor % 0 inid vH L AR,

Bl 4 &R T Tensor #3458 2 ] H:AT K-means 7 X L ) — AN /. EARTS 2L, BENLAIGA1L & AR
O, JE L B e v E S A o5 5 RSO R, R GPU [ Tensor & U inid iz i1 54 2. B+ GPU P Ek%&:
NEARPIY AT A Tensor 1%/ 0iFATHE MESRIEZIZ S, N T R4 K% GPU HIIHATHE, K EE S BTG &8, &
LRFEHOIG A O SN ILE N AE, DU R VA7 3805 . & 2R FEH 57 R B AN [F ) Tensor #%.00THH U i 552K
L EEE, BT A BIEEE S NI AL SR, S BE S EE L EE B R AETE XS N R AR B S A A
W, R TR E S R SRR R SRS L, W TR AN B AR, AR SN AR 2 BOZ B RS & RO R B,
1 J6fiT ] CUDA ZeFRHEAS R EL_ shuf sync() TELTRAH N (32 NETE) & R B s/ MR bl S48
B HAE R B NI N, BN B FE AT SRR IBN A LR, S 2 tH 4 R BR B e /N SR 28 b . S8
BB HE S B 2E O RS, GPU AT BB K R O E. #2118 EIR AR A 2 v, RITTAR3) kAT S

AT K-means  ZeFEH1 88 8

Y ,
0 grE3 QOO D
#ra OO O Tensor Bty AL

— gy 00 - Ol
() [JFAT Kemeans fis > ar D
° e &3 00 -~ Q.
@ asungmy 2R OO O™ Tensor B S
ey i R
® e
OO (%) T s .
O9)| spsupmey LR R
- ® s s
K-means #f (k=2) 1©] S R

4 Tensor #%/Lo34 38 /2 (8] 34T K-means 73 X 5%

551 R RRREEWUE, BRIV A 25 2 J2 00 & AS779 5, B & A7 )7 M52 HEAT K-means 82K, A CiE
AL B SEILZ (A IEAT 4218 & A7 B Bl i BCR FOR 7 B2 R, &% 2R R B AR AT S AR
i K-means SR AR R RO THEE. B4, fE 1 4 oG, 28 2 RSS2 S AL T 2 AT A T S AL,
PR 43 S 2 SRR HR A ST T B S 2RO IX 2 AT AT B NLIAA L 2 4R 0 AT, AR
BT AN 2 K1 v B B SIS A, IR R 1 AR s ASEE N AE, 1 Tensor A% 0 AT BE
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B UHEL, FFR A LR 20 SRR 15 225 2odfs s iR BE B e /N IRSE rR [RI B, AR 3 R 4 3 UM IR AR T B v, B

NS EHE, 2T IR AT HAT K-means #4143 B 2215 20 F5E FOMHR B

N T ARAE Y X P9 0 A AR 1, SR IS0 7 X SA B P 2031, hab, BT GPU L Iy A7 1 25 e PR, 2B TRk
H— T SRR AR B 1 3 X R/ BR, R HH (AR 7 DX K A 350 23 R BB Al e R — IR AL B B RN S T 3
WA FELAN 8, 72568 3.3.1 1o KB R 2K, A0 7 X iR BINHE, B0 TC4h AN [RI R, DAl 148
S2L IpuYEEeR B ESiN AN

B2 {8 T Tensor #2012 (8] JFAT K-means A4 7 X HVERAR. B WM RIS O, H48 8 F2HE
WA XFS (5B 117). 55 K-means W8 —Z (8 2 17) EMH5 K-means 2% (58 3 17). it H T %
H, BEANZRFR R A BT — 040 BE 5 0 R SR 2 RO () R S U AL, e R S B RO R RS L (B 4. 51T,
I FRIT [ 5 A O(D,| k). 5 BEHT R LA (BB 7 17). 2 K-means T R WG, FHEL PO
5 H/NBIR EHEE S B 8 4T), IFAKIEIE A S B 4 X, [FB B8 BlockPar (B8 9 1T), LME T —Z 1T 5.
T4 7-9 ATHAE Al HATHAT, DRI 18] & 44 FE eh 55 36 17w, BEANSIL AN 18] R 2% N O(hxitxkx D).

HE 2. Tensor #0038 5 (1] 2 8] 4T K-means P 73 X H %

N M ERAESE D, W b, KB i, 71 A EE &
it K-means #4) [X 45 5.

1. FENLWIEEL RIS 0 C[0], BlockPar < {0,...,0); /*WIIRIL AR AR E 71 57 (1 70 X7 54 0%/
2. for (i=0;i<h;it++) do

3 for (j =0;j <it; j++) do

4 for each D, c D in parallel at the thread block level do /* % ZR FE BT 5535 43 F 4 */

5. dis(D,, C[BlockPar[blockID]]) « Tensor A% 0ot Hds & 5 B b P B,

6 R dis(D,, C[BlockPar[blockID]]) N D, B W Sk FE R IS0,

7 M,

8. HEHKPLYS EHEURE D;

9 RNEFEI T X FHEHT BlockPar;

10. return K-means #f4) [X 5 5 ;

33 BT BERANEZOESBERNHITEES

56 K U 40 B DR BR S IX 5, T2 TR 1 KR 4B 7E % 73 X 1T DBSCAN J& #5254t
B, RIGHE R R R REH N R ARG, I, AN AW e PR T B [ 5w (1 75 X5
iIEAT DBSCAN 5032, T J5 A 45 T 1% O AT B AR & IR HLE.
33.1 4rXJRiRIFAT DBSCAN Hik

83T K-means # X BB 5 X 5, A& 5 X AH—4 GPU -2k, £ 571% 5 X 1 JR# DBSCAN i1 8. AT
4RI GPU £RFEHL A () K B8 FE, B8 17 DBSCAN B3R ) FEAR 56 i 7 S REFEHHT IR Sk K
PA— M0 RS i, FEARIRIT A0 0% RWUERIZ O s, IRAE 8 X8, Zd 2 U 1] B A% O U B 5 rU IR A,
DRI 3k 6 A% o 1 S L2 P A3 PN i AL S a5 ) & T — N IR ZER. itk 7E A R R B 1 3 = N A R ST A,
TELRFEIR A B — A R 7 ST HBA S, Bk, FLRFE R — %O s A R WILE SNBAF. T 5, 2R P Bty
LRFEIAT PIWTIZAZ O 57 KT A BE B /N T 25T o AT A S8BT 2. 54019 AU 0 A, I FRe 5 R A
CUDA JEFHAE NS, 5 3B 0 i, WA AR, BeAh, 858 3.1 35 il i KA BN 4R K a4k, M
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. 2 J5, B RFREH BB S &0 i, #E— D HAT LR iR,
55 3 R T 4 X R #9417 DBSCAN Bk BARRALE. S EIEMBARNS N X SES S . BRmsk
Cid 10 FIEATER core_neighbors. #R9m 5 3R Cid T AF A ST B IR g5, IR EENE G, KT N

SR IR BT queue FIEEF visited, Ferfr, queue FTHEMHI] AR S48 R A b B st i) U5 MU, visited
AT hriceR DO R EE VI (G5 1. 2 47). BEJG, A 32 DRSO R 2 KOS IFAT IR, WA X E, 5
23 1 73 DX A IR 0, R UCRE AR AT 17 A% Lo )N BN, 6 BLAR R HEAT 3 & (35 37 47). 558, A RFERIAA, AL
HBNE TCER P, IR EAEH A (I FTAT LRAEXT A8 & 513R N(p) AT IFATY i (57 8-10 A7), FEANLARALEE —ANIEAT g,
B g ARG R, W g AT TR RS g % B RTERIRR, HUEW ¥ g 72Ty p ITEERIRR. 35 g J9t%ot i, U35 0 e
g Mp RBIETF—7 X, HAER 2 X, WAL g &I 2 p Free ik, IR g AN (B 1120 47). BL4k, 8 1 B 1k
R EE VTR, AL, FrA A p R T AR 23 X s R IC 0 visited . [, D9 7 38 G 7 A 51 ER K 5E 4+ 1]
B, g FINBR T LUIRE G 5 5 5 Bl ) ST R R S . f i, SRikile (el 58 R 23 X R K RS R Cid (35 21 17).

o pl, HA BT R E LN k GEWE R, WRANAFER N EREEEA threadNum, W) 2 22 I447 77 17 4 & 15 501
ERAENT BB 24 FE N O(k/threadNum). ¥ S ; FA%0 BB coreNum, WS 3 BRI 2 BE A O((IS ;| - coreNum)+
(coreNumxk/threadNum)), Bl N O(S ;| + coreNumx(k/threadNum — 1)).

3% 3. o X R #5147 DBSCAN Hik.

N KX EiES, BT R Cid, %0 A EE/NT5%T e NIE4R core_neighbors;
Hid: 4> [X R #F DBSCAN R34t i,

1. queue — @; I*B\F, 1 TIEZNIE, HT DBSCAN WIREM) FEL S i &>/

2. visited — @; A, AL T I NAE, HITARc e mog By il i/

3. for each 77X S, in parallel at thread block level do

4 for each p € S, do /*1 Jj7 5 X N BT 5%/

5. if p e visited B p F9AFAZ 0 1L then /55 241 i U7 L BONARRZ 0T 5, B i 5/
6 continue;

7 thready do: p NBAF, visited «— visited U {p}; 1* FLLFEW p NIAFI*/

8 while (queue I4¥) do

9. thread, do: B\ 15 5 p HiBAF1;

10. N(p) « core_neighbors[p]; /* N\ sl A AR5y A% O s, 3 [ HoAl AR HEAT 14 g/
11. for each g € N(p) in parallel at thread level do

12. if g JAERZ 0 5 then LI IR p TFOEYJE, Wk p BCE RS 5/

13. Cid[q] < p;

14, if ¢ A7 T 245043 X then

15. visited « visited U {q};

16. else

17. if ¢ AT 240070 X then /* 1ROy 240 70 DXHIAZ 05 15, TWNBA*/

18. Cid[q] « p;

19. visited « visited U {q};

20. g NBAFI;

21. return 7 [X R 45 8 Cid,
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B R RRE AT I, AEI0K DBSCAN Bk J SR AR I 72 o R84 £ K (R 7E 2600 A0 A 1 3 4 h B9 2R 1) K I 40
Bk, (o R RS 5 3 ) KO3 AT B 40 J 4 skt L7 VR B PN 5. (1) DBSCAN S %715 difil
AL AR W I AV AR [F. 4T GPU i &, RA U2 AN A #9F R AT 4 A5 78 70 F ) H & 9647 % . DBSCAN fiih %
) A B[R] 22 S A 0k AT R00R) F GPU . 1 388 oK 7 2 ik R 4oy B 4R R, R KT 40 B IR A7 8 K i
RIFIALRE Ee g, BB AT GPU BT A0 B, T RERS 78 20 K% GPU HIm R H51E; (2) T DBSCAN Hik
M4 AR T & T minPrs A SHH R E, LI BN HERNFAS O E T EFrins i, TEER 2
MW SR, X P87 B RSy, i e 2R A0 ) e o B 4k KR AR M, HOELI AR AT E S
k > minPts, WAE & 22407 AT 8 52 R FH IR Je A @ (K2R 51, ToZ0EB i 2 K401 28 51, W 25 BRI 17 30 40 A 40 11 ik
A M minPts YKWS, 45 k > minPts 3R, W] 55 R R Je i 5 092 51, {0 DBSCAN A5 B2 A BT T %, [RIGTE
KBRS FH B 75 7E A 5 A0 R 2 IR A TR, AR S B 7 SR IR 15 B R
332 ETHOIEAEMNZESIEEL

T84 X Y1) J= 3 DBSCAN 558 UG, AN X LA T i Jm i R 2R R, i, 75 04 25 2 X 1) Jm) 3 SR 2 7
BT A IR, D BRI R R

NT A IR, AR SR T BT AL O AR B IR A IR S S SVER A A TN 43 X A% O A 22T
()R R RFRA TR RIS R, AT X S, PO R p SALT X S P08 g % B EIE, WARYE T
B R E X, 1R SE S BUE 4 F AT DBSCAN Y, LitH p & & g HA, % p 5 q ¥ E T H— AR K%,
HULTE & AR IR, p 5 ¢ BT AR B AR R I M R — AR

BT BRER, wlE s BiR, w5 KO AR E R A0S EAE 5 DX TR A% O i Z TR — AN DAL ;O A5
4 X B [ oo 5180 55 P B 0 2R R T A% AT 408 TR A2 oI A0 FER 2 KA BRI — AN T T, 2440 (X 8] R P A% 0
R U AR, DUFEAZ o R RGN — 2% 10 A A AH T A% O BRI & ABIB R F RU L& R TR —ANRR. E
ARG JE3 S B 5 Bl A R SR AZ o A 408 PR 0322 36 1 A R T RN P TR B DR e R A OF, 0 X A%
O AR AR O AT P AR B — AN 1, 2 X PR A% SR AR NI, KA X P9 EE SR 3.3 A5 HI/REF DBSCAN 5
PAGAT T REES I B S B BIEE 4 AR Sy XA G 28 50 5 05, SR B AR 5 X A% O sT 2 TR T —
ANEIE A, DRI P A O R R 3 e AT (300 5 A B T IR — AN SRR, S R K i A R 1 T
T E [ — A

@ ot @i C O RAKEL A

(I VS i SN

AU A A0 AR R DAY RO R R IFAT R, B0 GPU SRR 1 57— A9 s R R 5L, BABR AT 2K

WP T R AR LA, X PP B AT SRS A R T GPU IR TIRM AR/ FIH, #E— D4 m T E k.

Bk 4 JBoR TR KRR RN G IS, HII A NEg 53K Cid 1200 8 C AL s 4R core _neighbors.
HH, Cid M core_neighbors W18 X 5% 3 M, #% 0 migE C FAEBCE BRI pTA 1200 /L BIiEE eviath
U5 edges. B JE, B THRE—MZ 0w p, W H A ER /N TET e FLWEHR ¢, 7 ¢ AZ0 R, B5Z0 8 p i
TR X, WD (p, ) MALE (B8 2-6 17), WREAN LRI ELFEE A threadNum, H T 10 548 & 80



1048 HAFFIR 2026 F5F 37 AF 3 A

BEN k, WOZIIFENINT 8] 2 345N O(k/threadNum). ¥4, W )Ji edges "F IR 12, 36 F10 P T BT 1
R 7. 847), I FEMINT A1 5 24 FE N O(ledges)). TEFTH UG I 5E R, FIETER T AWM B RE R, &
Ja s IR A (38 9 17). T edges PIORIBEIL KT k, RIILEE 4 BARKIRS B 2 24 N O(ledges]).

B 4 BT OIEATEI RS R HIE.

I BRI R Cid, #%0 5 E C, 10 T BE B /NTET 2 1IE4AR core_neighbors;

i i: DBSCAN J2K45 1,

. edges — @; *EA, N T GPU & RWAE, FT A7 E b (1 ide/
. for each p € C in parallel at the thread block level do /*3 JJj BT 4% /0o st (AR J&, 7E71 s g Szl */

1
2
3. N(p) « core_neighbors|p];

4. for each g € N(p) in parallel at the thread level do /*3& [Jj p [T I 4R*/

5. ifg WL RH ¢ 5 p i TR X then /*45 A HAb Sy IXRIAZ O £, T 730/
6 edges «— edges U{(p,q)};

7. for each (p,q) € edges do

8. union(Cid, p, q); /*& I p Fl g FITARER LG/

9

.return KR4 Cid;

4 LIS

A 4 AN S ER RS BT A S AT VAN, R S AR RIL AT R L. BB 4.1 A4 SR B0 BRSO A
KABH. 42 TN BLRIGITAGIRAR SN L EE. 9 43 TN B SHORE . 4 4.4 557 k3 & M minPts
PN S, VEA T A R SR RO 2R B, 5 4.5 WX EIE R AT R AT VP40 . 25 4.6 T9xH58 3 PR 3 4
BEHL T AT 04T, VRS BEEL A 2.
4.1 SR

A 4 A ESEHHESE (DEEPIMPY, SIFTIMP'L, MSongP?. GISTPY), $iE 42 HUBHE B 7 /5 2%, BB 4N
HIZeAs Bk 1 FioR.

R BHREILR

LIS HIrE Ue % HdE K/ (MB) Bk e K ikminPts
DEEPIM 1000000 96 366.2 0.7 50
SIFTIM 1000000 128 4883 200 50
MSong 992272 420 1589.8 20 10
GIST 1000000 960 3662.1 1 50

42 BLEE5TEER

o JLLZEFIVL. A SCK Tt ¥ KG-DBSCAN 5145 5 il ) DBSCAN HUiki AT T XFLh. S 7 78 40 VA
P BFET KT AR R 51 In5s i R 2R 1%, A SCHnt b i 2R 505 4 e B 7 R A 4500 . HNSW 4544 DL &
K EAREI4E /R 2R 51 [ CPU 8% X1 GPU $ik, BIAT (1 3 Re i 4E 5% DBSCAN R 15k AR B %
51, 143 X RSB GPU Fi% 359 R FH I BSUAR £85 W 1A 41X, T I 248 P55 ¢ M FF) ) (35 1.2 739, A SCAE AT S 11
GPU I 1) B8 28 00 P i B R B R R R B R T b, AR Sr il R 4 5500k AL 4% (1) BLOCK-DBSCAND?L:
CPU J7¥E, R HE T2 36 W B2 31 InsdE AR A5 1405 (2) A-DBSCANM™: CPU 7732, KT HNSW K2 5| I ix 47
#5if; (3) KNN-DBSCAN®?: CPU J7ik, SR+ K AR B 28 51 hnsd i 40 25 14, 48 1 55t/ 2E Bt i 57 DBSCAN
%; (4) Cal-DBSCAN™: GPU 71k, FIH] GPU B+ 5415 5 AU AR T ASd AR /2% 51 ; (5) cuML-DBSCAN!:
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GPU J7i&k, 3R 4t 7 BEHLBRE 3 55 2% 51 R0 B8 v SR IX a5 st P P i S48 ZRE I, F T Wi 38 2% 5 A AR T )3 K T
J5 % DBSCAN HTHEI[A], RUHTE AR S 1) Teie vk 35 3

& iR 773, BLOCK-DBSCAN i fl] i 22 FE3E 4T DBSCAN 8, N 7N i+ 8, 23048l OpenMP 4 H:
PHE T E AT, LRFEH0N 10. 1-DBSCAN 78R 51 M8 K iy i S e 2 2R R 5, 4RAE 05N 10. KNN-DBSCAN i
Fi MPIL #HTHAT B, A SCK MPT Z6F2 5008 10, J3°8 10 > MPI {14517 DBSCAN HIiHE. AT L6y
7EIE 4 7 Ubuntu 24.04 &4, Intel(R) Core(TM) i9-10900K CPU @ 3.70 GHz. 125 GB /##1 NVIDIA GeForce
RTX 3090 GPU [ JIk. 45 %% L 47.

o VEE TR, 9T AT VHE BRI SR, ASCIE DL TR (1) BATET IR @& 2% 51 W%, DBSCAN %%
TS AR R (13 BB AT IR 8D (2) MEW R (precision): IR TR FSIIREA S 5 AEME 75 S B0 I LLl; (3) AR
(recall): IETHRIHIBEARL S PR BIBEARBAI LB (4) F1AE: Zbn it EARBHER R B R, HH AN
% 513 TAR 20 Y, AR Scikit-learn [ 7 UK DBSCAN BLU: (0 1 45 A R A 5
R, ITHAR LRI RS FEE. DL R RIS, N T — UG R ], AR TR R
PR TEAR: 65T R BL (silhouette coefficient, SO, PYFSHRARAMK AT CLA bR, 1 AR F% Py 5 7% 19 10 3 SR
HEREAR G MR E.

43 BHRE

K R BB K EAREI R S E S k. K-means B 1R 55 5 B0U% 7> X % kA0 P LL K DBSCAN 153
& M minPts. TEFH A, k MEUAEZ S 4.6.1 TRV BN minPrs 1) 2 £, (15 55 7EBURTHE T8 T EUEB&
WIS RE. U4, S| GPU ML AR EIRH, K P [F R 16 F1 256, (135 VELE GPU MAZERR I T & A4k
43X K/N. DEEPIM. SIFTIM Hl GIST $¥E 4 1) minPts BUE K {50, 60, 70, 80, 90}, MSong ¥4 B T 7 minPts
KT 50 WM —ANME, #H: minPrs BUE N {10, 20, 30, 40, 50}. & HE3R 035 5 P 56 0E B BUE 24 (018, S BRI
SHIUE R 1 PR
4.4 BAMETWERSHH

AATIES 4.4.1 T 4.4.2 3553 I & B minPts TINS5, 18 4 NEORE S ER R RIZ AT I (B AR BE AT VR4
At FESE 4.4.3 TR PR T Ao 4% S B2 B AT VA
441 EHHNAR e L1L

AATHG T HH A KG-DBSCAN SE 555 4.2 T4 1) 5 MR BEIATE 4 MERE LT LG, & 3dR4E
minPts (REFAAE, BB W PAT e, W3 4.2 TR TR T IR, 25045 R 408 6 fT7n. BLOCK-DBSCAN 7F 4 4
BAREMITAT I ) I 5 h, SOk H )3 45 4 INF. KG-DBSCAN HIE AT ) B3 /N T H A 5 ML EE, H
o, 3 A-DBSCAN 53 240.0-2822.5 %, #id KNN-DBSCAN %32 16.2-28.2 %, #id Cal-DBSCAN %H.i%:
101.8-966.8 fi%, ik cuML-DBSCAN ik 6.2-47.7 5. L n] W, RIEAH LT3 T GPU ISR HIL, At
f{) KG-DBSCAN th3¢ Bl B B i) R 363 . 31X 2 i1 T KG-DBSCAN ¥ DBSCAN H T4 5 i IR AR B i) e 4y
K I A0 B R 3, Hdvh 7 s A K48 A s 805 LR 40 U A GPU i 3 R et K IR AR 1E & s 4 =
FHIPGE R ST A0 AT . thAh, BT K 4R B S (4 X A1 2, KG-DBSCAN [RIRE#EAT T 85Ik hAk, LLRIE
REME. 52 ML, Cal-DBSCAN F1 cuML-DBSCAN 738 7 B 4 7 1 B 8 B A3 dii S0 48, i
KEIURTH, G-DBSCANUTELE [FIFE ) 7] 8. 7658 J K5 5 J7 1, Cal-DBSCAN 1 cuML-DBSCAN # 4 f H
DBSCAN £k, W F1 0%, WERfRAIH [0 4545 1. /£ DEEPIM. SIFTIM #1 GIST ##E4 I, KG-DBSCAN
(1 F1 5380, HERGZE AN B R IR 444 0.98 UL b 7F MSong #1354 b, KG-DBSCAN KIS EH T F &, iIX&H T
MSong I AR EHE SUFE B T2, KG-DBSCAN SR AR R IR A58 23 4% 0 5. 41, --DBSCAN TE GIST (i 4E
R IR, X e BT IR R A T B2 ) RA — M0 s AR, ZA% O B TE e ARIRN I Sl T e i R
o bR IC NS B 1 e 3240, BRI 5 B H R0 s TTERIE .
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-~ BLOCK-DBSCAN —<— 7-DBSCAN —A— KNN-DBSCAN —#— Cal-DBSCAN —&— cuML-DBSCAN —<— KG-DBSCAN

@ 0.98
VT Y & ¥
e m 09
&0 K RL0.94
g 0——<—<—H
100 . . . . . . . 0.92 0.92 . . .
05 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 07 08 09
BT e HHPEe TR e HHER e
(2) DEEPIM ## 45
Hl\gjﬁ;g;g_—_@:@ 1.00 v 1.00% K LO0—G—o—0o—%¢
> E4
21— # VI s Fﬁ&Qﬁ:ﬂ:ql
Z10h—A—A—5 R0.99 Egﬁ 098 - =099
l\b 10] h Pl & B - Rl:
1§ < < < 1
100 P 0.98 PR 0.96 0.98 PR
200 210 220 230 240 200 210 220 230 240 200 210 220 230 240 200 210 220 230 240
EHEAT e HilFAT e HFAT e #HifjAt e
(b) SIFTIM ¥E4E
%ﬁq—g;é_—_g?a LOOg—o—o——% 1.005 1.00 73
a2 &=V vV 0984 ) 098 {
2V o o—a—=a Fooe} 30969 5 0.96
=107 —o094f B B o4
B =Y 092 | R 0.
g l0—<—<—<—9 o2} 0.92
100 L L L 0.90 L L 0.88 1 L 0.90 ! 1 1
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
A & A ¢ . A ¢ A ¢
(c) MSong % £

1.00 1.00 1.00
= 0.95 0.95 0.95
= 0.90 n‘E 70.90 = 0.90
EO 85 @085 7 0.85

0.80 0.80 0.80

0.75 L L . 0.75 0.75

1. 2

1.0 1.1 12 13 14 1.0 1.1 12 13 14

PR %ﬁiﬁ:u £ HMEAT e
(d) GIST %dli 4

Ko A1t e AN AR HE

B WAL e M, B Cal-DBSCAN BiESb, HAR & FIEMISITI M5 2B s. Rem Tl e
B0, 4838 FE A R R, DR B S T SRR . B, SRR UL R G I B R R TR T (1 E A
BRI A e 3G N3G 0, 3& K T SRS IB AT [ B3N, BT 2, B 6 EAK KG-DBSCAN Sk K
K 340 B R FE B R) B 55 7 P, {ELTE SEBRPAT I JC A A KO AR B, RN minPts BIBUE A KA R, K 4B
EBT W2 AE & AL I T 5 (R P (2 35 B K KG-DBSCAN B3k (3B IT4. 546, T KG-DBSCAN 53%, i
TRy BAES IR EON, I H48 & (3 st ELREmaAg /N, HOm 847 I 1Al B i 54 A il 2.

442 EHSH minPts L,

HE— P, AR A AR e [ B R 1 R S B AT R BRI, SRS minPts, VP& BIETEIGAT
FIF ) 7°0 R I B2 0 7 T (0 3R IR, S 3 RN 7 o, 45 SRR, ANSCATHE HE 19 KG-DBSCAN HUIE M TH Ak 2R A1
minPts B ORI AL R R LR S0, Bk, #1%:T h-DBSCAN. KNN-DBSCAN. Cal-DBSCAN #1 cuML-DBSCAN
FVEr AR 530.4-1617.2 fi5. 15.4-27.0 fi5. 93.0-942.6 5 A1 5.7-29.3 {35, T A SCSLI Rk F2 ol KT 482
Bk VBN minPrs WIF %, R T K IE4R 5 (KG-DBSCAN 5 KNN-DBSCAN) {13z 47 I 6] & FE 2 i &
0 minPts WG INTIIE N, A-DBSCAN 21 F 3L A8 £ it WA T minPrs WIUE, WOHEAT I TR IR BEAE & WS 3038 m
TN, HARFIERIZ AT BN 52 minPrs (52, BIAE 40k, KG-DBSCAN STk AR L F HA S A7 KA 4 0) 4 3.
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U4k, KG-DBSCAN HUFEEE, R F1 7050 AER AR 44 0] 5 5 L 2 S p R ARLSEE3dks FE AR 0L, £ 50 0 it 48 Lo
SURNIR/S2-3li VEC AP oY i)

e
EIO3§~ T
3-?1022 N,
g 10 —<—<—<—
10° . ! !
50 60 70 80 90
minPts minPts minPts minPts
(2) DEEPIM i 4k
1.00
0.98
$0.96
@0494
0.92
. . 0.90 . y ‘
50 60 70 80 90 50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
minPts minPts minPts minPts

1.00
096
=092
£0.88

0.84 L L L
50 60 70 80 90

minPts minPts

minPts

(d) GIST ¥4
B 7 EHSE minPts AT R85 %T
443 RAEFEIAG
ATEHEBRNSEOT 4 MEHRE LS ER R KRBT T XL, DA S Eyk R &, T BLOCK-
DBSCAN i S, PR R AHZHE R T IR, 45 53k 2 Fiow.
*£2 RERISTL

Sk DEEPIM SIFTIM MSong GIST
h-DBSCAN 0.0716 0.1035 0.0734 0.2245
KNN-DBSCAN 0.1924 0.1508 0.2472 0.3320
Cal-DBSCAN 0.1803 0.1516 0.2319 0.3270
cuML-DBSCAN 0.1799 0.1510 0.2446 0.3234
KG-DBSCAN 0.1692 0.1505 0.2611 0.3328

KG-DBSCAN 5 4 DL SIRAG 5] T BOVEIL A EE A5 (SC), AR BIANFE R HI T 0, W] ik
PR VBRI IR E. h-DBSCAN RAARRIMR B A 8E, RRM T ZEE7E TREZ R A% S8 TS
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HAnFEIRPR I 2. B AR KG-DBSCAN # s it A 5%, HEKFEII A5 cuML-DBSCAN #1 Cal-DBSCAN
PSSRV AR 55, 1245 28 T KG-DBSCAN Beit 1 mokh B2 i K 40 e 2t DA R T A% 0o 30 408 PR F SR SRR 5
SR KA 408 PTG S5 AR 2R AR GPU TS P 2 v S 4R e S8R 1 R BN ORAIE 1 RS BE, SRR S IR SR TR0
4R LK R I 10 R 4 g e i 43 e E L, E— 2B ORAIE T RSB I o
4.5 THRMESH

ARATHE 4 ASHE S B S LR R R AT VEAL, A8 % B AR MU 3 0 O SRR K 20% . 40% 60%-
80% FlI 100%, Wl & % FLI IR AT I 18] O 2. S 25 SR &) 8 Firom. 8 SR FUBEIG Iy, & SR I8 47 I A b
Z B89N, BT DEEPIM $(¥EE4E 20% A KG-DBSCAN B2 T cuML-DBSCAN 2 4h, HAH#E T KG-DBSCAN
(RIS AT I [R) 33 35 AR T HoAth S50, o — 5 T, B B SR MUAE (¥ 36 1, KG-DBSCAN ) F1 203, HERf A B
HWEHE TR, (A7 DEEPIM. SIFTIM Fl GIST #¥i4E L% mi T 0.98, X R A L2 H 1 KG-DBSCAN #iEH
A RIS eI, HAE MSong $4E 4 HBUR MRS FE A2 Ak /2 BT MSong A AU fiBE B 40 ik, WS HUN
ONE A 5525 S i SR 2R 4 B B B MRS BE I FE 4. B 4h, BLOCK-DBSCAN Sy 7 Sl MU i /N 3z 47 I 1]
/T 5 h, AR HORS BRI, K A& H T TR 0 7 v A v 2 22 ) o T W 4 P2 X D 1, ¥ AR A vk T T SR IR

- BLOCK-DBSCAN —&— 4-DBSCAN —A— KNN-DBSCAN —— Cal-DBSCAN —&— cuML-DBSCAN —<— KG-DBSCAN
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4.6 BEIEERST

ARSI FIEFTA A HIE AR R S M. K-means B4 X DR AT R 3 ANBLER A HIHEA TSI 04T, IIEHA
R, 5 HE 2R St AR R K R 28 7 vk AT 06T L.
4.6.1 TABEIR T

AAEFR 1 FRIH AR SRS DEEPIM M SIFTIM K H & B IERIAS L, X 5 Fin st B & 5 ey
BT IEAL. o, KNN-DBSCAN i Fi JF- 5 )22 GOFMM© e (Rt LR # 7 K 4TI, h-DBSCAN i 1 I
Ji HNSWIibP My i HNSW EZ 5, KGraph®"\, cuVSPHHIA SR ! ) KG-DBSCAN 4 il NN-Descent 14
K Z 4B, A2, KGraph £ CPU Fig47. cuVS A GPU I fh 25 v+ S+ F CPU #EAT4BJE 8. KG-
DBSCAN #— 7 NN-Descent Hi% I8 H GPU AT 2R INE. 5 Fils 0 2 51 M @ iIg 47 iRl il 9 B
/R, KG-DBSCAN 7E P 46 b (13T 41 B R 51 4 i ~F 2 R % AH B T KNN-DBSCAN. h-DBSCAN. KGraph Al
cuVS At 252 . 23.4 i, 14.2 50 3.4 £, SEIL T AL A8 2R 51 A . 1X 2 BT KG-DBSCAN 74 F
F'T GPU i I R AReE, B LR 0 A0 BE 85 11505 40 8 SRR AE, 10 45 5008 S T SR AR, 80 1 [R2D JF 4.
AL T cuVS, KG-DBSCAN ¥t 5L &AL H# £ GPU, # 4% T CPU 5 GPU 2 [A145 % (i B A& S A 5] 25 1 ok 1)
BN, B0 e TR 2R 51 i g ik

[ 4 (KNN-DBSCAN) [[] B (»-DBSCAN) [[] C (KGraph) [ D (cuVS) [[] E (KG-DBSCAN)
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z &
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(a) DEEPIM $¥i 45 (b) SIFTIM %5 4

9 JEAREIER 5| My a5 bl
BEAb, AFTLE PR AT M B8 5 R U A0 P RS 5 e o SR 25 FE RS HEAT T -4, k 7E [minPts, 3xminPts] [X

[R]VO FE N IS 5 AME, 71 K U AR S SR s AR S, seaa gt Ranid 10 Frow.
—A— FLM0 O3 @47
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(a) DEEPIM %45 4E (b) SIFTIM %44k

10 K AR &I HIo0 SR HE FE K 52
RBFIERIZATIN 18] B8 K 240 P EZ B 5 n i B n. 30 By KR <8 B i i R BOm i S R, g
AT 18] o5 9 7 3R SEE I 80% LA LT, K A &0 1 B i 3 inops 3 25 KO AR IR IE Sk T B 3 . e, fE
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AR BEAT DO SRR, B A E RN, F1 302 e 5 iR . X 2T Y kN T ST 2xminPts
B, T80 P P 50 398 o e 75 5 B R 1) & AT P9 ) s SRS B, T 24 K B 2xminPes B, BT S5 B8 p T AR SR 1Y
o, B kAR BN 2 DR S 5 RO R R R AR R, BT F1 B H TR i, AR SO
k = 2xminPts YENRBEERIANSEL
4.6.2 K-means P53 [X

T IGUEASCER 3.2 1A H 2 R R AT HENE B0 Rk, AT SR AR MR R RE SR BT R R IRAT
K-means 73 X FIAS SR 2 7] 3647 S 0% [ K-means 4 73 X HE475%F LY. 75 DEEPIM ##E4E -, 43 X B A 435104 0.64 s
F10.98 s, JZ A FEAT SRIEHE 70 X BRI T T 47%; 16 SIFTIM H¥a 4 L, 40 XHS 20518 0.79 s F1 1.52 s, JE A1 347
FEUENG 7 XRIRFE T 92%. B ] W2 I FHAT SRME I — B4R T+ T 40 XA, i 2 (FDA % NG il & 240 i GPU

AR, 9T A K-means B 43 X 175 20HE, 15 K-means #443 [X 5 BN X F1 KD 43 [X 3547 % bL, 27 H
L1 3 Ry SR B o X EAT B2, AEIR BIARIERE FE I RTHE T, BENLS X . KD A 43 X Fl K-means # 43 [X fr 15 55
[X 4t B 4F DEEPIM HiE4E E AT BN 73 98 0.50 s« 0.49 s T 0.34 s, £ SIFTIM Hi¥E4: E v 0.21s. 0.21s
F10.17 s, AT IR K-means W43 X J5 BIFAT R ZAREL T BENL4> X F1 KD 43 X J5 SRR BI85 53 7 i 35.3% Fil 33.8%.
X2 BT K-means B 43 X AN 52 21 4 15 ¢ ME (R R2 00, 1 25 B AR 17715 i 00 22 TRl — Xk, 9800 T & FE RS AR, 2t
MR T HAT IR,

463 IHATERE

ATERFAS S E FERMCEERIEE EXTEE 3.3 T4 H 1 KG-DBSCAN ({147 B M 4T VP44, i
T cuML-DBSCAN HIIEARTHA 5 R IS/A-E 1, Toik sl 5 JE 2], T h-DBSCAN [ 5R ISR AT THEL, Kl
H 5 KNN-DBSCAN Fll Cal-DBSCAN f R FABEHGEAT X L, 45 UK 3 fis. 45 5% W, KG-DBSCAN Rt
PR BN T H LR SR 2B, 1985 KNN-DBSCAN 3% 8.1 /%, Cal-DBSCAN %% 10.1 %, X & i
TARSCHESS 3.3 WA R I T B AR SB I R I 4 X R 347 DBSCAN Hix GPU FAT il P 848 s E4T T 0
Ak, TR PR 3 2 P A I v R A B DA B 22 2R AR AT U7 1) IR M I3 =) 38 DBSCAN AR, Ak, BTdi i i T %
OITATE %A IR GPU W4T RE T R T DI A0, JE T IR BT T @ Ui S IF. UL AR IL [
Bt T BHMTHE. Cal-DBSCAN HIE7E ¢ [H5E « minPrs AL JR SN 8] AS LIR35S, X R FZ vk ok o
W LU T 80, A ) BER S R TR AR, 4 minPrs SRS FAHEARN Fr 32 2 #5218

3 FHATREWTERTLL (s)

Kot B[ &, minPts] KNN-DBSCAN Cal-DBSCAN KG-DBSCAN
[0.5, 50] 1.39 0.48 0.10
[0.5, 70] 1.73 0.47 0.15
DEEPIM
[0.7, 50] 1.99 477 0.31
[0.7, 70] 2.00 474 0.34
[200, 50] 1.63 1.85 0.17
[200, 70] 1.75 1.86 0.24
SIFTIM
[220, 50] 1.76 401 0.29
[220, 70] 1.99 4.04 0.36

5 REESREE

R RS et A 17 B2 3R 2 15 A 48 7 500 23 K0 A FE R, D 7 8 ARG S5 50008 70 A 55 SR O B Atk S48 B0 AT 1)
BT L I R TTEAE R E S 5T RCRAR R K 1R R, ASSCHR T — 7l GPU s 1) ey 24 17 B SRR BRI, 1 5, AL
K H K48 EIfE A DBSCAN SR 5], Bt 7 —Hh GPU I iy K I 46 KR 51 @ 0%, B i 1 R AR R AR
—ob i KL AR B AR B 1R M R R 5, 38 /N T SR T . L, ASSCHR I T Tensor %04 92 19
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JRIRIFFAT K-means B 73 X B3, FFE et T2 R AT SIS S 20N ] GPU BRI BEAh, ASCHR 13+ I e iR
A AR I FFAT KEEE, Beit T IFAT) B e SRE Y e J= AR, R A A% oA R 18, 3 T A% Coale AR R S 1
AR ERE S IF. fa, ASCHE 4 D FSL A EHUR L B P i AT T VR IF 5 EA BT 1 R, sk
IG5 AR WA ST R S AE (RAE RSP E ) [N KRS T 17 SRR, R, GPU Ik % K 3T 40 18 ) v 4
17 B SR SAMIRAF AL — 25 i L (1) KOIT AR B A AR B & A3 I i 2k VE RS, AR SE BOE T & F5 KT minPrs,
B2 minPrs BRI RS BUS R O R SIMITA; (2) W58 2.2 Tk, 54747 sl (A B ES HE AL I, SEAFAE R A iR
TN RIS, I3 BORIENS B BRI, 75Xt SR EE RGEAT 5 Ak 2 A ORI R B (10 3R 2. ARRHG Rl 58 L3 i)
JEITE— L.
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