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W OE: A REIENRG IR, BT LA ZIE AR (volume). % AEiE (variety). &ift4 (velocity) A=
{4 (value) 49 SR A48, XA MBS XA HABRIBEREF F. THRARBHMIERELEEARE T EPHIK. L
Fok, AT BRG R K R, 455 RAE 5 ) AR L5 3 EAAEF S 4y i A AR AR I BALA 5T 1A
FEGRE Y, A HAT XK T IR AT R BT F T, ALFSHIBERAGYREROMAT
F—ARFRBRIEEATELG, ZRAGEL AIRARREREEATRELE. FRE. ASEX 3 X433 @
BRI P e B RIES XL, A O NELNSIE AT EAER FAHAK. kIR E. REBEBELHFRBE
BE), A TIEFZINGHTY RARAH F T 25, BHosR. Faediani. FaedaifEs). seobh, 3
SR T R 4R 0 (APD) 3 — P AR T Al 53038 & 2 St £ 1. A i IRt A Ae kB 0 A4 A,
VSRR AAZ LA, IR B EFFR M (RELEN. TERMA LR W £ 698 &8 XAt e, 81T
RN X ARG AR, AT BIENE], BT IR S AL ARIE R A AL SIE A, LR M AT AR R R,
FRNDATIZATRE 15 () BRI 5 AR LR T7 6.

KGRIR: SIE R ARG SR, AR, MR F )

FEESES: TP311

s FRE R Wi, B, R T, AR, R, ADRBE I C R BEUR E RS T Friidl . BOR S H0AR. B 2344k, 2026, 37(2):
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Empowering Relational Database Systems with Al: Standardization, Technologies, and
Challenges
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'(School of Information, Renmin University of China, Beijing 100872, China)

*(Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Ministry of Education, Beijing 100872,
China)

Abstract: The advent of the big data era has introduced massive data applications characterized by four defining attributes: volume,
variety, velocity, and value. These attributes pose revolutionary challenges to conventional data acquisition methods, management
strategies, and database processing capabilities. Recent breakthroughs in artificial intelligence (AI), particularly in machine learning and
deep learning, have demonstrated remarkable advancements in representation learning, computational efficiency, and model interpretability,
thus offering innovative solutions to these challenges. This convergence of Al and database systems has given rise to a new generation of

intelligent database management systems, which integrate AI technologies across three core architectural layers: (1) natural language
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interfaces for user interaction, (2) automated database administration frameworks (including parameter tuning, index recommendation,
database diagnostics, and workload management), and (3) machine learning-based efficient and scalable components (such as learned
indexes, adaptive partitioning, query optimization, and scheduling). Furthermore, new intelligent component application programming
interfaces (APIs) have lowered the integration barrier between Al and database systems. This study systematically investigates intelligent
databases through a standardization-centric framework, delineating common processing paradigms across the research themes of interaction
paradigms, management architectures, and kernel design. By examining standardized processes, interfaces, and collaboration mechanisms,
this study uncovers the core logic enabling database self-optimization, reviews current research advancements, and provides an in-depth
analysis of the technical challenges and prospects for future development.

Key words: database system; data management; artificial intelligence (AI); machine learning

23 A 28 I 9T, 5% R B 24 B R 4 (relational database management system, RDBMS) EL4&8 #3711
] (Y ES HAL, AR T RS MSHRA LS, HAE A UL T2 R . B R ROR I AR R R AR R T
MBS B TE 2, B REE IR AR B2k LS RS 82 3 5 ) H & R %, B8 P 3R e e 45 v 22 B ) Pk .
I AL R S P P SIS PN S 2 R T R, BN PR Ak [ 1, AR ORI R T B R RO ST U, R, DA
B 7 ST RR FE 25 S AR N T R RIS 1 2 3 R, B e 5Tt [ FH N T8 B AR I3 % G T B
H%. R B P R G B4 OB PERIT T U — AN BT PR N LR BE BOR SN RDBMS w145 5 i 2001 1 4 g
WA B BT 1A K .

AL KRB X R BB ARG RT3 IR 158 N LR R BRI E B B R G,
B ESEIUEOE FE R 8 5 . O BR[O A, R RERHE P R G e AR A R REARRAE . B oy
i AW A ERSEE BT RAE 13U 22 =, %8 22 F - A5 P8 1 3 (database administrator, DBA)
FEAL T SE 5 AV BRAL RO DO RESCHF. BUAP, B RERUE P AR G it i N\ T3 Re B B e A LAt AT ARG, AT
PRI HE RIS AT RCE.

W 1 Fs, BEEEER IR E EERESGL R 8 ) i BE. Bk EdRE g R, BER
THT R B E W R A BEARTG. 5% SE s PR OB A 1) SQL i 5 AN [F), & REEICHE B su v AT A B AR F
AT B U7 ) AR, AR ORHE A T HOR T IR, 2) B RS HE . & Re s FE M N L2 e (W J7 %, DA B DBA Bi#
a4 B A 75 OB B IE W RS B AT SR AR PR AR 52 M, S A B AR T RE. BRI S, B PR AL
H5LWriRw S BRI, R 5B 2 W GRS B SO . DA B S 3) B RE
2 Bl e POAZ AL A 5000 P P AR R AT (K Zh B (un Bt A7 B, AR DU AR AN B AT <5), B RE Kodis e i i
N LR BRI TTERA B 58 3 B 4 A AL AL SRR TH X 28 ]y A LA PR . S, Bl AR G K 21 R 51 5800 4>
DX AR EEERNES . MBS, AR SRR BT W o B & M A WAL . Jf Rl 52
W L. B REEH R AR ST 3 A A R AR AL B R RELELAT T A 1 R R A, B REAL AR IT AR T AR it
FA TG 1T =

BREHE R G LA B ISy B I, 2T e B R AR S N R AR AT BB E . B EA B
SR E RS B REOE BB S T DA 3 AR, M EEE R LA 3BT R AN T BARX 3 A
T (LR BEE. WZE) BRI BR (5830 — B HH% B NSl s BRI R M7 2 1 0
ST AR AL E 2. S e RSB D I A A BE Tk, BMBEME I (B WA H. RGisgE. uUTikL)
AN T 2B RARTE S B 22 57, (B IS VR LB B ARy — M AFE A L U E 1 P AR B 9 5K

AICTTRRAN T R T R BB E R AN BRI F it i, DARHEI R OLA, RERE T &8T5 £ T &
T 1) S e N AERFAE. SRR AT, 4875 1 3RS RERH P ARG A bR AE R RE AL BILIE AR, DB ST SR AL 1 T ) A
[FIIFFE 77 1) FOBRAEAG 22 ARAESE, BT 1 %77 15) T A SCHE ) B 5 HOR ST R A2 RN, R 7 8 e B P O AR R KR R
T S TPk, N JE AR B T T Ik . AR T O S SR I R B A P AU 4 o S JL I U
LR, DAL A AT 9N B4, B — 2 DR RE R I 3 KRBTt R A, R T e SR, JR4R
T ASRHT R B S K e T ).
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o R | | | R A ] A R ||
E ’ £ 9A1E = 5] SQL Hif, ‘ KOs 2 5 12 ple/iyaaiie E
: sarmth| [ o] pomrew || || | 22z || mmex |||
o b 2 | :
: R G BT 5 AL 5
E ﬁ%ﬂﬂii'ﬂﬂ‘ ‘ﬁl?kéliﬁﬁ‘ ﬁ%ﬂi’fﬁ‘i)ﬂﬂ‘ i H AL || fers || it ||| !

K1 AE

1 BREREERS

BRI E R G R TR B BRI S B R A H SRAk A vk B IR SRR AR SR 1 R —ARBL
I P fgp o 58 AR R E T BT R A T R R T R S e P A L AR E T X, A R VA B R e T R D S
Kl B AT B . R AR P A TR A A . FRE R AL LRSS, SR oy 2 18] W] B AR AR LR, LR
Yo sE BdiE FE B . B, 2R 51 S A A Ak T DA R T, S Eh A 2R 5] Sens A Ak A AT R, BAse
IR 122 1 B R

AFA AT ARGV B B8 B EE BT 98 4045 SageDBYY. MB2UUHI OpenGauss'®. B2 b, ATk mgs 7
LA R A R BEA S 0. R 1 X S R A R AT TR LR R T X e BRI P R . B,
ARATRGE T R BRI E R G AK R R AR SR T I 1 $k . AT4DB (AT for database) il DB4AT (database for
AD) SNBSS AR T ), AT4ADB SSTE Al FIl I AT 452 AR S FH B8 2 1R 8 B A KT, T DBAAT W 78 ]
R H e B AR A A AT R N SR 3 72 BT A SO 22 4 7] T AT4DB f1F 18, — L8504t 2 42 7k DB4AT
ThRE, BATIEANTHAT T M.

®1OHEEHREE RS

Kl e HHE R R BT RE Heeth  EHE
SageDB KRB e HdEA BRI i ] LY
NoisePage KR IHIEFE HARELIM. BRIt A EY RAMSQLIAL = EE
OpenGauss  RAMEIEE SEORMK. RIIHEE, BSQLAN., SWES. FHEAN. tHRIRE = i=n
NeurDB KA BB HEHIE ST BIER RGBS ] LY
Oracle KA HE RN IRE. BAMLE R, SCR AL A8 5% S S L3 )
Azure =R PE BN & 2T SRR AN S Hdis i i L3 )
Aurora =HOE PE g alEST C3 =R NS P kv L3 )
Google Cloud =HOE PE WA S 22 DX 35T R S B 45080 4 B L3 [
SAP HANA A E SERF AT B IEAE . RN A B RIS 2 ST SR A Lk ]
1.1 SageDB

SageDBUVHE2 AN [ () B P 4 R 2EL A, LASE AL B A 1 7 2 2 e 8 A R 2 R . SR A i 2 1 s
SN T AR SR S A Kl 2, % X HLdE AT DI AT A58 75 500 22 4200 2 S R U RN TR fE. SageDB SIN T PIFHSE
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WAL FE A 053 WA A LR 5 ) 50 A 5 3070 P AR ) 2 e o B A% e R A R L S I i BRI WA AR L v, 52
HIEE A1 JR1 5 25 73 X S S R A B A1 = () AR RN R S A 45 6. [RIRT, SageDB I41 % HIR P ENESINT
P o B P AN A AR R RN R TTE, X R VE R LA B P 4 R A S B PR L. SageDB
AL TLUR 3 AN RN 1) 8 4[5 (software regression). T i 2H 2 8 G 5 208 P2 7= AR ATl S T 520 2) B
k4. SageDB A Y H 7 A DA LA /b ROIRAE1G B S AL A0 1P BE. 3) S +4k. SageDB RG0S B e &A1+
Z A BT HRARIEE 0, kG T A T R S ss . BR 2 4, SageDB BB S T VF 2 R Be A, thin® IR, il
Ak 5.
1.2 NoisePage

ModelBot2 (MB2)PH& NoisePage 41 $irdhi 122 5 1 28 Gt Xk LA 058 A T AR 1) 30, S22 M1 100 19 VA 00l P i B R B
. MB2 - N BB 7 15271 B IR B0 7558 R 48 11 8 DA S IR I AR AT ITRT I 4, (845 il PR B R 4t
49 K0 ) £ A2 B 00 4 BT HH BT R A O T2 . 5 SageDB #SAANF, MB2 MO SE TSI EEE RS
(DBMS) HI L EER, 4 LA ST R A BT, BE S, i e S7 (1) B Tk AT B () R AN R 2, I LA SR T
Wl DBMS 24 BRR S PAT A, FELLHEHTFE T, DBMS 45 A X S8 2 AR R T R GtRAS A AR St ge. A
T X R 2 AR IR, MB2 45 R R (1% HH e SO — 20 nT & I P Be AR AR SR A TR R LA 2 I 1 38 B
2 Ak, MB2 i Bt T —Fi G I T YI 2k B 96 S0 P2 3 R 40 A0 AR BRI 25 5 A8 43 MB2 Il 2R84 2 44 A A
RUPSL T TAE SO a4
1.3 OpenGauss

OpenGauss /A% T [ ¥ (5038 ZEHE SR, THi ) DBA $24E 1 [ B4k s 4 T 2RI 1 250808 o AR B i T 22 R
RESIHE B 2L, £ T BUR 0 H R BERE /1. P, OpenGauss 1[4 DBA $2 403 & A E T A, B4
WARAZE. REIHEAE . BEWRIAI AT S-S5 O A0 A 22 S5 R 46 T L. T i 208 P N A% S Al T A
WES ., EEAGTHRITRIA. BRI Z 41, OpenGauss Jy T J7 5 HB 2 FIAE BE 2% SR RY, 0Tt T A 200 B0 & 3 A0 A
I 4F &. FIN, OpenGauss 4 SZRFI0IE 2 S 1 H R0, Tk OpenGauss I AN JEAE Al HF, WL ERIERTE,
7053 FI R B FEAR AL RS BT BRI AL S AT AR 77, 3R15 1 1 B BB e 9 1S B 2 e
1.4 NeurDB

NeurDBV& — >l A T8 BE UK (4 55040 2 R 45, B EMR A% 45 DBMS 72 Tt 2 25 His A 6 8k 28 T i )
JEPRME. 155, NeurDB REWSIE N5 A1 41 3 sh B4k, 1 £k DBMS 7Eh &M P RFF & al . N T R B fn
FUELHI ALY, NeurDB K T 38 52 5057 I SR WS, Aker il B B0 3035 7 00 AR A, RO A AL IR o0 AT S0, LD
TR B S A A A A B PR AR A T i (R ASE Y 2 i S BB B 26 v DAAR MRS e R ) B BT B Y. 28
NeurDB #2647 B £ 1RG0 AGFIE B 0085 2 73 B Dhse, > 1 F P A Sdh. Jaiad 51 N2 S B B 9 i il
ERE WAL, NeurDB B89 H 2 185 R AAT Ay LLIE B AN B (b 0 200 FO 47 8, INTTHE i 1 RGeS v Re AT
521, B )5, NewrDB §7 8 T SQL &%, 51 N7 PREDICT e, i 1 AEM AR E A 1 AT 3BTRS
1.5 HithSaesiReE

W T IR RERUHE R R G Ab, VE 2 AR B i P BN P A A T R BB 5 1% Oracle™ 2 HE T % RE ¥ FE Oracle
autonomous database, %54 i GE 85 134T B S ELHE PE 4RI R4S (A0 B SRV B - HiE B R N 22 4
k. Azure database 'S & H BRI A8, Azure BE 95 {3 F Py B AOHL A 2% > B [ 2h 58 % 51 kA0 2 ) 1k B
Amazon Aurora "V BLEEEE K T HLEE S ST IfE, Auroral AL T SQL LSRRI L L SRR M A S VA
WLERF B B 2. 5 Aurora Z8BL1 Google Cloud $#&H T £ B2 4 BigQuery ML, BigQuery ML #24L | TG 75K
AR RS H BigQuery 5t AT LA B B2 (E s 6 7 rp B RIS AT L8825 SI AL RS, SAP HANAU AL T — R 518 Bt
Dife, BAGE R RE AR Ui . B0 B B N L RE R 5% DL R REARRE TR R 5, IX e T Re 3 (R Rk 1 5080 e 1) v R
BATRI4E.
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1.6 /v &5

BREEE AR TR T N LR BT E M AL dEd . B IRIEIR RO T AL B ES L  ZOEE A AR B L
A ) TN RE. IX R TR BT JE A PR M BE (M R, 1k DBA BB L E M E OGS 30, IR DBA ¥ H &
(O BN ZES TAE, R P S it 7 R B ARIE 5 Al 5 2K, B R R O A BRI . R B R it 132
5, TRVt 0 Bt SRl 1 NP B A 1 L A% 9 B0l P S v 0 RIS 5 1) i A 75 5. A ST HH IO AE AL A A 2 B A
B REHUE PE R G S BRI 8. O E T R IV RERUR B R GE S B)Z . R . WIZJZ SEELE REfL
(RIS TR LD A0S — R A FE RG] il AN S ) PR PR AR BN o, S v A Y0 5l 2 T LS R BB, Ao &4
WE T AU S DL RE AL 0 E sUHEAT 1 A S A R . B RERUHE P 22 0 B ) 2 RO B PR AROR IV B T [ 22— N
TR RE AR AE B 2 AT ) S PR AN DR B T A AZ AN, 3 7T DL SR8 s 4R 280, (RN B e SR R i 55 T AT
2R, $ROESCRR. B RE KR 7R BOR 75 ZESCHE SEI S AR . SBT3, SR AL SN | A P B SR B RE R
PEE S AL B, BURTIEA SR R, 2Pl AL R R 2 7= ks 2 tH L, 401 NoSQL™. Graph %it#fs e 19
S5, W ANFEI R IR AR, B RE R E R ARSI RERR L E . WA R RENIZ)Z X 3 K TRE
S FEFR [RIINy, — 07 THI A8 T I 18 FOR R kAR (B 2.3 3.3. 4419, By E — R ERESS
UREAPS: 27

1) R E A EE A PR (B ST R ) o S RS SRR B ORI R WAZ R R RESETT,
HERJE AT B (R S5 v BE MR T R B v o e IRt A 2 U A T 2 BB A 2R ) E A P A2 Ak
677, BONBEA B RESIHR P R A AR BE LS.

2) BREAMHR RS B REM B RN (0P HEHESAKE): ¥ AN TR ARG R AFE
R A P R G, UG AR T (B ANLIZYESRS) MINAZE (FEMARAT 515 A B AR 22 S BE), T I
% 52 MR (i S R B LR 5%) LSO LA $dle e 20k (Uit 255 HEHLD)
138 S B k.

3) Fidhn 2 SRR (0 Pkik: EHZ 55 HE): B R T b, AR I ZRomHER OCIAE
PAZJZ R AN BT sl B P P 52 L A ) AT RE S BT OB 55 « BRI IE . HEWT i 55 22 4 A, 75 24
BB A o ) (DN 0 U7 10 81 P A SR AR B ) 9 9 2 e R BT L.

4) Z BRI RO ROXMERE (0Bl WAZ)Z 5882 U [F)): B RERG PRl T2 2 RhIhRE & 1 AL 7
%R GHERE . RIS TR AN, 75 A% 2 SE LR LR R M, 8 S R E R (AN RIRAL H AR
R RS ), AR B E T AR BN, 2 F AR BT ORI O RS I L. AR, B e TR IR AR RE
DA (nfe g B 51 5, F 55 ) BOMIE A 5 000 R R i b k.

XL R R I R 1) 20 R e B e — 2D RN T M (R GBI AE, 97 R ROMR IR DT R, JERE R — A
RERHE PE R GERO S BTHR I T S i 2R, RIS AT 2 A E SR eSS B L R RE T Z AR RE A% Z A
B LR RO AEALTT I, W B AR EOR, DL T O Bk

2 BHXEER

N B ARG, RSO PE R SR T R SR B F P A R R A2 EL A A U5 2 AR IE B SQL H1k
NG 1] v 25 FH T 4k B P 00 2 v 2.

EBYE FE A HJ7 10, DBMS @it 5] N HAR1E S AL (NLP) $iK, — T SZEL T M EARE = 2] SQL A #5#
(Text2SQL), 1 — A T SLHL T Adid SQL i) B2 [R5 FH 7 56 T 504l 52 3 4% 1) 1] # (TableQA). IX {E 15 A H 4 4
FET SO P AR AR S DL H 5 S (0 3RS H 19 8, 17 28 45 U 67 S0 A L ) A% AL R RS R 1 SQL B iR TE A, AT B
AT HRA L BB A IR RO BRAR 1 A A T TR, S 3R  T BRI, AT AT A AR AE AR U il R F A7 16 55
WEFIIEER.

2.1 BARIBSE SQL Fik
B2 R TR P B G B ARIE W T HAAT SQL Ar 4 (Text2SQL) HIdrHEAISFE. HARE = 5 SQL
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FACME 2 sh R TR, B, RE0R M B E 2RI 5 ) e & i 4t — 151648 B ARE 5 AL RE (NLP) 1
B A SRR AU RS0, R BRI GEA. 5 u  BeF, S A At A 0 A DA R AR I 5 A RS [ 3R R B
IR A, BARTE 5 2 SQL Fe AL ORI 1 B4 PR — A 4 AL A AR R, — i KT 35 B TR ) T i A A
TR, 2038 NLP AR )2 I dan A\ BUHLES 2 SI B R ) i 2 AL v, S asht 1 AR1E 5 Sl e o il il X
B SRR, BER, 9w 5 AR A 1 A5 AT as AL, AR A AR AR g A 5 5 A2 A L B SQL Y, I AT
SRS R, B ORAE R SQL A IE R HLAE SGHERA. X T ORiH H LA, K1 5 A BRSO 1A
ANHHE PR, R HL A6 Dy SQL Eif. e, BIS RIS ) SQL &y R GE i i 28t mT LRI s P
FITAT. BEAR, I — A SAGHEFR, AT LUOREE A2 5ty SQL 2 ) (AR PR MR AL, JRATTAEFE NoR K & 4y g — 43
iR LA DT I AE AR AL RE P A R .

E R 5 A AR
G O AR AL TR - ™
: e— Pl S
il |_’| H ARG & ) '—' E R 15 = b 3 liig*tm%ﬂ @
EE ST B
wom i
4 EFHE
~ i SEFEER L]
UI — spE e B 1 ppmen SQL
| — T
REFERE A yrprare

K2 BAEE 2 SQL FeHbriE ey

2,11 EEFIREE 5k

(1) Gl SRl 2K 10 R IR SCFRTR, B A 2 I 45 46 287, 5 P R A 1) 110 2 e 55 i) AL, ) FH VR B2 2 ) A
T 25— o R o 17 R LA 3 T B R RS M 15 2. AT 2 AT LU R 4 b, B TR ik, & T
B 7 ide T3 8 I 7 vk DA B 32 - T 0308 5 B 24 [ 7 vk,

o FE TR N R 7 0 H 7 ) P B TR B 1 A0 ) A ), A SRR LI B ] L A R A 1)
FoR. ZITIELE Text2SQL [-F AR Fe rH 3 232 B A, #1410 Seq2SQLM. SQLNet!"”. IncSQL!"#1 TypeSQL!""
ARSI AR Y41 SR FH A i N D7 vt ) A P A SRR AT S, SR HAE AN 5 one-hot 4mADAH LL, TR\ 7L BE
AN SR FE AL A R R U B AR R R, TR IR L 1] [7) AT DA K A Al 2 v 2 ST 380 B R F 3RV SR AT

o ST B 7R TR Ay R A 1 B A s P 255 1 2 S5 .. X SR i B R B R s B R I R
B, B BRI Z MR R (RS RR EIMEL R, SR B M4 (GNN) X E 45117
i, BRI TN T VE A GNNUYL Global-GNNPYHI RAT-SQLP 4%, 14k, 45 #4)3 bl FI T- 46l [ 4R1E = &
), AT 5 5508 P 3 R AR 45 £ DA B Text2SQL i) . ELAAKT &, LGESQLP it £k [ (line graph) i3k £ BhiE
SUAE R, SADGAP IR F B 45440 AR 1E & B RVER R TE T S8 — IS HE L. S*SQL ik — 2 56 iA: [n]
H LR 2 TR ASE R, 1T Shadow GNP %ot B4 e A 2 AT 4 S Ak Ab T, 72000 R 9 ) ELAR 2 7K, I Jid
PR 5 5 2 ) 24 SRR ) 05 4 P A s B R s . IR BT V00 B 35 J T T Text2SQL AT 45 Hh s & 4438 SURI S5 # 15
B EE 7.

o FETERE ML A 710 BRI 2 T Transformer™ g it &, 3t A & S ML) 28 7 )5 4008 e s X )
(ST &, AT ARAL 4 A5 26 7 FF 42 TR AL 1 A . X-SQL"!. SQLova®™ il Unified SK G2 1 7 1 42 1 FH
Transformer 1 A% U5 ER, 78 43 1% L0 K (038 SUEARRE /7. HhAh, RAT-SQLPYAT DuoRAT it 1 26 B A0 Y
TR NN, BT TR S 2 MR 6 R EAERRE, TE P I8 S8 (0 BERTP'
GPTU%%5) (% oL, FLAE Text2SQL AT 45 15 21 T )2 B, 1X HLAR Il A 45 1 A0 Sl e A3 oy 55825 ) F ¥ 2 oL
1l B i

o FETTRYNZRE T AL 7518 1 R TIN5 15 5 A28 (0 BERT 55) X285 16 ) AN H0HE R A CdE AT S, LA
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fif 1k Text2SQL 1£4% H 12w AG Al /1. SQLova™ A1 RY ANSQL M4 A ] /5 Hh ) B35 5 B A 2 rb (10 237 &R G s
1\ BERT #nfith 2% 34T Ab 3. oAt 7572 IR FH TU0I 4538 5 B 2R G AR ) J2 R 1455 18, 9, X-SQLY7SR Fil 414w i) 5
ARBESmAG, T IRNet VS5 J7 VA7 LI fils b 51N 7 84T HRFE LASE 58 ) kR0 15 4% 51 44 2 A1 UL . HydraNet™
T4 Y BERT 43 35t 1A S AT B AN B BEAT S S, LMERF 5 BERT FRINZRAE S5 1 — Bk, ETAPSE I 1 2514 Bh ik & 1
DU AR 1 il 5 5 RN F1 A G () S B i, 368 S e 0 A B3 il A 1 5 A P 1 0 () SR 3 I PSR s B A
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2 S B HORR T7 i3 P07 A F N N BE5E (10 2 B8 A5 i % A RAAE 25 A1) 3K 3 B DR A K 22 0K 1 2 3ont
Hs R e R PR, AN EE AT LURIFHI L DBA FIVE L2560, e HUN Bt e v A S i e K 1241 CDBTune®™
I DDPG (deep deterministic policy gradient)"V&i%, Jlid B O ALK 25 5 AR IR SR R G, 52
T X BE FESE A BE R . QTune”' SR H T Double-state DDPGY 135 (& T 5 £ (LRSS B LLBEAT SRS 41 1) iR
#ttAh, DB-BERT U FIF AR & A RR, I P T W SCA R BCE S 5, 4B i #2. HUNTER™
1§ 7 2T PCA (principal component analysis)®* 1 AL AR PR 1 B 45 7 ik X6 540 25 1) 3847 %6 $% . HUNTER J7 401
SEE T L FIE R ), SR PR Bl 2R SR s, Soidid 4% Bk AT RS 8 &, 485 F] DDPG AT AR IR,
SEAT PRHIE S (A AR 2 AN R, AT T4 4= 45 22 R = SR A A 1 75 oK.

BT RBAR JER H LLM 158K RE A7 04T 203 BE R AR, BT RASCAR I 7 208 R G ME B kA5 R K
B 5 B ARG HERE S 8. GPTuner”” Al DB-BERT? 75 B\ Ay Ut 55 $04 P 2 H0 8 i 9 SC AR LABR 1l V8 410 4 171,
GPTuner F|H LLM #EAT FRAL 3R, 550 2 S L4504 2 1 S 85 TR 4RME B, S5 1R R N rh i 43 AH DG I S 45 A
X A AT B R, SRIG R AR G i) DU Ad 75 V2347 S8R 1 #2. DB-BERT M BERT A7 124K
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HEFE. LEMTUEIZRBN BE, &) F 55000 122 T A0 R0 2 5 DL G s i e 20 B AR A 2R (TR, ARG B AR 5 SR
M E. LEIEAT RS, RIS B R S EOIETHE T, SR E R S Ab 5 S RIE B 1 S 4.
3.1.1.4 BAELTFRE

R FTEAR AR BB RN . AR . TAE ARSI RS, ST i B P R AR BhAs
RASHACE, W25 T HOE RS S R R

BT i R I R 10 )5 10 3 B G B AL L, S B SIS AT S5 I AR A, AR S E TR SR
T2 ) B AL IR 45 2 BISRAE SEms, R D S R AW ARAHT S5 1 S 50 B, (R = 2 2 RHE 25 R 2 R ).
DR AR A0 7 v U JR 300 B B T R g, U OtterTune K F A SR8 B 45 R, 38 5t v 0 P [ 0 g o s
PEHE 1 M RE TR 2, ResTune 3 —325 51 A J05% SJHELR, 0 T 5 D0 A8 28 5 e B B A0 2 1k 1R Sl fb i
LS R 2 RIS EOTRE, HAZ O TE TR 352 00 02 R 25 1) PR AR PR 858 22 57 7 SR B9 1k R T Uk R FEE 5 2] IR )
(¥] LlamaTune >R FH £ B R SE BRI, 45 4 SHAP RFE 5 BV MNT BEA, 1 S5 80tk 24002 1) e S 1) 2 4890 1 4 ) LA
LIS I Sz k. 5 2 MIEE, SRk 3128757 (40 OnlineTune) SR Zh A8 S, 38 et 768 28 58 B 30 S5 s B 3 387 (1
DDPG Hi%) SEitma S TAE A8 b, e Bl & T 2 AT LT, 7ECRIE QoS £ A I [R5 B S HUif
NG I EE T
3.1.2 E5|H#EHE

R R B TR 4 O 12 1 A A R A ) AR SRR B B I R BUROE A 3R 51, T4 e s P
BRI AR, Yok B0 12 2 v i B T8), A1 Ak 500 128 B A7 s 25 R R R e s e S R VR A 2R B BB LR
SBT3, BRI HEFE R PR R S0 A6 0838 N A B R0 BB 15 B, AT 7EAS 5 22 DBA A TF T E M T
YEFF TR,

W s fis, B REEHR R S R ARHE R AR A5 3 MR R, 1) ki 2R 51 4 BRI i (AR
A FACHE P OIS (RE5M . GuiE B B AN, B8 & 007 i (Bt Bk 2l R > 207 A4 i 22 5
Hetr. 2) RWOIHERF R Fe TR R 51 MISERT RGUIRE (k. VERETRR), 456 ML (I ZRii i) 15 7E 4 ik
i (BhASHEENS), RAZE TN BB SE KAk 2 S AE i A HERE R 51, 3) BBk Ml @it Bl %516
H (What-if Z51) BRI IEAL GHEAFRE . VO T8, EARIE R 51X B RE RS THEUR, R BSR4 I 5k DA RE
SRR NS, J5 30K 4 B4 T B R e R B 7 1 DLRCEATT 43 B 0 OB,

EE{RiE ity

I MR 5] 61 R vEAl &

T3 2R 5] A2 R R
AW :
I D SR s

VW& Wik RS
5 BRI
¥ 2) 3k TELR R Bk )

Bl S RS AR AL 2
3.1.2.1 fRERGI A
ki R 5| 4 2 R S R RR IR AR P B, HoAZ 0o B Frse ML 2 TAE B0 R BUBE M R S MRIEE S . 1%
BRRBI TR FEARLAE: (1) 7 5 TR S W e th . SRR &1, (2) 156 BB AT
2 (A1 2. BERY B i He o i BB R 5 82 R S R A R
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EF S ATTREE Y X A B SR R AT AR, K5 Bk 831

R4 BRERGIHERTTIL

I JriE i A AT PEAG e ECIERAT
AutoAdmin®® £ T-HUN R (1382 00 fr 28 What-ifH AT HES: (AR EGIE e Rast
AlMeetAI™ FETHINMEE  F 25| ot HL g (AT ER) P Al Bk,
BEN_KNAPP 3 J M4 1h 1% 2 MU+ 1k 2% What-it A H 1 S (AT 51 25) 7423 1] B
Extend"  FETHUNGEE  H0 What-it+ALES CRALAFEREERMT IR TEk 20 pas
Cophy"""!  JETHUNMAIEE BN What-if S S: RO R AL SEiy
DISTILL"™  FEFHNMRIMIEER M What-if MRS (AR I/ EL) ECIE¢ Rast
ISUM'™ BTt ibig R What-if A HE S (AT B EL) TR Bt
MCTS!"™ WS HHR A What-ifHf - S (AR IRZ) IR Bak
NoDBA!"" (A= Fmj bzt (A EL) ECIE s (55
LanldxAdvis""  #gk2:5] IEE &w: What-if k88 (R E) TR EE R B
coLT!"” R ) What-if AT HES: (RATIE) Tl 23 ] SR
QB5000"'"™ R A TRER K EoRE s FREEMEERSI SR B
PDAlerter!"”! e Hm WAL+ S v ! Fast
OnlinePT"'” R T4 A AR FEf% 7] B
WEIT!Y R L R8I E TR S () eIk Fas
AM! FResT: PN What-if+ L3S (CPUBLA HIASA /D e 4) ECIE¢ 3 Fas
LIB!'™ RS F FRA IR/ E ECIE6 1 Bz
DBAbandits"' 31k F B el Fas
SWIRL"" WAL F What-if+{RAka% CRALAEREIRNIR ) k23 ] SN
DRLindex!""" HEAp S Hm) What-if {24k #% (XA k2> b)) R HE Bzt
HMAB!"'" k22 S What-if -4k 8% (&L [a]) w5l HE Fa
AutoIndex"""” i H A AR AE) A7 A PR Bzt

RO TR BE oy W, 3 A G (R 20 B AR T HLAR 2% ST (R 7 k.

FGEIIRALL A5 T5 75 AutoAdmin®iE 3R ACH N2 51 96 B AR e R 51 4. BRSO AN B W A I ik
HHH RG], JEEHE A IO B R SR 5 A K TR Sens, 5 o R A 15 2% 51 1 # K108k (in DTAM™
FIEAIGRIZE R Z FI R 5], @Ry 7B B J > M IR B Dexter Bk T B 23 B R 51 68, B3N
I KRBT TEE B 2 51 R 5] (BRFIECN 2) BIER B R 51, JBid {1088 5 19 7 %1% 3%6. DB2 Advisor!* ¥ it
BIBERGGNREER T, KB WS PAT TR RE R 5] oAb 3515 A2 B A W TR B B 20 i
Xof LA W IO IR B INE IR 4E. Relax 512" IWT a6 5k R 51 b 2 ) AR AL 2% R0 A 2 0 A e 1 B 2 51 4K,
JE BTN G I PR MR RS Sha AR R IR 4L, 158 B IRAAA% T 8Y. Cophy! "SR 4 He2is S s,
VG HTE AT BRI BB 22 5 2 51 9N A% IR 4R, (BT 28 M LRI ASE TR G e i 2 2 T 0 SR A B AR 2L 5

FT WA S TR T WA T IR BUGEE 5, 8 HE P G R 2 AR 51, S AR AE LRE ik, — Ly
HEMNTE WA EE. WHERE. JOIN. ORDER BY. GROUP BY 4] #2HUA, A= st 54 ik, FEHEZI 4 &
FRFH . = HRE R 51 BT o] BT VR R AR Sk gt e B, S8 i B AR AT 3R R SR R A i i 2R
AR, HRAF T S 5738k Bl 11 A 2 0 76 U R sk a4 S S
3.1.22 R HEFERA

G| A B R R R 5 S A ik Bt T4, T RIBHUALR (2R (FRR A v ZEIR) A2 () A (3%
R 174K). 1% i) A2 A DAk A, JE T NP-Hard 19381, 75583 UL E Bk & 207 1R A

FET I £ 22 5| 7 7 10388 A R U K 5 £ 56 5 26 R A3 22 5. Auto Admin®™ V3 3o 900 B2 AR 8 ) 0
BRZE I, IR AN T (What-if) WEAE R 5125, BEN KNAPP W —35 51 N B 25 WL LLE AL 5] 158
H 8. Extend" R FH B 4848 R 23 1) A4 ORI, 38 177 - 725 AU BB aRgn g 2% 51 St Cophy! "I 7t 1 4
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TSR 8 o A 2 ) B S I R . BB HL RS 2 ST H R I R R, AlMeets ATV S 2R 51 R B0 R 43 2 1
i DISTILLY VR FH 125 I 28 2 > £ 30-2% 51 e 55 2 LAyt /DAt Ak 2 1 L F . ISUMY il i 6 3 i B R #2751
AR TSR 3] U5 1), NoDBA! 9 Yk 2 iR 91 % 5 4, LanldxAdvis' "' & 2 £ 511 % 51 35| A S0 A
TARALIRZR s, MCTS" M 3 22 5] 53R 1k e 37 B4 QA DA 6 5

BT BRSSOV R S SR T VAR LA 22 5, B Re I AT 43 R 32 3 T AN S R 4 M B 2. 32 3h T 7 vk
UNSCRHR [123] SR FH B 1R 0 000 7 43R5 A, COLT! 73 1 s 7 111 0 2% 51 i 2, QBS000M ™ I 1) FH 4o £ kA 4 T it
W BIL AR M 7 VR R Zh AW S : PDAlerter! Vit AR 432 540 #r i & AR, OnlinePT! 'V S2 i v IR 2 R
51, WEIT! 5| N T AR s 3R R 51 s, AnMU 015 e 5 B 3R 5856 0F 2% 51 45 2% M. Learned index benefits (LIB)!'"
P& a2, B R AR PR 51 38 LA, R BT 5 >0 1Y S R

BT R S R S 0 R S HEFE AR Ty /R ) R e sl AR, Hp AR (agent) AR 0 PR (state)
ARG E (action), I ATAT AR A2 (reward) #E1T 046, DBA Bandits" "% il 22 18 % FE LB I 28 4k P
Jic & Wi 2k, SWIRL! Mg H] PPO BLiEAR AR 25 2w AL S5 1% . DRLindex" '™ & 25 3 A U3z 5, HMAB! il it 4y 2 454
T LT B BEAHEAE. SRS R vk, MCTS!" & 5] B PEHE 8 R 0%, AutoIndex!" "™/ SE LY
R EEL
3.1.23 &5 aifhit

G| AE AT R BEEIE R 5 X RGN AR A I OCRP I, 45 VPGB IR & (A InE) 5 7 AR
(At o5 A, RO BRRTE TR TN 22 51 X A v R 2, ki Gceid B 2R 5| B ) R Ak,

BT RACER ARG 1 J7 vk B AR A A AL 28 O AR AN AR Y, S AL 2R 51 6 B ) T R R, A SR 5
7 2R BIARAT B[R] ek . FE RS BRBIEEZR 51 BT L R, 38 i e BRSO R 51 AL, R L8 28 i s M B T
RIFE AR 2 5. B0, DB2 Advisor! "l {1k 4% S 45 0 4 0% 4 2% 5] 3K e 7 VA IR 1% 2R 51 HEAT SIS VR A, 45
AU GHE B (R B E) AL TR B X5 1 5 B R AL IR P A, 45 AT IR AR Tk i, i
M F B R E R, BRI B R AT RE AR 22 (R AR B 1), AR EE 44 R 5 58 H.

BT AL 2] PR A TE 5 B L8 5 ) B (s % ) . IRFEPRE IR 4%) M5 s 7 B B v 2 > &R 5
WA, T % 19 2% 515 B 3R A AR R T R . IR L VRIS B B A T AR AL, B R BB G T VR AR 2 R 51 A
AR R BN 28R, BT iRt 22, BT ST aY B
3.1.3  HEE 2

BREBIE LR RS N LB BE R R 5L S0E 4E 256 10 44 A A 1 B 07 32, O fE Tl i s I 5
0 E SRR, SRR R AR AL S AT 0 PR A B X — AR B AN T B 5 AR E N s
ITIRES, EFHREGBRIERG. WA B RS REARIR, TE LA 4% 5 A R

W 6 2 B RERE 2 W (R bR e AL AR, B B S50 2 12 I 1 2 M BIE 12 R B R S AN M s Bdis, AR s T xd 3L
AFAE IR S 1 EAT RN, PESRB S7  0HE 5 75 TEARAE = BB BT IR A SR IR 2 A7, a8 e AR LI, &5
ARG T EAWIRATIXA I 2 LA 00 e R G A W7 R .

Hfli RAR S M SRl IR E R 50

Rt A
Bl6  Hudh s WrbnEL e

3.1.3.1  HdEREM I

B RES I 22 WR A . R SHR SRR PE 12 17 1 A 4R FE AR bR, BG4 R (CPU FIH .,
WA R, BESE /O b D). B0ERE (RIS TA] . BUEEREIHK) . MZRIRZS (BER. EiR) MUK ol (&
SIGEH) . R X HHE). Hl4n, PinSQL il ik 2= K4 e 5251l g H AR B R A 25 P AT 1R 5 W8 R RE R, o
EGADS" I3 J RIS [ 77 51 1 i SR SR E SR, SR TSR bR RS 2 A1 25 . Twitter (1] S-H-ESD #f— 25 5]
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EF S ATTREE Y X A B SR R AT AR, K5 Bk 833

B B B, ¥ UGB IR o ke ss . RS20 &, NG 85 F A ISR AL s 5 e Lh i
3.1.32  ReEAR

S RIS R A SR Y B ) T A S A R R S 15 T e G R ARG I 7 9 DR A e A D (A DA
BNAS IR, Uk, SCHR [126] 32 H B A% (8 22 V0 38 ik 7 3 0 A8 B A AT s A5 TR R IR, 88 % A T T 7. Netflix ) RPCA
SRR SR A WY, 4 o o B R R A R P S R 7, RS MR BRI 437 5 1 1 57 3. iSQUAD!™
W 2T = Te 5 2R R BR, X 5 HRASREAT AR FE 21 4, 1 Wke CPU I 4840 4 Ay BRI By s v A iy 2%, AR
AT HEAEE & _EF 3. FluxInfer! @ ik Mg nBUE 17 BB R AR K55 R, 454 PageRank Ik YU O %
W5 R RX o R R R RAR R R AR ST AE LR
3.1.3.3 MEFEEN

AL 52 07 5 40 M7 75 B M 35 15 5 P38 391 AR 5% 17 J. DBSherlock! > 5] A R R HEBEAERY 1 DBA 2856 % i 9 Al
SR (B A O — 45 I R P PR ), 38 o AR R PR AR B e e A BE AR IR, ExplainIt! ) DA % U 5%
ST 4% DR SRAB B HE e, 1T DL e 307 0 24 44 8 431 2 2R 45 P (KA 4R B 4, 491 4 2 1 8 4 i 2 0 B3R 0 I 3k 0T ]
RS A R, iISQUADM Bt XU B /3T HE 42 B9 2R B BOE ik R SEKEARABIAT TR0 75 5128, FELR I BEE T
DU R R SC I S B 26T (0 /O FHZE R R 51 k) 518 A 4R AE, 035 PR AR N AR siAs. AutoMonitor!™ I &2 B
S H FR BRI 2 IR AR R, SR ISR AR S T S FR AR A ABLEE , 45 4 4 SR U EE 1R 8 S s 2 T AR 8] 5 (S G 5, 491
8 PYAE IR 37 5 b DR R TR A ™ B R 2B it
3.1.34 BES5hi

BEMAS B SEHATI B 2 I 45 10 a4k R mT #0852 SQLCheck! il i AT 4l 5 i 1244 (AST) Kl
BE, F R ARG IS B 5 SUR SR R BURE, JEHERE S T 04 A G B 250 55 8. DBdeo! MR,
WS HRIX 3 ANZ TS OB, B 58 % 8t S8 T & 7 B, $E TR B 4% 7 . DeFiHap!"Y7E HiveSQL
AR R B TG ESHE 53T -5 0 2 X 8 TR, 38 3 3 A 0 A 5 B S BT AT I T, TR B Ak R B (Ui R
HEB /) (X 81, 0 T84 B2 IR0, AutoMonitor! '3 T+ Kolmogorov-Smirnov A6 5 W 45 46 45 /0 A k2, H hif %
InnoDB 2% il K /NI R 2R FE AL, 4 95 IR IC B 3 A& e £ 3k A 1k
3.1.3.5  EHIER

SAFIEAR AR TR B T 1 P A 2 ST AL, PerfXPlan'**1#E MapReduce MV 8 R R 4L Wi S bk B 2 dls, @it 78
LRALAS 7 > SR A AN AR, {8 R BT R 3 LA AU ARHEE 3 R 28 4. STk [136] 42 Hh IR 48 SO H AN I s g etk
ASYMAD AL 7 5, AR 1) 214 T 6 2045 B 0 SR A BE S A R, fi R AR 28 P )1 25 DA N BT 1) S o
32 BBEAESITSETR

K S AR ARG AR M B O A R R A, O AL E W . A HRME KIR R BRI N, HAs
P£52 OLTP 5 OLAP 373t 2 5 (1) 15 35 R A4 i 550dis 122 8 74 5% (DBA) MRHHZR 56 3= SCIA 47 380 7 vk Lk LA Rt
ZJFAE IR N Bl A SO0 5 2, TR B S A I o ) T A Y S AR U SR, S T M sl B $ 32 3
S TP W E )
3.2.1 ST

51 S A TN 3 Sk L8 2 o B o AT B P T SR B BRI S TR R RE AR X, Bl AT AR I IR BN R G
AR S IR SRR

Bl P A B TR B R4 . BRI 25 5 SRR B = B BEWL . AR G0 Sl it 1 1) e 2 M s i b R s
WM E. CPU FIH R O8RS, I BABWE R, WIS B SAT E R EM B S50 5. 4R R H 24
LR o) T, eI TR A AR AL L IR FEANG W 265 5 1% Gt nl VAU SRR AR 46 A, 38 3 1 2 A R AL ) 0 Sl g B T 2%
FARMIB R & AT T S PR R Ve A i Tt IR B RN, 258 5 K8 T SR 2 A0 AT 5 45t Se e, SEBL st IR i)
PEAH 4.

ZHAR RSN, SR O S TR TR R AR S I B A YR AL, SCHR [136] 7E Azure SQL M (1R L R 5t
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KFME S IRIEAR, 8T 2 3 5 L0040 3R VE IR T SRASRAE LR B A B by 8. SCHk [137] $& H 2 T8 W) 51 417 19
AR 7%, S8R 5 A B A T A I £ R Seagull IR T 22 4R it £ RO 97 30 B DA Ak %%
U FE . 6 KHE U, TASQU R I 2 B4k 1k B R hh 28 15 i3 439 58 150 AR A e 7 i B0 S 10 98 9040 L il 7. SC
Fik [1407] 3T S5 R VR MR 0L 22 R0 P FE YR 75 SR A 56 1, SUFS!™ %5 & LSTM 5 1 38 B 4t SEIL 58 R HOE F (& ik
FEAETRI . Auto-WLM 2V 12 25 0 $h AT 4R E E A S Redshift 7 & (178 B8 9 A iz, HA0Je 40 1 kT iR T
23% Fit &
322 FERAER

e R R SRk 2 3] L AR RO BT S N TR BEROR, & U AR TR L B TR R B
P FI B R R R P 91

BRI RS AR E X B RS BB IR 3 AR B 1 el A I 3B Sk S M B AL
AIPATIA R, B RS REHVERE . F 5 w8 R S0 IR B 5 R A S8 40 2 S FE 52, 7E4RIE SQL
WEVEIEM RTINS L 5 S A B R R AT A R HAR A WAL G A s TRl 2 TR &R 15
LR TG B3 B R S A0 A R, VST 360 F % 12 1 8 A — B0, PR RR 2 T LU AT T RIAR A £ B

BB R N R S AR L R P2 (1) LR A il LearnedSQLGen! V15 i 5 Ak 2 STHESE, 3@ i 344
IR 51 S 1022 5 BR B0 578 FROIR ZS WA (R A0 205 ezGen! 388 1ot M 4L AR AR S T 25 40 PR SURRAE AR (2) B
PR AE B Laucal™™> 3@ ok 3 45 38 45 -5 50 U il 40 A P9 0UEE REAE AL S M RE #6452 B, DBMS Annihilator!*”
SR PR W R Vv S B 5 e 55 s R
323 fEksail

R GRS DN 2 3 S B AR AT A W ARAE S R DR AR, R TAE R A A . PERE R RO IR SR G 1)
IISEIAP s o

SR R G bE TAAE BT 7 WO SRR AERHLNEAT. RGE BB W SCAR . AT HHRIANZEE

BFRIX 3 AN IR EURFAE : THVERHE QR R R B T A) 54, 15 SURHIE IR S5 18 1M I B S e B R 8, SRR

HEP J CPU/ P73 P s A 2. 4k T R VR A A0 SRS, o 3 5 SR A 11 B0 5 50 4y A 22 5 B, b3k S i
BIGETTBEHE , FFIE I 3 E DAL SOURD e . A £ TR flUR 4 e R SRRES : HRURES A B I REIRE 5T
R H, 7 E S AR 2 RS W R,

TAE G ER A% 32 TR 2 1R 40 AT SR R AE (B R AR 0. SR [148] F e 0 A 28 3 5 S 22 S A ) fl 2 07
B SCHR [149] SR JE PR B9 0 SR 2840 M A D R BRI SCR (1507 2 HH OURE A A6 00 AR 22 105 00 25 TR R 20 A TR RS
DBAugur! > "FIH GAN W28 (45 41 Bt 34 5 5 o k. AWMU a5 /R ] R % 5 BT 4R S B A 4 i a8 B,
FL A AR AL R KK B IS 23R
33 I £

TER AR B E s E BERIS 4E S, Ml R 20 3 M EEN R EES: Bk, BT A TR e x
TERFERE A 38 B2 S WL 5 9 ST RE 2R, T8 I 3 AR S B PR AR 1 A0 AR i, R IRFA S B 5 R
SIHEFEI A B REFE. LR, B Y S B B A R & 2 4RI (LR SR PR AR TR AR . D7 SR B K R GRS
R W IR R R G, ST AP G R R B A4S R IR 4 B (AR R R, ATARRE AL FRTE RS I (1
F, B R A SRR R AR T T e s S v 2R, RIS A R & DBA A MR 1 YL S A4

B WF T 50 2 2 MO AT T T RS 45 SRR U S et e B AR . VR IR R s
UL R o O ot B30 12 2 O AT 1 AT VA 90 5 00 2. 7R 08 P R S MR AT S T 01T, SRR [156] SR £
YEFE Ay BT T VE, BEXT B R 5 R ARMAT T2 AL i, N R G TiZA ME AR R Bk, 52 M7, 3
R [157] Mk T R B HERE MBS A AE S, I35 T et & Th B HREEAT 1 18 % LG 23 AT

HREEHERA GEORMR. ROHEIE. BB M) B0, R AR AL BV AR R I 4 E ik
AU TS . X SRR SRR 56 T RGN (RGURE M) FHERI (U7 BAHIEE) . BN (8
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WEH S ATTREE Y X A RSB R R AT AR, R 5 Bk 835

e VU /58AG 2 ST TR B RSRAAAT (BCELRL /2R 51 B3 S s B (1 RE M 7% SR IE %) 1) FAIFA IR, 1
B RE R PR B AR FERN A R, G HE P A 0 5 2 A G A 5 BN TR RERILES o S A SR
737 53 MR R, (A — LB R R AR X2l AL 5 2 W, BRI MBLR AL — e e E A3l
B MR R G5, (B 5 AR ZORE A I ZRE0E, B A IR 8] AU s (R 550 SR TN AN TR 1k
) A S BT A2 2% R B R AR A, B SR 2 A e 0 R R RS EE A7) 7 E — B3R T A, 75 N TR RE RN 4
P BRI 1 B ALRR FE BRI SR T, ELE A 13 B0 P I SR 1 20 Ak R MR A D PR 77 T, T 6 77 R0 7 e —
A LA, o Tt P Sk o i L, S R TN Bk R R AR R B SR AR AL, (LA B AT v S A ST R A )
SRME LAGRAIE. B8R BRI 75 MR ) RS B8 SRS Y bt A p3 240 SR 57 B SRS 4 b DL S A7 3.

Hds PR A5 2 W) S0 7 B — 2D S5 N D RE SR A P k1, 0 B G R SR AR A 2 2] SRR
—BIRTHRIL R B ST AR PE. I, B 2R OT RN 53 /5 2 e an A P Ml R RS AR R, O
e HH B i ARTUR T 0 SIS 053 ) A7 A8 TGRS b, 0 RE s 2 7 T X e P 12 W S N AR A, B v K
A8 S W B AE A 2% RIS 1) DBA 3 (7 T L WD 13 P52 e (1 57 1) AL A R £ R e AR P () 25 R 47 R A 4k
LR, SRTFEIR IS I FE AR AR LA 3R DBA X B8 75 VA S AR A8 52 12 2 A S RE 5 S i F (0 5K B

ARRRBTT AR AT 1) TR RACHELE, L I 27 > PR ARG by Bodfs B4t 2) My i 25 Ik 45 2 A
TR TR 2R, A R P2 M 5 B I 28 50K ; 3) LIS W R BLAS L AR AR, SR DU iR 2 5]
A R A AR R R R ORI IR A, AT (R B B 12 A SRR B SIC s 8 0 0 A8 1 AL B[R] 48 0IE (human-in-the-
loop) HUi, B fRHLATT R LA & DBA FIZ 5N, SCRE RN AL P BE RS

4 BREARE

B P AZ R B ZEL A R FE R PN A B 1) VAL B B B BT U 5 R A% L E I s R I e, @
THE FABLES 2% 20 IR 2% S B AK 2 2] S5 7V SR 3G S AR e 1) [ 32 MR A RIS DU R R v dls P PR e T In) N AZ )
R AR IR, R E R IATIX 3 AT
4.1 HEER

R B T B B A7 BT SRR A 95 B B P s BRI Al s A X, (R BRI AR A 1 N A7 B AL 1 7 0.
AF R B P A XA BN 2 ST R B E AR e S s B T P B R AR 3%, R 2 ST B vt T & Bl 4kt =0k
g B B[R PR AR A G0 0 B P A B b, 50 A X R &5 ) R 7 VR B H 1T I R 2 X v
U AR
4.1.1 R

(1) —4E2 &R

R 5| RN B P R T B F e 2 AT HE R B R A4, A 2R 51 nT LN UG I A0 R A R B
X 4E e & BUAE F ML 32 SR AT IR B AR G R 51 I o £ G B-# MR 5 B B E AR, A A
WY, B OB X B AP G AL B, B RIINLAR 2 S AL B S Thae, RIRRE AR T B0 S AAL38 27 >
B, B8 5 SIS BA a0t T B8 B %of L HIAR 2. 52 M08 K, B8 L IX A BE 4K 31— Fofr & o D A 280 R B 5 4
B AL U B-#, 27 SIS E AN B 2 (R RIS D8 &R

S TE<HE, A E>XTHIHET AR, 252 R 5] BN = S BASR TN S s A . 8 7 s T — 4 oI R
S FIARAELAE LR, W FTR, — e RS HE . A MRS NEIX 4 FIEARTIAE. K 5 PR, #%
T ol AR SOHs S A BAR 5 A B AN S — 2 ST R B HYIX 4 R RS,

EAFE S B ANE . W T E vk, — S 3 A B, 2R R AL Py E6 I, T s A B
WAL BABIE. 2 X R 51 2 NE REE R, R W 3 T s g~ — B 771708, 8 7 SRAE B W E R M
W R T B S R () AR ZE T A L Y S TR A B O A R R I e ST T S N B RO, HR
TR AR A B, TN AL B A A R AN IR Y, P AR EEAR R A Y ) B R R 250 F B SR T P o BB AT R
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of T 90 Bl 9, AR A 5 S T S T P A g A L, R A S B R P ) R R [ A Y
A,

Sty | A

g

Eoff, !
7 —YEE SRR SRS

x5 YR
4K, NI

%317k i i Yoty
HArk B VARE  GEEE A e Rl
RMI™ (AR R CARRE Atk & % WEST
Xinded™  RMU/ BZEPER x S AWK ETRENTAAE MR LSS
FINEdex™ 4 Btk % &‘}f;@i A ERREIGAT  MTE L, o
Sindex"™ YSTE % ik EAEWK G A R
ALEX'® Ly R e "Eﬂfifgi%’?‘ %ﬂ“ﬂﬁi@gﬁﬁ# T, ML F
MADEX')  spfiHi et OTOS BMA SRRRWAAR W FELL fbi
LIpp!'®) SR SERAER WWAE  EEA 2 'Ziﬁgg R TH g svg b3 F

X RT3 AN B, SN R R B OB R K R A LR 3 J7 1, 2 R SR IR AR AR B L T R A
HWREVE. B2, JRIREHA S Bt 2 S R 5 MEGHINESE, S5 R ATt 9 AT R M B 775
T ALEXY X 43 7 BT s A PN N A TR AT E P T A B T RIS T AR R L AR R T R B L
LRI AR AR, L MR AT RESRAT TE PR 2R FE, (E R A RS B, AR MR A A B B I
WHE L, (HRTHSARH S i, ARk MR 3 B4 22 Aol S A8 7R A e 20 o S8 AL TR o AR R ARTR £ 5 — M 2
SCRFECER R B 22 f i, DRI BN T B 3 B 2 0 ELR VR P . BRI Ah— 6 T7 3k S iR 5 A Y R P Y
FARZEAERIRY, B, XIndex!" R FH W 243 2 464, Forp 58 1 A0 RMIVBIR! (FR5E 1| R B8 V2 42H), 58
2 R R A B MR A — 87 SN e A kA, T 7R SRR NS5 A, a0 LIPPUS. B3 4h— b0y ik, (X AERT
T RUAFAE TN PR 2200 RMIL ALEX, [R5 SR 5 i B2 8 723 7 90 Bl N H 28 Q2R 3 e R A 855 5 251
FERRR, WU 5 A 55 A A 8T R AT B I, SR AN R Z2 KD, R A AV . SRR RRZERUD,
LM R SO, WARIR B REROR, R DME ] 0 BRI, B8 0 SRR A, WHREUR R . (R 5 T

WABR R SRR A EF AL E. T2 ) R 9 H 2GS B Pk, e e AR A R 51
R ARNH IR T B 2 R R 5 B 454, B S BT R A EOR I 2R, — RV PRI AS I O 532
FEREAEAR N, 43 )2 S b A AT 22 o X SR 4 A\ 7%, i ALEXU. MADEX!Y, LIPPU Vg 2 4% 174 A
SEAE A WAL B, AR5 B R B 2 AT 0 AN AR 75 00 2 W 2 75 75 0 R 5 S M AT R B I T I v X A 4
A7, 4 Xindex!"*, FINEdex!"*"', SIndex!" i /& 34— NI i G2 X, 22428 b DX 3 o G X o () B0 42—
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EF S ATTREE Y X A B BB R R AT AR, K5 Bk 837

ARER, I 2 b X B AR AT kA 3 R 5| SR A A 2 A I 7 BN 2 b X B HEAT $ 90, 2 0h X E R4
PRI R DR o X B & R BRG], Kk T E A IR EAMT .

T A th mT e 2 B R 51 A5k (B0, 9 s ), BB R A LR VI 2k, BRI R 1 b B 7 2 S AR R AL,
BN T S R B SR I O, RARICMIBR i s . (0 ALEXY), 285075 P sl ) I 80808 S5 — 5 2% AR P 5 A
PR A AT AL 2R, R RE T eI K 28 51 5 A i R R R A A ) B I .

BB — Ky — <, ML B> RG] EEA S A WM TIE. B BRI,
RMI'™ . ALEXU LIPPU™), 9 e WA (AR Y £, SRR AR TS A4 20 717 A, IR LI A7 AL HEF- 45 R 8
F&. ALEX A Fi S A0 B8 B U5 vE 20 32 B o8 e /N1 D5 At BN 38R i 28 5. LIPP tho A\ B3 R
INEL, LIPP LLI&E I8 b S8 70 275 w7 AU . B 71 1 L A9 07 R M2 e Bl I 0 949 i, 3 A RS
R R NN R R B S S A, ELRUARTY R, AT R I BEARAR . O 1 ohog I iR 0 Budls, B 2 A LB B
3 FF4E A RO A R 5 4. b Xndex! "SRER S 14 53 K1 43 B3, 98 J5 AR BRI 2L B o1 A5 L s SRR
(Y SRS

(2) 24235

BB R EHE A Jee, S ) LA R 8 K 2 T 5 1 0 M 2 2 e o e 2 2l P A 1 S R 52 )
Z YRR LR S0 R G| IR A R HGE M AT 97 R A ML SO 22 R cdin, (R R SRR E I S R ) (T
KNN 22 if1). 1X 67735 K 2 SR K 20 4 50 B2 () 7 12, SRS R — 422 20 20 51 22 21 et J R Budi L B R A%
WK 6 o, IRAER 5| M I EA R, A SCRIE I 2 45K 51 0 N TSI Z 48R 5] 2Tk 1) 2 4
G MIE TR L ARG, BUR ARG T — LA 2 4k 2] R 51 5807 1.

*o6 BUEIRT

E-ClbiRr~ HH ML Jy i B 23 ] SA SUEEW KNNTE E /NG
ZM-Index"™ T WML, LR SE 7S b £ WL 51 51 R S E
ML-Index""”  :Fmiip L 2% WS R % Hi K it e

LISA!"™ B SN %[5 A5 B 4 s i s i bt S

IF-Index"* T2 il ZAe el JE A5 i) i K 3 R

RSMIM™ JET25 ] 414 PR 2% A A ) (W HER) R AL A SR
QD-Tree! ™ JEF-5% [ 413 IRAL D] J& A %3 ] s W A R Fr

Flood"? T I Bk PR, RMI J A %% ] Kt K rE S E
Tsunami'™ BT et JR A2 ] Kt K Vi R

BT WSS 1) 22 24 R 51t A {6 AR 24 77 V0 2 A St i S 81— 2 U, T RS X 0 4 2 A i R AT HE R,
SRJE 8 — 4R 51 5 R R SR LM = 8 ml. FE A I, 5 8 R PR IR S R 00 Bt 17 A, S8
22 S5 AT B B R AR, I ORE AW A IR, 75 EEORUE WS bR i SR 1k

ZM-Index""V S 1 AN YEY: SR B, 1Z 07 RS Z W i 21yt B0 B ZM-Index #2143 Dy I i
M R R 3 TS8R Z B R BRSHEL. O 17 A BEVE I ), ZM-Index K BTG 20 Z 1 22  Hhik [X 18],
P 2R 51 UL FIAR L7 D00 A5 AT H B %F B ) 47 (3 B . ML-Index!" "R FI S0 (1) iDistance! ™ BRI 2

T B AR5 275 AT R4, 28548 H iDistance 7 VE#EAT BT FIHEF, ML-Index [F]H {5 H 24 iDistance (177
K BH4EY iDistance 8. LISA" 32 B pe 1 3 T 3078 it 28 (10 22 4 2 51 2 U il 5 25 W) A0 T 70 S O 250408 B 1)
BN T R AN )RR, LISA SR T 2T WU IS k. 1 ks 2 GRS I 7 S BR IR, A PN 1) B (i A FF 8
DU I 855 5 T 0 R 1) EABLEA T LR %5 (58 T — SR T A 4 Tl ek (s [0 454 s Ui 2143 1 (Shard)
WIS, BeJa, J& T A — 50 F B s A7 0 B0 E8 T, R ZRA AR 7R ok s 67 1IE R (10 5508 2. Rtk 4, Z-Index!""),
LMSFC!", Waz 1! th & 35 F Wi ) 2% 21 2 5. I J7 i NE 51 R B AR AT, 2% TR0 i) 4 B B8 i oo 35 T e i ) %2
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Y2 ) R AT B AL,

BTS2 RS TR EE G L 4R S] (n R BT 6 Bl 23 18] (0 81 20 0732, #2387 N
VA2 5 45K LA 4% R 30K . TF-Index!" V] — 422 51 2 5] AW B e 7 BUA MEEH (19141 R W) o o4y sk A
WIS AR, IF-Index FIAEM 5 SUBAE L I8 R WER) G IR J7 V2, (=5 s A A7fif AH B 8080 DT, 10 A7 fig A 2 e 3
P, BT ST B 48 B T S T (0 sSORE AT HE 1 2 R A T T AN T A R SRR A B Y e M AR AR Y.
RSMIM7OUE 45 R P 354 e 4104 P 356 1 o 2 I 8 AR AT 2 ¥ THU0. 55 KD B 1722 4BL, RSMIT Sl fif Y 44 4
78 i B0 BE AT WL, SR BB ST U (R RI A S IR B IO, IR ) BT B TR Y I AR B B R
—ERRI . A5 5 B SRR R S T A B A 2 B N T BRME, 55 RSMI ISR A8 R SR Tl 455 A skt
IS (B4 5. QD-Tree!"” Xt 4 i 1A B4 A 2 ) T A S agEA T O Ak, L FF B0 25 S0 o BOHR R AT 4 X, DAEH 5 1 2 i
AR AT 10 P B 2R R AR, QD-Tree MR 17 SUA S A HRE 2 1) 25 w098 ) 6 B 3R A7 40 [X, 1 =4 et o 1 30
5 0 K1) 23 B [ — AN B QD-Tree MR IE IS AR AT AR N B /R TT R PSR 2, &R 51 1 mUEA R NIRE, 3)
Ve (0 2 n N B AL &, 00 F BT 753 bkt O BB B 22050, PolyFit" Rl LearnedK D! [AI#f /& 3L 125 [H]
XI5, BREAES N SN R G 5% R 460, XFF O EHFR S SRR AL R R
51 B R S _E PR A ROR.

SEF AR (K122 45 2R 51 100 b 2 o1 (0% 10 22 45 I % LA AT 280 b Ak B8 1 2 )6 1B 25 1045 141 . Flood! 7> FH 3 i i
R EREARATR. Flood 1 Ja ik HE Fp 4 5 0 454N A% B0 N IR HE Y, JC AR 48 FE 4R R A &5 B 4E BEEAT I
BB 0. N [F T H AR Z 51, Flood 18 2% 21 ) CDF #2784 (R RMIU™™) Myt RS 43 [X. O 7 S8 PRt 40 4k At i
BE G B, X REANATE A, 38 FH HE T 2 B2 i BE Sk I 25 CDF R 2Y. Flood #3717 AR, SR 54 I D) s &5 )
AR SR R B HE 7 4 I R B 2 40 Flood 1R TH T 2 51 35 5 ik DA A 2856 0 f, 1 ek s 5 A
AR AZ (A, SR 5 A 1) X LE A% 4 (¥) CDF 5578 LIS F 35 90 B 0 355 17 (045 280 9. Tsunami' L& %t Flood fIEk
HE 7792, Tsunami 32 ZELE A 3T ACHE AH S ARG UAR] 2 1) 4 3P0 7 THI AR 1 46 14 5. Tsunami B IE SR ) T
PSR B ks 2 51 FI 3 A0 LA SR A AH OGP R 3 5 D s 28 51 P8 73 2. 5 Flood #HIA] Tsunami 92 3 T8 €
1248 PS5 R AR TE R 5, Tsunami K58 AN 22 48 25 (] 5 43 2 J LA A AEZE 1 X 38, 90 AN DX sk P9 I sk A 3 2 )
W72, SR 5 DA DX S i) 322 388 0 O A . 364 50 O A% 78 20 28 8 T P sk T AR SR, xS A M ) X 3 AT B AR 4y X
SPRIG! 1 H T — N7 A 22 4 25 )70 2 3 ek R Y 2 10 4 R — ol 3 850 1 3 2 i e A SR e it B F 25 T
% (0 7. COAXI™ 3@ 3e 2% >) $3ie 42 i Mk 22 1) RO AR S 1 Sl B R S A (4 58, AT 456 2% 51 2 ) o LB /DN . 25
=@

412 HHRsIX

B 3 DX — T EE R AR, e R B AR e R e N R 20 R 2 A B R a1 4R, DR s A il
e AT A0 B0CHE B B RO AE i B VR R . IUARER E R g, B o X b EL R AR B A 4 OB B
(1) 7r X RIS IESE, (2) 77 XERHE, (3) 7 X J7 5L, (4) Bhas R L ik,

TEAF R 200, B0 B 4y X % 1 B R F AT 47/ (N-ary storage model, NSM) F1%51 47 f# (decomposed
storage model, DSM) Wi FPFEA 7 . AT 4 — AT BT ELL A7, & & Ul AT 1 5 8 4E; P E s K&
— B FEAEAE, AR T IE S R SR WA, X PRRIEGERBLTY 4 4T X OLTP Al OLAP R Gk AT Ak, (HBEE
TREFFH AL (HTAP) 75 kB3, Il TRl &P E MR o X 5.

(1) KP4 X

IKPor X HEARFBHARAT AT R 73, EE AR 3 K070 BT o X mw e 7k, B T4 8 k=007
VERIEE T om b2 3] 1 HIE N V. BT X R 0 T vl i A v R B n A SR, SR X R DL R
AR A AdaptDB! 4 H ) 7 AR I AR HEAT B A5 00 X, M0 SCHR [185] FF A& 7 4IRLEE 43 [X H AL 75 ) i
g Bk I AR A3 X, IX e 5 vk ERAA R K, ARLTE 20 AT U5 v R R PE AR BR. 2k T4 ) 8 ke U vt o e [a] 5
FHI 2 ZR 4 T B0 Sy 3 . SRR [186] SR FH AR B 1 0 Jet R s 4% 4 DX, 7 Clay!"™7 R Gl e s 4% T AR 5 33l
BRI R Il o X, X7 B = 7 AWM RE, (AR 75 E AR EERE TUAR A, T 5% ST 17
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HEF 5 ATIRA A K R B IR R R AT AR, R B IR 839

PARF T B 78 5 7). Neuroshard!"™ & 48 B B2 TAE SR A I, i@ 5d 2AR4 5 IR A5 X H b,
SCHR [189] #4345 1 A 25 i FFAE g B IR ) o, A8 PR BESRAG 7 0 AT 70 IR TR 3. IR M8 7 vk AR B T 5K 1Y)
FUE R RE 7, EIESNAS TAE 58k T MPEAh 3 AT S8 - 25 1.

() ‘BHFIX

e 43 X B AR 50 R 43 B0, )3 A (b B B8 SR AR A 15 525X, GridFormation!™MHE 42 5% 58 4k 22 1 7 044
ETASARE, FREMIESRN SRS X IRERR, RS A L%, SCHRk [191] JWEHRT JSON Tk T8
T2 N AT R R B R AN A LA X B, A R T R S A O Y 06 R AN SZRE . AR RN, IR EE
43 DX A5 AN B8 56 A O A A7 SRR AIE, 17 2 25 B0 JB AR B AT R R R 4. TR B RRAL IR 2R I S NS &
GReis B 3% I AR 53 X J7 SRR, SBL AR B A A DR

Q) RESTKX

BEDREARGE TAPATEED XIS, v HTAP REHRME T 5 v )7 . HYRISE! % P A2 500
JEARAR A7V fi, SRR 0 A7 iy b T TR 557 5 4 43 (X H2OM VSR FH 661 53 A0 5 B ) 1 4k D ¥ 2B B X
S, FLABTHLLL BT B DU B BRIk Jigsaw! EIESR T E _ETR 0057, e T KRR B 4 X, %
U Il B AR & 943 [X. Dalton!"™ £ 45 M dE ek Ak 27 ] My B A e 2 4y [X 1, R0 P 7 50 4 [X 48 36 PR3 93 67t
4R Grep!" VR FH PRI 0 G5 A 5B A0 25 R0, et P o 420 ) 208 3 SR B AR S 1k 5 0 e 4% 20 X . Casper!” 1t
TR ) TAE SRR BN AACAEZE, H 43 IX i R Ak BRI . X SR A T VEAM B BE T o XA =), i
BE T HOR RS AN G2 o X, R AR ORI [ AT SO
4.2 Tk

B0 R HH 2 I S U SR AR I B T R 3K — . AN SO B LA AT T AR UE LR R, B
oD e (B WES . PAT I RIE RS IS B85 — 2L,

B 8 2 ae s B Al AL I bR HE AL TR, BB A BN EUE R R, o S A ae B R IE R R
H A AR IR Tse B8 A W E SN ZE HRE . R 2R EEE G, Faahmia K2
FHENZS BRI 28 B0 T8 R 2N AR0VE AR B TR R P B2 v TE ), 385 AR Ay BT b T E IR O e A 2 BT R 2 o
K. T CA B 28 R AT W B0 P 1 B AR T T A A i S v R T R R AL B R R T 2 R P Ak i AR A B
T ARG G A, DATHEPAT TRV E 77 10 AR, SREUEB 2 BT R, 8088 R TR T 245 4 IR - Rl Ak
AR P A B R RIBAT B W IR A A SRR E G . ] 8 B, B Re i OGRS A A A A
N B R E AR SR i H T B AR AT TR B8 7. 5 RE A B A BN 12 1 f A O As B R A BIREIE RN S5, @
T WS B B TE B 77 2 5E AR B I k. AR B TR R 1) e v H AT LU R B etk o thdb 28 b i & B S A A

UG SR L A Al 2L sl B e SR L A 2 A

ALY
TR

sl
BT

AT IR

HIER UL

THRIBAT 8%

wr . (10 @)

il L )
SR @%@ﬁggéﬁ% """"""""" > @ iR
Rl e SRR AE
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K8 AL brEL ey

421 HHESE

Al 8 5 R B A AL B AR, 5 S A P BN AR R B IR A R — N AN R
HEEMEEER R E s A ES KN HRREASEE WL RMATET, RemilPiT R SE. AfE
B &—> NP M) &, 1& 5 (W) 85 ik % R B T U 58 R U084 il B 5 U AT B S, AFE
14 25 ) 7 LU T AS 7] 00 32 5 AU BAP= AE d (R B R AL 25 SR, BT MU AN S R U A S B AR I 45 .
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FET N Ge & W E 5 7%, R TR Be R 7 VA G 35 5 5 U B0 WUy, AT 21 8 5 A ) 48+ B ) 2R
9 H . STIAUHR B 7 —Fh 8 S 2 )5 1R B9 75 7%, SIA fRY T i1 S KPR A 8, — 2 S SRR S R G WA
1) R, R 2R A R A P B B AR A T B AR ). STA R AT MRS (SMT) B81IE 5 18 1A A i
RN I 2R, T RAIE B 5 AR, STA IR BEH T —Fh R BilE S5 51 07 3% 1 7k 4 20 35 18 17 WeTune!™
BT iR AHEB A B K, SR 20 SR T A A ) A W EE S RN R S T ) VRS, A v 7 a2 S A ]
B A A ATAT VRN, 207 Vs A 2T SMIT 18] 8 () SR A 77323, b 50 e 5 1) B8 5 L ) g 450 Fe VR 2w B 1) SMIT i)
B, DL A 90 B 5 S AR U B IE A M. WeTune F39R35 T 308 A& & AR R AL 38 R TH L E 5 5 &l 5
SR WA ZERE. R WeTune 55 T3 A UL ) 7 2801, H L BB S, 240 T 84X, Refig s
19 5. LearnedRewrite™ "3+ SRR I MHE 2R Uit 1 A [F I 75 60 5855 U795, 1% 5 VA Re i i A T 3R B A = S I,
[F] s PPl B 5 B BRI A A AR, LearnedRewrite T 5644 70 1) 55 55 A0 U] S S B 50 KRR VA, AR FRORR 3 s a2 s 128
A RS A, RN JEAR T AR IR T AT AR BN S N SR AR (Y S R AR, T AR Y R S A
1) B A% 3 A K S L B . LearnedRewrite B TH 1 B 1) 25 1) 51 B AR ki T 388 B SR A 11 38 5 25 2 0 e SR AR
k. Btz 4, AT EHLE I ZE LearnedRewrie BBt T HAT HISRBF RIS HHE R 77 DR B R R,
422 HBUGHE

B 122 A V)RRt B0 R A0 B A 0 45 SR Y R (cardinality) BUE IR FE 2 (selectivity), AR B 4 AR
FFAE R 25 R e (BAT) B3, B0 45 R on A 4 5 R N o 30 1 b8, B0 122 20 Vi FIURE A% B 10 o e A v
TE B PEARN A B HE R i B R R 2 —. X TR RAG B S, AR S5 BB R RE A, TR T
2 (oin) {5, B MUBLAL 57 5052 3126 R 2 R B SZ M. 6t T 3EAN TR 5, AR BB A% 55 36 7T B 52 21K 2
T U R 22 AR S R R B W AR A R VR LR R N L BRI U V20 ) A BRI AT A B, HRT DL e s
IR Z5Jy RS A B 7 923, 25 W BX ) ) RSy BB VA RN AU 5 2 1 VR A DR ) ) AL A BT 792

Bl 9 o T 8 Re B B B UG T AR AE A IR R, BRI T B 1 e AT TN SQL By DL AR il /) B R
TR, SR G BB A s ERF ISR o0 A (B an B 7 ) R B2 4EHRE, I 5 K X SRR IR S N A T A Y
(PN AR 2 VR T Y i 22 D0 2 ) DASREIIN 0. JHG v 008 3K 3y 77 v 2 > DERHR 23 A 30 50 1) i i, T A 0 3R 50 7 9%
A R A AN RIRRAE DGy 1H R BB B 06 R, a8 AR R AR T AR IS B HE 3 S AL .

- 1 i
-SQL -_— -ﬁfmmu I —-l—“|
— ISR SRR
HARSAG freeee N Fp—

B9 RUBLACH il AR HELL LA

KR UK P RS 7 ¥k 3 B DA MBS 2 3 1y 2 >0 MR PR B 5 W3R 0 A B 2% 1 W6 93 A1 DeepDB™ M
FARIFR M 2% (SPN) $LA et B & 7010, 3 V3 — DR EATHEE H sum 15 S0 A RIFATA . H product 5 50K
JEAE S A E BB 2H. RS S et B 5 BIEA3 B 2k 1 bR 00t A R I PR 450a0 23 A . 7 TSR 1 R 2R T,
M B 4G B R M) _EiE 5, FRAR S A2 BN (sum) UM (product) F SRR, X T £ KA, DeepDB
T B I BE LA IR K, AR I 2R B0P 5 22 38 2 1) R AR S 1 5 28 M J VR I 44 A58 700 -l ST 8 % . FLATP"
7E SPN ()2 4%t FSPN #58Y, & v DASCHe 2 BRI gt BT B, 3 HLAE 5 i N3 (01 s 2888, s 7
SPN AU Hidf o AU A I RGN, E— P8 1 IR B2 (G B e ff k.

i Naru®*"H1 DQM-DP K¢ 5128 (B A 43 A1 FH e 232 000 43 A A 2 AL M6 43 A1 . At A4k R I FBE 4 Tl D1 7 4
U1 MADEP UL A 26 AR 03 A, 3 373k AT DL B 1250 25 285 940 )38 9% S b AT il 5. 5%k S5 B 25 440, Naru 57 5K
FEFEBE, Naru R 48 55 HRRE 2R 20 AT AN 3 HOB B SRRE, ZEIRFE 1 [N 51 5 R, SRpE 2805 380 0 2 i)
DX 35 v S 0 4038 4, i P B L IR MEE 5 2 B A 22 DQM-D SR 2 B BUR A SRS, FEREDNB B, 07 VAR
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WEE S ATTREE Y X A B HAE R R AT AR, K5 Bk 841

JERT— B B 45 5, $2 36 7 i) K400 BTk LE Bl B FEAR. NeuroCard L& X Naru (113 Ji%, NeuroCard 75 T4 % ]
SEREAN S ERE DA — AR E B B, [FR NeuroCard X K IEEF 5] N T TR 5 43 fift, H0F FH ERTHER Rk
SRR TSR . FactorJoin™7V i FH 4% 7 PR A A0 B FE S48 1, 465 &5 o 46 I 486 7 VA B 8 ek 2 R )
FHICNE. FactorJoin #4345 25 1) i 4 BR SRR /0 A BRI T 18, JF 25T I8 7 RS BY Rl & P 2 7 1Y) B SR MR 0 AT A
7. FACEP™ SR F S F- A5 #E 1A (normalizing flow) B 25 SO =B £ M4 43 A, W M8 L AR B 1 52 % 43 A
FEA N BT B AT T AR ST IR 5 . SAM-CEP V5 8 345 43 A5 55 A0 A% i ik LA K% 7 Kb T 908 ] 7 0 e i R
FERIFEA BTG TR 22 (10 BRARAE 3%, $2 T — FhBENLT-1 B B ZE 00 vh 2%, B S #6574 7] 7, SAM-CE [A]
JER G653 Hh S I R A DT 5 20 AT, A8 NS 5 2 S B oA, (RN T — RSP SR A SR, Ak
BT R 2 A 3R T T B0 RAR R 22, M4 R i =

AU SR B RURLAG 10 D7 v DA S A ) A B A 2R, DA B 2 S 1 7 R GR— AN A )1 ) B BE 4l
T AR MSCNT I H F 22 41 4o 25 W 44 55 700K A N 1O 2 W A O 22 R 17 B, P 22 )2 2 I 248 93 S
R AE 0 B B AE MR AIE 1) R, e S B T i R R L R O 7 4 A 3R B K. Fauce™ I8 (3 R R R B
P2 2R B AR O R IE BT 2R 31 58 RARAE & A F1) 8] 4K 6 2R, Fauce 38 5E ST £0d LAY (1) A 58
P, I I 5 2 VRAE AR T R s I 5 1 sl AN s . LPCER' 403 i 7 25T SRU (simple recurrent
unit) B 1) LPCE-I # LPCE-R #£4Y, [ir 2 F A &0 1 DK 20 10 B 40l v 25 DU BT 26 B v R AR iR, 5 & T
WG AW T RIBAT IR P 2 B AR CABRAT 9 A I B S B 3 DA R e BT R R 5. O T 3R s &l i
HE R, LPCE-T B R A T AR ZR IR, N— A E 41 teacher BEAYYIZR student 7Y B -T-PRs i H 19 w10 4
Bt

BRI IR BN ) 5 VE AR T E0H IR BN 5 1 5 A S 2R HE 2 el 1 FL SRR B ) A R Y, (R M i)
B B A AR, AR IS 1 U v B A PN 6 BRI, DR R T A AR DK B (4 U V2 R T A I 4 R
TR AR, — LB TR DA 7 i 2 3N R i 38 SRS R B b P R LA B A R SR S, Warper? IR T
GAN (generative adversarial network) AR, 73 AT 1 A4 A & BCEAE H 0 2 W 2820 00 U ZRFE AR FI06 B 28 01 38
(X 53-GBS B 00 381 1) 2 o), X ASE A5 B I I 2R R 48 G BB AT 5 70 0 SR R ) SR 1R 0, R RY T AT ok
TE A R AT R B X T B S, Warper 22T 3302 3] 1) B HE A N E R A DL ED RS R B T
IR EEBCTIMAE B, SCHR [214] 7E VI 2R B B s — 350 43 2 Vi REAE DL i A TR AR AR S O A 1 2 2, 35 T &
WIRS 7 IR S R 1. I 8145 RIS ARG AR AR Ab R 00 T, AV IR BN ) 5 2t R A I 7 A7 A8 k. AT IR 7 32
TS INAE AR I R THE A E AR Y N AR, FR80ES 43 At 25 1) RRAE 3 (A B B8 I &3 T-Hr IEfE S
AR AR A THE, PRI T7 7 m] AR A AR G AL 28 SR 50t v I IR T2

K5 A VTR A DR S ML 1) 7 R A A s 2 0 IR S R A R 3 5 7 45 . UAER AU A Gumbel-Softmax
T55R X 43 AN R AR 5, (4 15 R1E 8 [ VR B AT DL B A0 vp 2 S A B 2 A . DRk, UAE AT DGR FH S — 11
TREE )RR, AT W B ) 5 2 ST R R o A, I LA (07 I R4 I 25 400 P9 25/ R B 455 .. ALECER!
CABSHE P Pt 447 1 2 B0 (00 e v RP AR AR Do B R A, 4 L3 N B3 3 J WL RS B 15 B0 B0 IR 3R AGE 5, 196 IR 25 1 4
E— AN B 57 — AR VR R NI RY, o5 245 FH A e 4 X 48 W R AE AP A S o B A v X P e vt 3
TR TR B, (A5 BR A IE N R AR .
423 R hT

EW AR TR B RA ARG A W TR E AT EE 22 B3 AT I 8], 2R AR Al A OO 2 v Rl ) e
PR B4R AR, 16T DURTESOE B SR B A . A il B S BT RIS B A %, 3632 B R G R A AT
0 BRI B 1 RZ . AL SNl BRI 2 T K RE I 2 DU s 2, X P A il T A Y ARl T B B, (HR A
Re v S 25 A LA R 48 /O A CPU HIARANY. & RRARNMA A0 AR N L B A A W AR AR
Pl B R R RE W1 ] 9 Pz, 2 ReARAN Al B0 1 S 0 T R AEEAT SR 3L, 28 5 # oh RIS AR g RS A o A £l oA B
AN, sE AUl T AR A

DNNPRL RIS sURFAEE AR TR P04\ 7] BF 455 B8 T 25 Y XA (1 5 MO RFAE. DNN A3 R ERVE R I 5
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— /M4 BT, 1ZIN S IR T 4 A BT B BAT R ), S — A ) XA [ B ANZ IR R AT SRR SR
[EIAE A7 AR R R N . Neo®'™), E2ER"HI QueryFormer™ 3 Bl ¥cit 7 B 01 &2 2% HO 25 0 T+ RIZm AT 77 2R 6E T4
TEGE T I P P4 A5 7Y . Neo B T- 1 45 FRP £ I 48 A8 T = M T BB 28 (XTI R A F WA A F W R) EA W
TR 3N, 1R E A0 7 3% VA0 TR R R SR B T R 1) S TR OC R IXFE BT AR AR AL AT DA RAT Ab 3
FTRREAE, DR IR B H B TSR B A BN RS I, AT s R BB B4R JE T BIRFAE, BTEA Neo TG
TEAH BN S BR T A K BR 215 . B2E 81 Tree-LSTM #4435 K S 1) B A5 A 3R & BIMR 5 A,
F A A A OB S I A SR R R R, B S B 2 SR A W 4 WL i R AR5 T, QueryFormer R4
IINT B B RAS B E T UG SRR, 52 AR I S5 4 s b i, AR5 1 F 55 133 = TP L A A 42 0
LR AT 24 30, IX BN T 1 — 0 BOEE T A I 4 1 2 ST B TR T S F R AE 1) R (4 S AR R AL, A T AR A
BB 53 BRI 1 42 B 45 R AIE. Zero-shot™ il et e £ 1K1 v m] 3B (ARG 5 7 AR 32 A0, 27 v A P i
n ANERE E B E W AN IIGREE, 58 n+] ADNEGERE E_ BT A WA TN, Zero-shot [ A RFIE A1 L& 11X
W B, R R AR A AR . Param Tree™ il € 37 C-Param (B ES %, TEAFEC B LL A2 1%
BEAEFFRHIESE) B R-Param (5040 FE B AR AL 35 S B0 A B B0 & BUEE AR B IS oR B0 1545 AR R 0 fili 3%
{1 it T 5E I HE .
424 iR

AT BB B ITRE, B LR R I T T R 5 A5 s ARl T H B B AT TR A e
FRPAT VRIS PR R ESE (Join) NP AN M) B T8 (WA BOERE T BARET55). 07X 2
TRV RS P RE e 1538, — e 07 vk SRR E BRI A k. 8 Se B TR 7 735 RE B AR P 2 ) TR (K5
IX BT VLA I T v 2 1 E LA

() EEI TR

T TR R 3R B BT S e T A U 0 1 B, R T TR B R BRI 2 — AN NP-Hard 7). 481 7%
FERETHHE MRS 0EESE R K ARG EE T RBER 7, BB B 04 7 VR 38 v Sl e 42 It 7 1)
i R FRASE S Ty /R AT A AR A P A 2] 7 VAR . R R T AL 5 WAL Y B R R B R T T
RIFN-R) 2 DA i s e IR R Y

Rejoin"*" R I3 T S ) 54K 2% 2] J73. Rejoin YISm0 4% BB TN N — 20 3h R, R THRIMR R
T4 o R B SR I 2 25 . — 3 P22 P 3 T A iR 2 S D vk, R SO VIR 4% Q Sk T i1 &1
SR AR SR B NPT B TRV AR A 1, S8 5 45 P2 T 538 1 05 & oS 51 S 5 B B2 ) 26 1. DQPY
P B0 SRS, AR Q 4% i H Ik B A BT A R 3 1. RTOS g — 25 itk Q W48, ] Tree-LSTM ¥
28 RN TERRIT HARAS, [R] B8 SSO3E I 2R B B 8 2% bR B0 (L8 AR 4 2% R ORI G R 13 2K R B0 RSP 4 AE I
BN (B ) A0 0K JOGGER P AR AE K4 122 = - M 56 R A3 P DA 2 3 2 R PR AR S, [t ) Pl A
IO 2% 3 5 1) L AT B, RS0 TE — A BT RV R WL S e v R AT i, JOGGER 4% [ 25 ¥ 5 A%
FREE S BN Gk Q PI4s, K4 |25 ST I 73R I Q W45 B 8k

(2) I o A WAL

ity 1) ity (14) VA0 B S T R PR A i, R A D 30 AR B TR ) SE AR v AR SCIR IR AT R
AR RO R IAE FEAR S N E T LR EREN 5 S &R TE. B i LR iR A
BLER 2 S HAR e 2 BARE R E WAL SR, B 5] ML 757 B 78 70 70 R AL L E AR A0 2% 1 & Z AR, @
T AR R BR 1 51 5 G AN 2% AR BRTE 4 ) TR

H T E WA A 7 VR T oAk 2 S BEHE AR, X VA AR DQPP ik LAl AT IR R, il
W51 S UL A T bR s E D S B RIRE . AR, MR A T, 1656 T BT ik
P, BFER T A RARMERE. Neo' ™ 2 A S0 7 i 6 3 2% STATAR AR A B X1 4%, SR I SIZ R bR 9 5 N F) 25 440
HAPAT A RTH M E M 2. 5 TR AW, Neo MPILRIRES (BN ERR) MZE TR mIATaE (BETR T RA
HHEF A ERE FIERNR) B2 FIRE, FARE N E W25 FRE BTG S FIREBN—
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A d/NER . SRS, B BT IR B ik TRINARAN fe N BPIRES, 1B R — MR IR A 4k ek E T DL 1, B3
2RI APAT . Balsa®I7E Neo I3ERE ik — D40 &, TEWILA R B F 17 B 10 1 8 AR bR BT 4 Ak A £ )
2, X3 T B SR BT RIS AR I 2R AR 5 Neo 2818l Balsa f# I 750 2 31 A B X 48 5] S 11-RI4E
J. ASFI S, Balsa 4 UCHS 2 A7 i TIUARAN BLAR A & AR DA 5 St RIHRE % . LOGERP e 0 I T % K& 5%,
T4 Neo B¢ Balsa HSHF: B 440 @ EHARVERT, 02 FRAGIIRVERF LSS, IXTE— R Lk T 3E M. R R
W& J71H, LOGER 456 T 20O R MBI R 7%, N — D4y T AN E & ORI HERRRE. FIHE
T4k B (B P 28 il B B 2 A e iR, TR R AR A L — 20 Rl ade v -l A B AT 6% 348 ) 4 v BB ATL IR B
OEZe N

FON 51 SO 7L 78 7 R 7 B 50 PE S B R G T ) AR, 85 Fs sl Ak s i £ 4 51 S%4 40
B A B8 A B S AT A B TR . SR RO VE R A 7 S 2R S SR R BT I T e AR Y SR M fik ik T K B
A g R A BT TR ARECT R T, IR VEE A G B A AL B AR R IR RCR T . Bao il
LR E A SE 5 5] SRS AR AL 88 A48 B L TR, Bao AOEEAN HINI4E & 60 & — 2L 35 1 %7 PR Al MUY L n 2%
FEAIE PR %6555 B2 5. Hybrid QO™ il et A= R By J LAN 2 RO B2 IR e K 51 S 2 1 D A 8 34 8 50 407 (-1, 4R 1 FH 524
RSB T VR R H S R S AT SR, I FAE 0 51 SR AR 3 5 15 R A ) LA AR, s FL A% IR e e 1)
EERRI A A TR, TR R R T FE B A, AR B R AR AN S, 7 Lero™ b, ik R 2
FIF Ja R ARG IE AL GUAR AL 38 B 2B A ) SR TR R 7 A S B i T B 26 i), SR )5 A% Learning-to-Rank 772
PR LB 2k T R 3F 108 8 B R AT 118, AutoSteer™ I ZE Bao HIEERY I, ¥ it 1 8 &k N2 A B HFR R M
WU 2 1) A B A3 N B A, IX R4 T Bao 75 B XA U0 i TS AU 4E & OB 5. FASTgres™ "B 3E T Bao
MM &4 58, AN [E] ¥ /2 FASTgres 3+ B REARYE N M2 W15 ) TN A& 10 51 S 00, 78 51 SR L gitk
PR BB A AT R, 3 AT DAYk 2D 25 90 [ i LI 1] . Eraser™ V58 B2 11 S BLAT 7592 (G B 1, Eraser S P BL
TREWE KB B TR B TR v e, LA AR 1 B BOw MR PR BT BUR SR AR R AR TR, 2B 2 B BUE B
VAT A TR T A

BT LA LR T 304, Leon™ L AT e AR BE T AL Gi MR AL 2% (0% R A1IH, Leon M0 1£ Gl Ab 88 1 -5l 46 i
T2, Fl—A~ R S AR R BT aa 10 AR HE I 2 A B IR T A SR BB, SR T 53 — A PP X 4 B B SR 35 Bl %
GEAR A% I R R A6 L [ Rl 2 1) I A X 8 AR A 2kt T 7 R 2B R PR 238 . FOSS™ ™ I 3 a4k 2 5
HPAEZRIIGR T — /N R AR BLAR R GEARAL 35 A B THRIE A AT 4IRLFE AR AL, (LA 22 480 9 /1 3R (1 T 22 0 7 B B
WA HNERS ), FFINGR T — AR Lo a8 B AR 2B s BT A B 0038 T R F e B i AT TR RIS
T SRR AE BRI 2R, FOSS J8F TR R Le SR FIE G A AL 2835 11 T B R RS 2507 v, 3% b
J3EAT U I 5 TR AR RS I DU RS L AR K R R A IR SRV,
4.3 ETIFEMIT

ERPATIE B e R G 00% O D REASTHL, HAZ O AT 55 R R0 E B Z T RN L AL A Y B4 F 2E R B 44 5
HERBREUIR AR R b, BWPAT R RE ST, B NE S I RS B IE SR AR

W 10 Bz, BRSO FE B PAT IR B 5 ANMZ OB B R DB AR B B SIS R A T RIS A
ATPAT A IRIRAE P 51, XA PAT 51 BRI I 2, 18 AT I e 3% B Bod i P B T 328 5 SRR AL 1 RR SR SR 50
S AHREAE . BHURAI 2R S IZAT I 4E4R, NG SRR BE PR SRR HE; & B 20 A BB B 2 T M 4% R I s 25 AL 3R
AT W, TENAT W TR BT BT, I i ) 5 1R BB BCR T RE A DR 2 AT 55 R SR Se 4, IR Rt 2
i 87 i ] ) T4, — B30T A8 AT B Bod ik 45 5 R AL o) (R i 22 SR 10 TE A k5 mT DL, 5 2 v A i R PR R 3K 5
AN B BRI HR T S0 18 I R SRR ARAL, (6 RGAE SN A S IRFFAT R 5 BRI 5 7. A
SN T G B AL B S I A ] A TR BE TN GBI IX PN B A T R E XN TR S RS
WO BEARNREAE, 1 i 75 28 2% 5] SERLBAT S E F Sh A AR, 5 2 1 B % 25 =T S ml 5 25 8 B R s 1) Jos R 1
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my e | et [ eEsee )RR S
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— SR AT

K10 EfHAT AR HELHEZE

431 HENAEH R

EFHEMALIAT, HiE N E AP (adaptive query processing, AQP) 7 A i 18 1T i [ el il 2574 25 30 1 &),
Cuttlefish™ R F 2 58 2 Lok 2% S BEAL, 7550 A A BE (1 Spark) *HEN SRR E 4145 50, HARHRET
TE 5 P X R AR R AT ST EUE SRR IR R0k UL FL 46 R A B4R I B & AL, (EAFEAE B IR 3 AL
¥ I [ 0 L RouLette™ V5t 2 B 3% S it 7 4R A0 2, 85 b 2 =238 SR A (AR A 28 A it /MK s AR
(RIRAT T, FEBR AL ST LIS R B T & RO, (BAE R IR R 5 R T R IEIR 245 2 1 PR ME X Bk SkinnerM T
M FRE T FRAT T RIRZR 5 5 AT A0 38, SR 70 4 0 2R A2 53 T 5K s S I AT s 25 40 338 1, FLTRAPAT ZEMIFRIR T
RGUIEIR, (H AR A TR 437 5% (1038 B AT TR 3R 7T
432 PRz S HEE

FE IR TR B, B B R B R GUim e WL 2 ST RO Ak 3 A s ) 54T 45 W E . Decima™ 3R S i 8 B i fh 2 >
5N DAG (E55-1 B, i X 77 5 SRR AT 11 [ SR 27 =) AE At D0 R 5 SRS, (HLR 2 X B 25 B I8 AT 55 11 ST I g )
RE 7. it LSched™ A& BVE R Ay ML -5 4 A 26 B, M9 T 13 b R BE TS 28, ) S SR S B R AE 5
VEECIR AR AN, L7 ) 16)/2 ) P SO0 A AL A 8 P9 72 50008 122 (0 i KB 2 7. SmartQueue™ % 7245 2 T 1k 42
HOR B Q-learning 1 BEAE SR, o i o1 22 [0 4% 2 A€ 2 i DR 25 5 2 W0 4008l U7 iml A U ) SR BROC R, HL 1 3 R SRl
fEGRAE iy PR RIR L . AP0 AT 535 5, BG3PY 42 T 3T BW WA R 51 MRk 51 45 & —Fh TR
SR (1 23 1) (RSO AR, 42 R T AR R IR D T S TROK. PCC B PR 4 A R AL I AR 5 RDMA
R, @ BT R AR EE, AT 308 SV R 08 [ 25 A DG IR P AT ] 4 WA 0 ) 25960,
44 N £

Bl e A% E R N TR RE VA Wk Ak, A8 49 T 0 BN R R B RE AR PN A% 2 T ISR Ak, R HOHE A 2
ST AEERRS R AE D RE A AE — N — BIHELE N, (A PR EFREER AL, A8 TARAE AN IR 5 SR EAT e il A . B
AR, B Be S N AZ K e 1% Ak ¥ BT JAUASE PR a5 I S B BT SIC B PR ECHE 207, DASCRFIRIE DS, Aok
B & TSR B IENRE S, GEE R HCE B AL A e R B SRR b SRR, [EIR I B 5 A W A 1 R

A T 50 06 8 R 5 FE I AZ I 2 A BT T AT T RGEMEAR . STk [247] @it fh G — 4k 2% ) R 51 IARER
T2, L T 7R HELE, FEXT LA HoR 7 RAT TR X LA, SCHER [248] SR B NI SEIG vk, IR AN F L2
T =4 R EIENR R R TN G R I, FEBR R T, SCHR [249] i@ H BB S T ) R B IR,
B0 2 42 2] 2R 31 A, SCHR [250] RGUMIE T B IR e fik 4 5 sk % 2k, T SCHR [251] W is s i g 40— vl
B, MIA 2 485 1 &R 51 7 RV RERHIEREAT T SHIERT AL

A — LEAIF T R RE R E A AR AL SURRTT T 2 MR R G IR R, SCIR [252] i Se3 v EAh T A FHAT
THRIRR TR U . BSOS & TR PR RE I, SR [253] 2T K& SRRt R I, 4 T 4 122
FRGE K R 1 7 VR A AE B3 R 22, T A P SRS 3000 T 0 2 S D e H I B A R 1k R . A 2% ST TR R4
fhTH 727 T, SCHR [254] FIEE T RG2S PR ZRAEZE, HXT A ety 21 Uik EAT T A Tmxd He A ar. STk [255]
T MBI 3 5 . U 1) B AR 1 R BEERAAE RF IR BIUR 3 AMAZ DR, S 2% ) B AR B R AT T 48 50740, it
— RO VP IRE, SCHR [256] $& T %7 Bl i B AR EAE S, Dy S B A AR AL 2% B PR AR PR AL BRI T AR E AL AR
HE.

BRANZZEMS BURER, BRI ERIAT) BIBTH R G bR A AL 3G 2. R AR 5 B A
BEN. BWRHETRI. VLA IR N A (o g 5 vl . B B ThRIfiAk) . W ER R BAT DL R s
BB
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X T B SRS A, 2 1 25N 7 XA RE AL SR B R HTAIE B T N T RELE D0 A0 Bl 47 U T F) v
J3 A IR, 2 31 2R 5] AL I A7 I B R AR A T SR B SR ORI B, 22 3R 51 AE SR TH 2 R R A
TP T AT BORAR T 22 ). A, Bt 0 X AR AR B A A P IR I N A th 7 il — 2B I

fEAWLA s, O AWES . MBS AR AT RIS RR, D i B N T B i 1 1%
G0 R RN SR, X BORAE AL B AT % AT ) AN 25 AR GOSN U5 8 AN A2, A0 e 75 2 28 0 5 % A o A ik 5
PR SA . A B R AT TR, DA D o] e N T AR 2R R o 7 7 8 AT 5040 A 1, A 24 2 90 A0 AR
T s P 5 ZE b R

FEBMPATIT I, BIERE WAL B R AR AN 2 1 B A R e AL T I IR R R AR 2. S N B AL
B AR SRAT I RE P RE 0 S SR L A S, LSO el AN AR S B2 50, RN, 7 DR R GE R M AR R i 2
it -, 3 5 2 B R A R B B YRR 55, LA a2 R A g il A i R

KR 2 A B0 R RE LA R I TG i S B SN 27 ) AT B B0l P AT 5 O K RE S A2 Bl AT R A b 5
I 27 ) R0 S I T B R, DA A v AN SR AT R . A 0 B A R ) 4% A DA R 2 R RE AL 9 g, (R i s
P LA B 2 8] (AT P RT3 — SR AR R R L. 75 BT AR — B0 VR R B A . B IR AN i
PATERNF, A5 R e AT (8 AR TR, DAR E — S BE A4k O R el e A A% . RTINS, 318 s AL T A P A A
TR PR figE R At RS 2t 0 B, S0 B 00 2 T A N GRS b B AR AR 1 R L R, AT 99 5 0 R RE AL 2
PR E AR .

5 BREBIEETAEO

K2R RE LT B AR AT B P, B TR s g R T VR S IR R e O P T R T O R R LA A SR
BTG R R, 78 TR R R 5 N LR RETTVE M MR i S T — RAIFR AL g FE 4 1,
BT N TR BT AN RS, R RETT RN TC TR AR R JETT . Behh, B REEHE T A4 11 I8 SR
B RESLIRIT RN G5 B P SR O SR Bt JF BEAT BB VAl H AT, ORI REEHE FEJT K #% 1 1 2F Database
Gyms™ 7 Hll PilotScope™ AN, A4 %t L AT VELH /24,

5.1 Database Gyms

Database Gyms'™"J& — AN BERHE 2 58 R 8, € B0 22 4L PF RV BE 2B SR R B0 B 7 G — i e .
ANTE] T oA 27 2] U E SRR, Database Gyms {8 1] DBMS A< £ Sk A T L& 2 ST IR AR 35, fi
T B R A BRI RN PR, £ Database Gyms 1, & BEEHE e R Gl R0 3 A T BSLAk: Bl 3R, B ae
ARELFNFH F.

5.2 PilotScope

PilotScope'™™ 78 24 BRI 55 KR i AR Gty b e, JLomAR AR A 00 25 BRI 180 BB AEL 1 B 45 B B P R o
IS 2% 1. PilotScope H1E E 4L 2 B4 e 1) SR 5l & A1 bl P 58 EL g g . 8 REZEL A1 30 5l e 9 5l 8 B 4R AR V|
SRBE . WIZRIRL, JRASCD P SO0 A B e A b AR IR, B BIK 30 o DU J6E 4 17 284 e LA o e e I J2 B 2,
AN IR] R B e, B0 P S T4 1 2 b e R T R N 52 DAAS TR K77 30 B, PilotScope il R H F T HIL & 2% ST R Edfs
JIE 2 1) B S AL B 07 vk, 385 3K 8 T VA BN P RE W WO AR A A S R R B L v N R B B AR R R AT B
(e
53 I £

B BE AR T A 1 A% 0 Bl BE S STHEARHEAL I 3 & 4715 (116735 Database Gyms Al PilotScope % T H fif
BT RENIRAT RO B R A . BB B PSREN « AT IR A R S 23 I BB BRI e 1K — 3 ) BT
BRIV BeHARTEBIE e 2 G it 38 B B R, SRR, X e R D T 9 R e A, DAISCHRe R 32
OB P 2R G, JFIE R SN A A N TR e X e il U Ab, IR ez FoR S AR TR TR LA AL AS, JF
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SEPL S B e R SRR AR . TF R D FR A vt b SR Oy 0 AN TR I R, DA 5 G A [R) Hcdis 2 R 4R
[3E L RE 7.

B B T R O e R R AR A AT T I A Pk 1) 3 P () A 24 i A R RE B A T A DRI T M
AR, EERIIEEAERE R GG B 2 B 5 R 4. 60, PilotScope H FI{X 5 PostgreSQL Fl
Spark HeAE, XM 5 FRAE BR 1) 1 HAE T2 B0E PERA S & A . 2) e M R R IR AR T 3L
P B4 11, AR R ATIAE TR B8 7 V5 B A T VP AS AL 5 T G 28 J2 . — AN O PP Ak A 300 T R R R0V ) v 12
AR A O B

6 B %

ALERIRANDI I 1 RERCHE 2 28 G (KIS i B, DA BF e TR b A HE SN 1 22 2k O LU AN B 25 T BT 1)
BRI RS AT RED . MR O)E . RS HLZ AV e N A% 5 5 2 5 TH ¥ Rt R AR TE kL A
LR AR AR DL A, RGBT R BB e 3 A0 SEHL. . %) AR A b B K
RN DT, BATIE7R T B0 BRI 2 B VAL AR R RE AL BZ AR, 4 ST IR bR ol AL A B AR A IR RE S, J9mit
FERML T G — KR LA, (et 1A FEOR B 0] b5 B A BT, FEIE Mt i s 1 224 i o s A 58 o7 &=
B 2R 22 A ORI AN 22 AR H b [R] S5 LAk B SRR URAE T 2 AL AU RE AN R 3R . AR R AL RE RIS, B AEHS

2% 248 I 2 AR R Ol SR A58 AR 3K, AR R IEE A R A, D9 AR RBARIE MR (S E W S0
WML SR RELE ) SR AT R R S

SEOMNEL AR B, 38 R B R RE R i AR SRR PR AN T, ASCIPAG T N TR RE T AR R T R e S R AL
HAKY:, #Bh DBA L& B . R EE P WAL IERETT IR 38 5 A 2. S BAR R, AR H R, BRIE S 2
SQL Fy e He IS 1) %5 0 25 AR 17 AREOR P B TTRE, (E SR %0 SCER AR AN 22 RS 200 (BSTIR SR R) VA 15
A AEEER, ST PR I B AR (R S . DB s T DBA A2 R, 28 M Ak Ks 7>
A T AOHIRFRE M . SEIF IR NERE S YT AR AENILUR, B REALMF (W1 learned indexes. FEAUAG TR ) Ji i # 44
gt J N, 48 VO fAt. Bl TR A S Ty T R IL 1 PERE IR, (B sh A Mtk (dn fa R AL f R YT 7%
) MBLIERCE (A1 GPU W AF & ) M. (EAF R R, Tl S CLil Bl 370 sRAATT 6, (EH PR A TR AL
55 B 2 o 55— B R ORI 0P T, #8781 BOR T A B .

H AR AT B AT g0 T

B AL H R E S AR ST 5 2 B S8 HL A AR AR R R ASOR 70 10 0t 25 1) ML 2 B0z A P 2% IS A A ) R
Z G EAFR SIS SRR

B AEE TR AE S A U S e 7 5T RORRRE VEAS . I SRR AT 5% SR SN A S, 1T 3 R I R A A 2
e DAPRIZUE B B AR D SR BELAS DBA X0 57 5 A AR R 3-#7.

BREWZZE ARSI S 2 RACRAAAE MR, S R I TR T AR E WL, B R EEN K= v [
A REANRIBSE s AT S A RS SR A% A AN B A AR ORI, AR E DLA ilme e TR B I A ) AR B I
F2 1) SRS A I R 37 5 7 2 R AT R I SR R B R R R PR RE.

B RERE BT R D E AT S ) R B IR PR 12 D DhRERE A A6 (B R AR . IR TR B
FRGRFIR) FEOTRRCRACT, HSZ 50— IRRA R BT (R E ST SCRAN ), ML 2 SRl 5 /H oK.
RS AT T2 i 17 2 2 VR

T i) P {60 58 5 T 5 S 5 A R R U o i SO AR, SR I B2 ) s A TR SO i 2RSS
— B G, U BB AR S5 P K 2 B D R IR 0 A 1 ) .

B LR W B R AR 7 S IS YENE LY, S8 i I AR A B SN SRR T A TR 1 TR, TG AL R
FIB R Bt AHLEREEE 1, B0k DBA X S 1 1) s 4 2 i AL

BRI R AL 5 S S 2L AR A AL, ] ks B R AL 28 5 R R i 3R AN L 2 — A TR B A 27
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ST & Bl 28] WA AL N SRR, e/ GPU A 5 .
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