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摘　要: 自动驾驶系统能够产生极大的经济效益、安全效益和社会效益, 受到工业界和学术界的格外关注, 逐渐被

深入研究, 普及应用. 然而, 引入此类复杂生态系统会产生新的安全问题, 威胁行人的生命安全, 影响现有的法律体

系. 因此, 在自动驾驶系统实装、自动驾驶车辆上路、自动驾驶行业商业化落地前, 必须通过仿真测试、准入审核、

试点运营等多种途径验证自动驾驶系统. 当前对模块安全研究的总结已经成熟, 但仍然缺乏对整车安全研究的归

纳整理工作. 因此, 系统性地分析面向整车系统的自动驾驶安全测试研究, 全面回顾当前的主流工作. 首先, 概述自

动驾驶系统结构和仿真测试的基本流程, 梳理近 6 年整车系统安全测试领域的文献, 并依托于通用的测试框架形

成面向整车系统的自动驾驶安全测试框架. 其次, 基于上述框架提炼出当前工作的 5类核心研究问题, 即关键场景

生成、测试充分性、对抗样本生成、测试优化和测试预言, 并详细地分析和整理每类问题的关键技术、研究现状、

发展脉络, 归纳当前研究常用的评价指标和对比方法. 最后, 总结各个研究方向面临的严峻挑战, 并展望未来的研

究机遇, 思考潜在的解决方案.
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Abstract:  Autonomous  driving  systems  (ADSs)  have  gained  significant  attention  from  both  industry  and  academia  due  to  their  substantial
economic,  safety,  and  societal  benefits,  leading  to  in-depth  research  and  the  gradual  popularization  of  applications.  However,  the
introduction  of  such  complex  ecosystems  can  give  rise  to  new  safety  issues  that  threaten  the  lives  of  pedestrians  and  impact  the  existing
legal  system.  Therefore,  it  is  imperative  to  validate  ADSs  through  various  methods  such  as  simulation  testing,  access  reviews,  and  pilot
operations  before  the  implementation  and  commercialization  of  ADSs.  While  the  research  on  module  safety  has  matured,  there  is  still  a
lack  of  comprehensive  research  and  organization  regarding  the  safety  of  complete  vehicle  systems.  Therefore,  this  study  systematically
analyzes  vehicle  system  safety  testing  for  ADSs  and  comprehensively  reviews  the  current  mainstream  work.  First,  the  architecture  of  ADSs
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and  the  basic  procedure  of  simulation  testing  are  outlined.  The  literature  on  vehicle  system  safety  testing  over  the  past  six  years  is

reviewed.  Based  on  a  universal  testing  framework,  an  autonomous  driving  safety  testing  framework  tailored  for  vehicle  systems  is

developed.  Second,  five  core  research  issues  are  identified  based  on  the  aforementioned  framework,  namely  critical  scenario  generation,

test  adequacy,  adversarial  sample  generation,  test  optimization,  and  test  oracle.  A  detailed  analysis  and  organization  of  the  key

technologies,  research  status,  and  development  context  for  each  issue  are  provided.  The  commonly  used  evaluation  metrics  and  comparative

methods  in  current  research  are  also  summarized.  Finally,  the  severe  challenges  faced  by  various  research  directions  are  summarized,  and

future research opportunities are anticipated, along with potential solutions.

Key words:  autonomous driving system (ADS); vehicle system safety; simulation testing

 1   引　言

随着人工智能技术的应用, 近年来自动驾驶系统 (autonomous driving system, ADS)蓬勃发展, 传统车企和互

联网公司都投入了大量的人力物力进行研发, 如图 1所示. 例如, 百度研制了开源自驾系统 Apollo, 并实装在长沙

的无人出租车上, 运营车辆达到 100辆 [1]; 华为与多家车企合作, 提供智驾解决方案, 推出问界M9、极狐阿尔法 S
等多种车型 [2]. 自动驾驶系统广泛应用, 一方面能够减少交通事故, 提升道路安全水准; 另一方面能够缓解交通压

力, 减少碳排放, 贯彻可持续发展理念.
 
 

(b) 谷歌 Waymo (c) 苏宁行龙一号(a) 百度 Apollo

图 1　自动驾驶部署实例
 

然而, 自动驾驶系统是复杂的网络物理系统, 软件的工程规模极其庞大, 其设计和实现可能具备安全隐患, 严
重威胁其他车辆、驾驶员和行人的安全. 随着低水平自动驾驶在汽车上广泛部署, 各类安全事故频发. 例如, 2018
年, Uber运营的自动驾驶 SUV在美国亚利桑那州撞击了一名横穿马路的行人并致其死亡 [3]; 2021年, 蔚来 ES8在
辅助驾驶功能下未能识别高速路段上的施工车辆, 产生严重的碰撞事故, 导致驾驶员离世 [4]. 为了避免安全事故发

生, 业界提出了预期功能安全标准 (ISO 21448[5])、功能安全标准 (ISO 26262[6])等多项国际标准指导自动驾驶系

统的研发、功能验证和准入审核, 规范自动驾驶系统的安全验证流程. 开发人员也通过冗余的安全组件、智能化

辅助系统、测试评估框架增强系统的健壮性.
目前, 自动驾驶安全研究受到了研究人员的广泛关注, 一系列高价值、强可用性的方案被提出, 模块安全研究

和整车系统安全研究是两个主要方向. 前者旨在离线、独立的检测任务完成状况, 判断单个模块输出的正确性; 后
者旨在结合仿真器和测试技术验证自动驾驶系统整体运行状态. 模块安全研究是自动驾驶安全研究的基础, 已经

进行了多年的深入探索, 在感知模块 [7,8]、规划模块 [9,10]、预测模块 [11]等部分都取得显著的成果. 例如, Eykholt等
人 [7,8]将对抗扰动从数字域迁移到物理域, 设计了抗噪声的物理对抗样本, 成功欺骗目标检测模型, 是物理世界对

抗攻击工作的里程碑. 然而, 伴随着全栈仿真器和配套工具逐渐完善, 近年来整车系统安全领域的研究热度持续攀

升. 由于自动驾驶系统构造复杂, 形式化验证等技术难以对整体建模和分析, 不适用于研究整车系统安全问题. 因
此, 当前主要的研究方法是安全测试, 通过测试整车系统挖掘潜在的跨层漏洞, 暴露出新的安全问题. 同时, 该方向

将车辆动力学模型纳入考量, 更贴近现实、更符合研究预期.
为了深入分析研究现状, 研究人员系统性地总结了自动驾驶安全领域的工作, 为后续研究提供理论支持和方

法指导. 模块安全领域研究历史悠久且成果丰硕, 存在完善的综述工作. 例如, Garcia等人 [12]和 Tang等人 [13]分别

对开源自动驾驶系统和高级辅助驾驶系统各模块的漏洞展开分析, 全面调查了开源社区中的漏洞提交和修复报

告, 总结了漏洞的成因、症状和影响范围, 辅助后续漏洞定位和修复工作. 朱向雷等人 [14]以自动驾驶系统结构为

核心, 依次总结了针对感知、决策和辅助系统等目标的研究现状, 指导了自动驾驶安全测试工作的展开. Tang等人 [15]
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不仅全面梳理了自动驾驶系统各模块的研究现状和测试方法, 还分析了对辅助驾驶系统和简单驾驶模型的安全研

究, 并且总结了仿真测试与混合现实测试工作的差距, 提供了对自动驾驶系统测试技术体系丰富、全面的认知视

角. 相比之下, 整车系统安全领域的综述工作较少. 戴嘉润等人 [16]首次调研了应用于自动驾驶仿真测试领域的模

糊测试技术, 揭露了种子场景生成、事故分类与事故归因工作的不足, 并提出对应的优化方案, 缩小了仿真模糊测

试框架各环节的技术差距.
模块安全领域的综述文献全面且成熟, 然而, 整车系统安全领域的综述工作仍处于起步阶段, 尚未有研究人员

使用整体视角对现有工作进行清晰明确、全面系统的总结. 文献 [14]虽然部分内容涉及整车测试, 但涵盖的文献

属于安全研究的早期阶段, 缺乏对最新进展的分析. 文献 [16] 只总结了在仿真测试中应用模糊测试的工作, 并没

有纳入其他漏洞挖掘和安全验证方法. 此外, 他们重点关注种子场景生成和事故分类归因, 没有深入分析事故挖掘

方法. 综上, 当前整车系统安全领域的综述涵盖的文献数量少、范围窄, 且不包含最新研究进展, 无法满足研究人

员在该领域深入学习和研究的迫切需求. 同时, 尚未有综述从完整测试流程的视角展开分析, 无法使研究人员对整

车系统测试领域形成全方位、多层次、结构化的认知. 因此, 有必要为整车系统安全领域的测试技术撰写综述文

献, 弥补现有综述的不足.
本文以集成了感知决策控制功能的自动驾驶系统整体为研究对象. 通过在软件工程、安全、汽车等领域的高

水平会议和期刊中搜集文献, 确定了 2018–2023年期间与面向整车系统的自动驾驶安全测试研究相关的代表性工

作, 共计 39 篇. 从图 2 可知, 该领域的文献数量逐年上升, 并且在近两年热度极高, 论文数量占收集文献总数的

71.8%. 围绕这些文献, 本文总结了安全测试工作的技术路线, 并以研究问题为导向, 将这些工作划分为关键场景生

成、测试充分性、对抗样本生成、测试优化和测试预言 (test oracle) 这 5类. 通过对各个研究问题进行深入讨论

和细致整理, 本文对比了不同主题下研究工作的优缺点和研究趋势, 展望了未来可能面临的挑战与机遇.
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图 2　2018–2023年面向整车系统的自动驾驶安全测试研究代表性研究统计
 

本文的贡献归纳如下.
(1) 汇总并分析了近 6年整车系统安全测试领域的文献, 将其测试方案对应到通用的测试框架中, 形成面向整

车系统的自动驾驶安全测试框架, 辅助研究人员建立对该领域测试工作全流程、多维度、体系化的认知.
(2) 基于上述框架提炼出 5类核心研究问题, 系统地梳理现有工作的技术体系和评估方法, 深入比较其创新性

和局限性, 为深化面向整车系统的自动驾驶安全测试研究提供强有力的支撑.
(3) 基于对研究现状的剖析, 揭示出潜在的现实挑战和研究机遇, 为面向整车系统的自动驾驶安全测试研究提

供独特的思路和见解, 对于自动驾驶的研发测试工作具有重要现实意义.
本文第 2节概述自动驾驶系统结构、仿真测试架构等相关背景知识. 第 3节总结面向整车系统的安全测试框

架. 第 4节基于上述框架总结出 5类研究问题, 并详细分析整车系统安全领域的研究文献. 第 5节总结当前研究常

用的评价指标和对比方法. 第 6节基于研究现状, 剖析和探讨现实挑战与研究机遇. 最后, 第 7节总结本文工作.

 2   背　景

在第 2.1节介绍了自动驾驶系统的概念和基本结构, 分为模块化和端到端两个研究分支. 在第 2.2节介绍了自
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动驾驶系统的仿真测试架构, 解释了仿真器和测试场景.

 2.1   自动驾驶系统结构

 2.1.1    概　述

美国汽车工程师学会提出了 SAE J3016[17]标准, 将自动驾驶技术分为 6个级别, 从 level 0无自动驾驶到 level 5
完全自动驾驶. 其中, level 1, level 2倾向于辅助驾驶员决策和判断, 属于高级驾驶辅助系统, 已经广泛部署在汽车

上. 典型代表有车道偏离预警系统、自适应巡航系统、前方碰撞预警系统等. level 3, level 4倾向于在一定范围内

的驾驶自动化, 偏向于常规认知中的自动驾驶系统, 同时也是本文的主要研究对象. 目前该方向仍在深入研究, 还
未大规模地落地部署. 同时, 早期对自动驾驶技术的研究聚焦于高级驾驶辅助系统 [18,19], 随着开源自动驾驶系统逐

渐成熟, 以及仿真器等下游工具链的完善, 现在的工作更关注高水平的自动驾驶系统. 目前存在两个研究分支, 分
别是模块化系统和端到端系统.
 2.1.2    模块化系统

模块化系统将自动驾驶任务分解为多个子任务, 交由不同的模块分别处理, 每个子任务又可以细分为多个模

型, 如图 3所示. 例如, 感知模块包括了目标检测模型、交通信号灯识别模型等. 每个模型都需要独立开发, 训练参

数, 迭代优化, 最终串接处理数据, 实现自动驾驶任务. 典型的开源模块化自动驾驶系统有 Apollo[20]和 Autoware[21].
其架构一般包括感知、规划和控制这 3个部分, 如图 3所示.
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图 3　模块化自动驾驶系统架构
 

(1) 感知模块接收相机、激光雷达、惯性测量单元等传感器数据, 通过深度学习技术融合和处理数据, 实现交

通灯识别、目标跟踪、轨迹预测、定位等任务, 感知和理解外部环境.
(2) 规划模块根据感知模块的输出规划车辆路线, 通过 3个步骤完成任务: 全局规划, 负责在地图上根据起点

和终点规划出一条可行的路线; 行为规划, 负责做出符合交通法规的高级驾驶决策, 如巡航、跟车等; 运动规划, 通
过考虑安全、效率和舒适度等因素, 生成最优的局部规划, 如确定速度和转向角.

(3) 控制模块使用控制算法向油门、方向盘等执行器传输控制信号, 驱使车辆沿着规划模块输出的轨迹运动,
实现横向控制和纵向控制. 常用的控制算法有比例积分微分 (PID)[22]算法和模型预测控制 (MPC)[23]算法.

除上述主要部分外, 还有一些辅助组件, 如人机交互界面、高精地图、V2X 等. 模块化设计的自动驾驶系统

的优点是各模块基于规则处理任务, 通过规则约束实现了最小安全保障. 但是, 此类设计方案属于流水线架构, 上
层模型的错误输出会传播到后续模型, 微小的偏差不断累计, 最终可能造成级联故障, 影响正常任务的执行.
 2.1.3    端到端系统

端到端系统将传感器感知的数据、导航命令输入一个预训练的深度神经网络, 直接输出控制信号或规划轨

迹. 端到端系统仅通过一个模型即可实现模块化系统的大部分功能, 如图 4所示. 该模型可能包括多个子模型, 但
所有模型联合训练, 使用一致的优化目标 [24]. 最早的端到端自动驾驶车辆 AVLINN出现于 1989年, Pomerleau[25]

设计了一个 3层全连接神经网络实现简单的自动驾驶任务. 2023年的 CVPR最佳论文颁发给 UniAD[26], 一个全栈
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的端到端方案. 目前, 端到端系统的主要设计方法是模仿学习或强化学习技术, 典型代表是英伟达的 DAVE-2[27]、
comma.ai的 OpenPilot[28].
 
 

深度神经网络

传感器 执行器

图 4　端到端自动驾驶系统架构
 

相对来说, 模块化系统在实际生产中应用更多, 端到端系统的研究尚处于起步阶段. 主要原因有两点: 首先, 端
到端系统可解释性差, 无法阐释智能决策的原因, 在出现错误时难以定位缺陷和评估修复. 并且由于缺乏规则限

制, 端到端系统无法保证 100%的安全性, 没有安全下界. 其次, 训练端到端系统的深度神经网络模型需要大量准

确标注的完整数据, nuScenes[29]等早期的开源视觉数据集效果较差, 目前尚无高质量、多模态的训练数据集. 而针

对模块化系统数据的收集和标注技术较为成熟, 也存在高质量、高影响力的开源数据集. 因此, 端到端自动驾驶系

统并未广泛应用, 仍然有待深入研究.

 2.2   自动驾驶仿真测试架构

目前常用的测试方法分为 3种: 道路测试 [30]、封闭场地测试 [31]和仿真测试. 前两种方法难以遍历复杂的真实

环境条件, 应用较少. 因此, 仿真测试成为安全研究的主流. 本文主要关注仿真测试下的整车系统安全研究.
自动驾驶仿真测试使用计算机软件构建真实的物理环境, 模拟道路测试面对的路况信息, 并接入自动驾驶系

统控制车辆模型, 在参数化的条件组合下运行, 以挖掘自动驾驶系统的缺陷. 仿真测试用驾驶场景代替了行驶里

程, 可以灵活配置各种场景参数, 大量生成现实中的稀缺场景和危险场景. 因此, 仿真测试的成本更低, 安全性和效

率更高, 能够为自动驾驶系统的部署实装和量产应用提供保障. 图 5展示了仿真测试的架构体系, 预定义的测试场

景在仿真器中渲染处理, 仿真器通过通信接口与自动驾驶系统连通, 转发控制流和数据流信息, 进而使自动驾驶系

统在测试场景中运行.
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图 5　自动驾驶仿真测试架构
 

 2.2.1    仿真器

理想的仿真器包括高保真的仿真环境、精确的传感器模型和先进的车辆动力学模型 [32], 如图 5所示.
环境仿真技术将现实对象的存在特性和运动过程精准还原到测试场景中, 包括光照、天气等自然环境和交通

标志、道路基础设施等交通环境两类. 高保真的环境能够为自动驾驶系统的传感器提供更丰富、更具可用性的输

入数据, 使仿真测试更接近现实中的道路测试. 但是, 由于成本和技术的限制, 仿真与现实始终存在差距. 部分研究

人员试图缩小二者的距离, 开发更真实、更灵活、更便捷的仿真工具. 例如, 用于在各种照明条件下测试感知模块

的光照仿真平台 LightSim[33], 利用多个大语言模型协同工作的场景编辑平台 ChatSim[34].
传感器仿真技术将真实传感器的参数、特性和工作过程数字化, 创建对应的虚拟模型, 其精度决定了感知的
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精度. 该技术面临着以下挑战: 首先, 传感器种类繁多, 参数和工作原理各不相同. 因此, 不存在适用于所有传感器

的通用模型, 必须为每类设备单独设计和定制. 其次, 现实中传感器的工作过程会受到光学、声学等多种随机噪声

的干扰, 因此在建模时需要加入人工设计的误差, 如车载相机的畸变系数、车载激光雷达的扫描角误差等. 然而,
此类误差难以量化和标准化, 成为传感器仿真技术的“痛点”之一. 最后, 仿真需要获取传感器详细的底层数据, 然
而出于保密要求和商业考虑, 厂商通常不会开放此类数据, 这使得研究人员遭遇额外的阻碍.

车辆动力学仿真技术将物理车辆的动力学特性抽象为数学模型, 实现出一个能够反映实际工作状态并适用于

闭环测试的虚拟车辆. 动力学模型决定了自动驾驶系统控制算法表现的准确性, 进而影响测试结果的可用性. 但汽

车的零件数量极多, 参数和特性极其复杂, 研究人员无法拟合所有硬件, 只能精简零件数量, 模拟核心和关键部件,
平衡建模精度和仿真成本.

根据适用条件和设计目标, 可以将现有仿真器分为 3类: 全栈仿真器、车辆仿真器和交通流仿真器. 全栈仿真

器是随自动驾驶技术发展而逐渐兴起的新类型, 典型代表是 LGSVL[35]和 CARLA[36], 二者都是学术界常用的开源

仿真器, 支持主流的开源自动驾驶系统. 车辆仿真器是传统车企的主要工具, 典型代表是 CarMaker[37]和 CarSim[38],
能够构造精确的车辆模型, 优化车辆机械结构的参数, 促进新车型的开发. 交通流仿真器的典型代表是 SUMO[39]

和 PTV Vissim[40], 优势在于能够仿真大规模的交通流, 模拟多个智能体间的交互行为. 鉴于不同仿真器有各自的

侧重点, 联合仿真成为一大发展趋势. 大多数仿真器都提供了与其他仿真器连接的接口, 研究人员可以根据测试需

求和测试条件挑选和搭配, 优化仿真效果.
通信接口负责连接自动驾驶系统和仿真器, 实现二者之间的通信链路. 一方面, 通信接口将自动驾驶系统做出

的控制命令发送给仿真器, 使车辆根据反馈信息调整决策; 另一方面, 通信接口将仿真器中的地图、车辆状态、轨

迹点等数据传输给自动驾驶系统, 迭代更新输入数据, 为其行为决策提供依据.
 2.2.2    测试场景

仿真测试常用的测试用例是场景, 表征一段时间内的驾驶环境, 包括静态环境、动态对象及其行为 [41]. 静态

环境由天气、道路结构、障碍物、交通信号和标志等元素组成. 动态对象包括自动驾驶控制的车辆、其他车辆和

行人. 一般将前者称为自车, 将后者称为非玩家角色 (non-player character, NPC)或背景车辆. 动态对象与环境、动

态对象之间频繁交互, 产生跟车、变道等驾驶行为. 上述 3类对象均可由大量参数表示, 其集合构成了场景的配置

参数空间, 关键场景即容易导致交通事故、晕动症等问题的配置参数组合.
研究人员将场景分为 3 个层次, 功能场景、逻辑场景和具体场景 [42]. 功能场景也被称为抽象场景, 用自然语

言描述场景中存在的实体及其关系. 逻辑场景从功能场景中提取配置参数空间, 并约束每个参数的取值范围. 具体

场景被定义为通过搜索或采样算法, 计算出逻辑场景中各参数的具体值, 描述成一组可实现的测试场景. 例如, 功
能场景是, 自车换道并超过 NPC1, 随后跟随在 NPC2 后行驶; 逻辑场景是, 定义自车和所有 NPC 的位置、速度、

车道等参数的取值范围; 具体场景是, 确定自车的速度是 20 km/h, 从 1车道换到 2车道, 换道后的速度是 30 km/h,
以及其余 NPC的具体参数.

为了将测试场景翻译为机器可执行的脚本, 研究人员开发了场景描述语言. 该类语言能够满足实验的定制化

需求, 并与自动驾驶系统和仿真器解耦合, 可移植性强. 例如, AVUnit[43]集成了两种特定于自动驾驶领域的描述性

语言, SCENEST建模场景中的 NPC和天气等元素, AVSpec使用信号时序逻辑公式描述正确驾驶规范. ScenoRITA[44]

定义了障碍物的位置、形状、种类和驾驶行为, 将其实现为完全可变的编码表示, 并借助高精地图构造的有向图

自动化生成 NPC 轨迹. 鉴于编写场景脚本的工作复杂繁琐, Deng 等人 [45]利用大语言模型 (large language model,
LLM)代替人类专家, 使用 GPT-4提取并解析交通规则中蕴含的信息, 随后基于仿真器 API搜索场景参数, 为每条

交通规则生成对应的测试场景.

 3   面向整车系统的自动驾驶安全测试框架

本文基于通用的测试框架, 提炼所有测试方案的共性和个性特征, 总结面向整车系统的自动驾驶安全测试框

架. 通过框架提取核心研究问题, 以此为基础对整车系统安全领域的研究文献进行全面分析. 该框架将通用的测试
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框架具体化, 融入核心研究问题, 能够简单直接地对比现有文献的研究重点, 使研究人员对整车系统安全测试的工

作流程和技术体系形成全视角、多维度的认知. 同时, 该框架能够启发研究人员将传统软件安全的测试方法和研

究思路迁移到整车系统安全测试领域, 指导开展具体的测试工作. 框架主要包括测试用例生成、测试用例执行、

测试结果验证这 3部分, 如图 6所示.
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图 6　面向整车系统的自动驾驶安全测试框架
 

 3.1   基本工作过程

面向整车系统的自动驾驶安全测试框架的基本工作过程是: (1) 将测试场景和被测自动驾驶系统导入仿真器,
使自动驾驶系统控制场景中的代理运行. (2) 收集执行过程中的状态数据, 根据测试预言检测是否出现非预期的危

险行为, 并筛选误报和真正的危险行为. (3) 计算覆盖率度量或优化算法的目标函数, 指导测试用例生成过程. 迭代

执行上述 3个步骤, 在海量的场景中找出引发问题的场景, 测试自动驾驶系统的安全性. 值得注意的是, 并非每个

工作都涉及上述所有环节, 一些研究可能不考虑覆盖率度量或测试结果优化.

 3.2   测试用例生成

安全测试框架中最重要的环节是测试用例生成, 即测试场景生成. 研究人员设计了多种场景生成方法. 一方

面, 可以通过真实驾驶数据集进行已知场景的重建 [46], 进而泛化出更多场景; 另一方面, 可以通过各种场景空间搜

索技术生成未知场景, 为解决危险场景长尾分布问题提供方案.
由于场景空间中参数的数量极多, 且取值是连续的, 所以难以穷举所有测试场景. 针对此问题, 本文总结了 3

种测试用例生成思路, 即关键场景生成、测试充分性和对抗样本生成. (1) 关键场景生成, 通过设计出合适的引导

度量和优化算法, 逐步提高测试场景的关键度. (2) 测试充分性, 通过聚类等算法将所有场景抽象为多种类型, 用少

量具有代表性的测试场景近似整个场景空间. (3) 对抗样本生成, 研究人员在图像或点云中添加对抗扰动, 攻击自

动驾驶系统模型应用的人工智能算法, 影响系统的决策和控制.

 3.3   测试用例执行

测试用例优化是测试用例执行环节的可选步骤, 负责在执行前对测试用例集进行筛选和精简, 以过滤同质化

的测试用例, 保留更高质量、更关键的测试用例. 具体的执行过程已在第 2.2节中详细说明, 本节不再赘述.

 3.4   测试结果验证

测试结果验证环节包括测试预言和测试结果优化两部分. 测试预言用于判断测试结果是否符合预期, 区分被

测系统的正确和错误行为 [47]. 一方面, 可以采取形式化规约等方法, 将现实世界的规则形式化为任务约束, 根据状

态数据判断测试结果, 校验系统设计需求和安全性是否满足. 另一方面, 一些问题难以构造有效的测试预言, 需要

使用蜕变测试 (metamorphic testing)、差分测试 (differential testing)等技术验证结果. 在检测出引发违规行为的测

试场景后, 部分研究人员会优化测试结果, 过滤假阳性的测试结果, 只保留自动驾驶系统承担责任的违规行为. 最
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终, 执行结果和判断信息会反馈给测试用例生成环节, 指导生成关键度更高、覆盖面更全的测试场景.

 4   面向整车系统的自动驾驶安全测试研究现状

目前的综述工作通常以测试方法作为分类依据, 将采用同一类技术方案的工作统一阐述. 然而, 随着安全研究

的逐渐深入, 针对同一问题已经提出了多样化的解决方案, 使得当前的分类方法难以适应技术发展的需求, 甚至会

割裂研究问题之间的相关性, 打断研究进展的连贯性, 使研究人员无法直观认知到某项研究问题的历史脉络和发

展趋势. 因此, 本文基于第 3节总结的整车系统安全测试框架, 从子环节中提炼出核心研究问题, 并以此为基础将

研究工作划分为以下 5类: 关键场景生成、测试充分性、对抗样本生成、测试优化和测试预言. 这种分类方法将

研究工作从技术层面下沉细化到问题层面, 将关注的焦点从具体技术手段转移到核心问题本身, 从而串联起一个

连贯而完整的测试流程. 同时, 该分类方法细致地梳理了不同测试阶段研究问题的需求、特征和对应的技术方案,
从而清晰地展现出自动驾驶安全测试中整车系统领域的发展轨迹, 为探寻和发掘潜在的安全问题开辟了新思路.
具体分类结构如图 7所示.
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图 7　面向整车系统的自动驾驶安全测试研究文献分类
 

各分类的主要目标如下: 关键场景生成分类下的文献关注如何快速生成危险的场景参数集合, 以诱发自动驾

驶错误行为; 测试充分性分类下的文献关注如何用少量测试场景近似全部输入空间, 充分验证所有可能的场景参

数配置, 同时避免重复执行产生相似结果的输入; 对抗样本生成分类下的文献关注如何在测试环境中添加扰动, 生
成对抗样本, 破坏模型输出, 进而影响整车系统的安全性; 测试优化分类下的文献关注如何提高测试结果的准确率

和真实性, 以及如何提高测试场景的验证效率; 测试预言分类下的文献关注如何深入挑战自动驾驶系统在现实中

正常运行的能力.

 4.1   关键场景生成

仿真测试中场景数量是无限的, 且大多数场景都无法威胁到自动驾驶系统, 只有极少数关键场景才是最重要

的. 因此, 需要有方向、有指导的缩小场景空间, 定位风险最大的测试场景. 基于这一共识, 研究人员提出不同的场

景生成策略, 在场景空间中搜索关键场景. 同时, 需要将现实中对自动驾驶系统有挑战性的因素纳入到测试场景

中. 测试场景的参数数量越多, 触发漏洞的可能性也越高. 测试场景中常见的对象包括 NPC、天气、静态障碍物

等, 近来也有研究人员建模了道路结构和水坑. 图 8展示了该类别下工作的场景生成方法和场景参数.
生成关键场景是披露自动驾驶系统缺陷的核心, 也是测试用例生成环节的重要组成部分. 基本流程是: (1) 构

建逻辑场景, 明确参数及其取值范围. (2) 通过搜索或优化算法确定场景的具体参数值, 在仿真器中执行. (3) 根据

执行结果计算目标函数, 指导生成算法的优化方向. (4) 重复上述步骤, 最终得到高质量、有挑战性的测试场景. 本
节根据生成方法将文献分为两类, 基于搜索的测试方法 [48–56]和机器学习方法 [57–61]. 表 1对比了该分类下文献的场

景参数和场景生成策略.
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表 1　关键场景生成分类下的工作对比
 

文献 分类 场景参数 场景生成策略 ADS
[48]

基于搜索
测试方法

NPC速度和变道策略 最小化自车和NPC的距离 Apollo
[49] NPC行为 最小化自车和NPC的距离 Apollo

[50] 4种NPC行为序列
以场景的风险性、对抗性和多样性为目标函数进行多目
标优化

Apollo

[51] 抽象行为模式 添加指定行为模式的NPC以增加场景的关键度 Apollo

[52] NPC对抗性行为
根据两个时刻间攻击车和自车的相对位置变化确定NPC
行为的采样范围

Autoware

[53] NPC行为、天气和水坑 用驾驶质量分数评估场景并引导参数优化方向 Autoware

[54] NPC行为和道路结构
以场景覆盖率、驾驶难度和关键度为目标函数选择帕累
托最优解

合作伙伴提供

[55] NPC行为和静态障碍物
使用执行路径与目标攻击位置的控制流和数据流距离引
导模糊测试框架

Apollo、
Autoware

[56] NPC行为、天气、交通标志 计算车辆轨迹与交规约束间的差距引导场景空间搜索 Apollo

[57]

机器学习
方法

NPC行为、天气和静态障碍物
使用安全距离与当前距离计算碰撞概率, 构建DQN算法
的奖励函数

Apollo

[58] NPC行为、天气和静态障碍物 使用碰撞时间指标构建DQN算法的奖励函数 Apollo

[59] NPC行为、天气和照明条件 为每个安全需求建立目标函数, 表述为多目标搜索问题 Transfuser[62]

[60] NPC行为和天气 使用神经网络分类器预测场景导致违规的置信度分数 Apollo
[61] NPC行为、天气和交通标志 用测试场景及其鲁棒值训练GFlowNet并采样 Apollo

 

 4.1.1    基于搜索的测试方法

研究人员将基于搜索的测试方法应用于自动驾驶领域, 并优化搜索过程, 加速关键场景生成. 通常, 场景生成

问题被表述为场景参数的高维空间搜索问题, 利用单目标优化或多目标优化算法找到最优解.
驾驶环境中最常见的对象是 NPC, 其参数包括位置、速度、机动行为等. 机动行为使 NPC 围绕自车进行连

续、复杂的运动, 测试自动驾驶系统的交互和处理能力. 简单的机动只考虑速度和转向角的变化; 高级机动组合多

个原子机动, 形成机动序列. 复杂的机动序列能够在不同场景间迁移测试, 灵活修改部分参数, 自由度更高 [63].
研究人员首先分析和测试了 NPC 与自车的交互. 例如, AV-Fuzzer[48]构建了包括少量 NPC 的简单直道的场

景, 使用遗传算法变异 NPC的速度和变道策略, 以自车和 NPC的距离为目标函数, 使用轮盘赌策略选择高质量的

测试场景, 检测到 5种违规行为. Sun等人 [49]改进了 AV-Fuzzer使用的遗传算法, 使用高斯变异、多点交叉和锦标

赛选择策略, 提高了局部搜索的效率, 检测到更多数量和种类的安全违规行为. 上述研究只针对简单的驾驶行为,
MOSAT[50]对其进行组合, 形成 4种根据位置和概率触发的行为模式, 通过多目标遗传算法 NSGA-II引导生成关

键场景, 不仅覆盖了 AV-Fuzzer的实验结果, 还多检测到 6种违规行为.
鉴于真实环境中交通事故可能是多车交互造成的, CRISCO[51]从真实轨迹数据集中抽象出容易导致交通事故

的车辆行为模式, 并基于挖掘的行为模式构建初始抽象场景, 求解约束以实例化具体场景, 通过逐步添加指定行为

模式的 NPC增加场景的关键度, 提升碰撞潜力. 除了测试自动驾驶系统对正常驾驶操作的反应能力, 部分研究还
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关注对恶意驾驶行为的鲁棒性. ACERO[52]根据两个时刻间攻击车和自车的相对位置变化方向约束采样范围, 生成

多条候选命令并逐一执行, 从中选择违规概率最大的命令. 框架迭代上述过程, 生成一系列对抗性控制命令, 使 NPC
沿对抗轨迹运动, 破坏了 6类正常的驾驶任务.

上述研究强调自车与其他车辆在地图中产生的交互行为, 关注交通环境对自动驾驶系统的影响, 而不重视天

气、时间等自然环境因素. 因此, 部分研究人员同时考虑了车辆交互和自然环境. 例如, DriveFuzz[53]额外考虑了水

坑和天气的影响, 计算转向不足、急转弯等多个指标, 组合成驾驶质量分数, 指导搜索场景配置空间, 检测到

Autoware上 17个安全漏洞. EvoScenario[54]将高速公路上不同类型的路段和 NPC机动相结合, 实现了车道拓展、

缩减、合并、分离这 4类连接路段, 并将基本路段和连接路段串联组合, 利用遗传算法和多目标搜索策略生成关

键的测试场景, 成功在多样化的道路结构下发现 4类新的安全问题. 除此之外, 一些研究人员使用静态障碍物搭建

了自然环境中出现概率较小的场景进行测试. Wan等人 [55]运用逆向思维, 发现通过精心设计物体的摆放位置, 能
够迫使车辆永久静止或不执行决策任务, 挑战自动驾驶系统的行为规划组件. 他们将其称为过于保守的语义拒绝

服务漏洞, 并提出白盒模糊测试框架 PlanFuzz, 以执行路径与目标攻击位置的控制流和数据流距离为反馈, 检测在

遵守安全约束的条件下自动驾驶系统是否具备完成任务的能力.
尽管现有场景描述语言提供了对车辆状态和行为、天气、道路结构等对象的形式化描述, 但并没有考虑车灯、

喇叭等提供辅助功能的对象, 以及限速、停车线等交通标志对象, 阻碍了复杂规则纳入测试框架的过程. 针对上述

问题, LawBreaker[56]制定了面向驾驶员的场景描述语言, 使用信号时序逻辑公式将交通规则形式化, 使测试中的交

通环境更加真实. 同时, 研究人员使用遗传算法生成测试场景, 并通过比较当前状态违反交规的程度引导场景空间

搜索, 最终发现 14条法规被违反, 首次验证了自动驾驶系统遵守交通法规的能力.
 4.1.2    机器学习方法

基于搜索的测试方法生成的测试场景没有充分考虑环境中代理的动态行为, 因此部分研究人员结合机器学习

算法生成关键场景.
一些研究人员使用强化学习技术学习场景参数配置. 例如, DeepCollision[57]将场景中天气、静态障碍物、动

态障碍物的配置问题表述为马尔可夫决策过程, 使用 DQN 算法学习容易使自车发生碰撞事故的配置参数, 并用

安全距离与当前距离计算碰撞概率, 构建奖励函数, 检测到 40个独特的碰撞事故. RLTester[58]拓展了上述工作中

环境配置参数的数量, 并采用碰撞时间 (TTC)指标构建奖励函数, 检测到 192个独特的碰撞事故. 上述方案只针对

单个测试目标, 即自车与障碍物是否发生碰撞, 在验证多个测试目标时成本较高, 效率较低. 为了弥补上述不足, 研
究人员结合强化学习算法和多目标优化思路, 将多种安全需求的违规检测表述为多目标搜索问题. 例如, MORLOT[59]

利用 Q学习算法生成 NPC行为、天气等环境参数序列, 并为每个安全目标生成独立的 Q表, 根据每一轮迭代中

奖励值最高的目标选择执行动作, 兼顾和平衡了多个测试目标, 发现了不同类型的违规行为.
另一些研究人员训练神经网络生成测试场景. 例如, AutoFuzz[60]框架基于神经网络设计了场景选择和变异策

略. 选择策略使用分类器预测场景导致独特交通违规的置信度分数, 并迭代训练神经网络; 变异策略利用投影梯度

下降策略, 反向传播神经网络的梯度, 为置信度分数较低的场景添加微小扰动. 受生成式流网络 (generative flow
network, GFlowNet)[64]的启发, ABLE[61]改进了文献 [56] 的工作, 利用测试场景及其对交通规则的鲁棒值训练

GFlowNet, 并结合领域知识和主动学习算法更新迭代模型, 采样出高质量且多样化的测试场景, 以测试自动驾驶

系统遵守交通规则的能力. 实验结果表明 ABLE比文献 [56]平均多检测到 21%的违规行为.
 4.1.3    小　结

由该分类下的文献可知, 自 AV-Fuzzer为起点, 研究人员开始使用高保真的仿真器测试自动驾驶系统, 观察其

在场景中的表现, 并提出多种场景生成策略. 随后, 研究人员逐渐将人工智能引入场景生成工作, 并增加场景中可

测试的对象及其参数. 基于搜索的方法和机器学习是目前研究中主流的场景生成算法, 研究人员结合引导度量缩

小输入空间, 并在测试场景中纳入更多可参数化的对象, 使多种因素充分交互、复杂约束相互碰撞, 制造出更具挑

战性的驾驶环境, 以充分测试自动驾驶系统整体.

 4.2   测试充分性

早期的自动驾驶测试技术承接软件测试领域的思想和方法, 将自动驾驶系统视为一种软件系统, 使用覆盖率
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指标衡量测试充分性. 基本思想是, 如果能够测试自动驾驶系统面对所有类型环境下的全部决策行为, 即可认为其

设计和功能是完善的. 由于自动驾驶项目代码量庞大, 因此指向软件内部的代码覆盖率不再适用. 研究人员结合测

试场景多样性和自动驾驶系统行为, 提出了新的覆盖率度量, 指导测试场景生成, 全面充分测试自动驾驶系统. 本
节根据覆盖率度量将文献分为驾驶决策 [65–67]和环境要素 [68–71]两类. 表 2总结了该分类下工作的覆盖方法.
 
 

表 2　测试充分性分类下的工作对比
 

文献 分类 覆盖方法 ADS
[65]

驾驶决策

添加不同位置的静态NPC使行驶路线覆盖更多区块 Apollo
[66] 计算抽象轨迹间的距离衡量轨迹相似度 Apollo
[67] 根据原始参数及其突变体的执行结果判断影响决策的参数集 Autonomoose
[68]

环境要素

将交汇处划分成不同路径类型, 并通过添加静态NPC测试路径规划 Apollo
[69] 将交汇处分类并为每类的代表生成场景, 测试系统对动态NPC的反应能力 Apollo
[70] 对天气、道路和自车行为这3类输入进行组合测试, 覆盖所有抽象场景 Apollo
[71] 通过可达性分析确定车辆的物理交互区域, 并用向量集抽象表达 BeamNG.AI

 

 4.2.1    驾驶决策

本分类的目标是覆盖所有类型的驾驶决策, 测试自动驾驶系统在不同场景下的分析和处理能力. 驾驶决策包

括了变道、超车、转弯等行为, 一段时间内决策的组合形成轨迹. 当前研究通常使用环境参数和系统参数两种因

素影响驾驶决策, 如图 9所示.
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图 9　测试充分性分类
 

一些研究方案通过环境参数影响驾驶决策. 驾驶环境包括地图上的静态障碍物和动态障碍物, 自动驾驶系统

与其交互, 做出对应的决策. 当改变环境参数时, 自车的行驶轨迹会发生变化, 即每一时刻的决策会动态变化. 例
如, ASF[65]使用模糊测试变异 NPC在测试场景中的位置, 以挑战自车的规划能力, 通过计算自车轨迹经过的区块

与全部区块的比值得到轨迹覆盖率, 引导产生更复杂的驾驶行为. 实验结果表明, 与随机模糊测试器和 AV-Fuzzer
相比, 该工作能够覆盖更多区块. 但是, 其覆盖率度量的精度受限于区块面积, 难以实现细粒度的决策覆盖. 因此,
研究人员提出通过比较抽象轨迹判断决策的覆盖程度. 例如, BehAVExplor[66]计算了同一时间尺度内两个抽象轨

迹的汉明距离, 以此衡量轨迹间的相似度, 从而将没有造成违规但差异较大的轨迹保留在种子集合中, 保证自车决

策的多样性, 最终检测到 16种独特的违规行为.
除此之外, 部分研究方案通过系统参数影响驾驶决策. 自动驾驶系统的参数与决策行为密切相关, 决定了其激

进与保守程度. 例如, 自车与其他车辆应当保持的最小距离, 自车在交叉路口范围内的速度限制等. Laurent等人 [67]

提出参数覆盖率, 对比规划器中的原始参数及其突变体的执行结果, 根据车辆轨迹、轨迹的安全性和舒适性指标

的差距, 分析参数与决策的对应关系. 通过覆盖参数集, 验证自动驾驶系统的所有驾驶决策.
 4.2.2    环境要素

本分类的目标是覆盖所有类型的环境要素. 环境中的对象包括天气、道路结构、障碍物等, 将其排列组合并

实例化后, 场景数量呈几何级增长. 因此, 必须将所有输入对象分析归纳为抽象类型, 用少量的场景近似全部场景

空间. 根据测试的输入对象, 可以将该类工作分为道路结构和对象组合两类, 如图 9所示.
一些研究人员关注覆盖地图中所有交汇处的道路结构, 随后迭代生成关键场景. 例如, CROUTE[68]将地图建模
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为带标记的 Petri网, 分析交汇处的道路拓扑关系并进行聚类. 针对每一种道路结构, 该方法逐步添加静态障碍物,
测试自动驾驶系统的路径规划能力. ATLAS[69]根据地图拓扑中形状、交通灯、车道数量将交汇处分类, 并从每类

中选择出代表性路段, 减小了地图中的测试范围. 与 CROUTE不同, ATLAS使用遗传算法生成多个动态 NPC, 使
测试场景更加复杂和多样. 实验结果表明, 与随机采样相比, ATLAS减少了 29.1%的测试用例.

另一些研究人员考虑环境中各种输入对象的组合. 例如, ComOpT[70]对天气、道路和自车行为这 3类输入进

行组合测试, 覆盖所有的抽象场景, 进而实例化参数生成具体场景, 在潜在碰撞位置生成特定运动轨迹的代理, 扰
动自动驾驶系统的行为. 该方法比随机生成方法多检测到 105个违规行为. 部分研究不仅考虑环境中的对象, 还关

注车辆行为对系统工作状态的影响. PhysCov[71]通过可达性分析确定了车辆的物理交互区域, 并用向量集抽象表

达该区域. 通过已知向量与潜在全部向量的比值计算环境状态覆盖率, 指导生成具有不同特征的测试场景.
 4.2.3    小　结

为了测试自动驾驶系统, 研究人员迁移应用了软件测试的覆盖率思想. 由于自动驾驶软件代码结构和数据交

互复杂, 研究人员放弃使用代码覆盖率. 直观上, 通过构建更完善的场景库可以满足充分测试的要求. 但现实中场

景是长尾分布的, 伴随着突发情况或新元素的排列组合, 不断出现新的未知场景. 因此, 直接验证场景覆盖率的难

度很高, 当前研究通过覆盖驾驶决策或环境要素侧面证明测试充分性. 由于自动驾驶系统内部丰富的状态信息能

够帮助研究人员理解任务实现逻辑, 所以最近的工作也将车辆状态和参数纳入考量 [67,71].

 4.3   对抗样本生成

由于自动驾驶系统逐渐应用更多人工智能算法, 部分研究生成对抗样本测试其安全性. 由图 3可知, 自动驾驶

系统的感知环节接收来自相机的图片数据和激光雷达的点云数据, 进行数据处理、融合和分析, 提供对外部环境

的理解. 对抗性测试会生成对抗性的图片和点云, 并注入仿真环境中, 破坏 AI模型的输出结果. 因此, 当前存在大

量欺骗感知模块的工作. 然而, 这些工作可能无法在现实环境中对自动驾驶系统造成严重危害. Wang等人 [72]通过

理论分析和实验证明得出结论, 大部分针对感知模块的对抗攻击工作在闭环测试中效果很差, 无法导致整车系统

的状态发生偏移, 组件级攻击在系统层面通常无效. 因此, 本文主要关注能够引起系统级行为偏差的对抗样本生成

工作, 即以感知环节为攻击入口, 破坏自动驾驶系统整体的安全性. 为此, 需要将感知下游的规控组件、被控车辆

模型和驾驶环境都纳入考虑, 在仿真环境中部署扰动, 衡量驾驶模型对攻击的鲁棒性.
基于攻击针对的任务类型, 本节将对抗样本生成工作分为两类, 分类问题 [72–77]和回归问题 [78–83]. 分类问题负

责为对象建立离散的标签, 回归问题用于预测未来趋势和走向. 例如, 在目标检测模型中, 目标识别属于分类任务,
目标跟踪属于回归任务. 表 3对比了不同工作的攻击入口、对抗样本生成方法和对系统层面的影响.
 
 

表 3　对抗样本生成分类下的工作对比
 

文献 分类 攻击入口 对抗样本生成方法 对系统层面影响 ADS
[72]

分类问题

相机 系统模型和优化算法 碰撞或违反交通规则 ①

[73] 相机 网格搜索 闯红灯或紧急制动 Apollo
[74] 激光雷达 优化算法和全局抽样 紧急制动或永久静止 Apollo
[75] 激光雷达 优化算法和遗传算法 紧急制动或不规则变道 Apollo
[76] 多传感器融合 优化算法 碰撞 Apollo
[77] 多传感器融合 在视锥体范围生成欺骗点 碰撞或紧急制动 Apollo
[78]

回归问题

相机 网格搜索和贝叶斯优化 车道违规行为或碰撞 ②

[79] 相机 优化算法 转向错误或碰撞 DriveNet[84]

[80] 相机 优化算法 偏离车道或碰撞 DAVE-2
[81] 相机 神经网络和优化算法 碰撞或紧急制动 Apollo
[82] 相机 优化算法 沿攻击轨迹行驶 ②

[83] 相机 状态自适应和优化算法 偏离预期轨迹或碰撞 DAVE-2
注: ① 代表自动驾驶系统由多个部分组合, 包括传统目标检测器、基于卡尔曼滤波的多目标跟踪器、Apollo的规划模块、PID控
制器和Stanley控制器; ② 代表基于条件模仿学习的深度学习导航模型[85]
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 4.3.1    分类问题

分类问题通常应用于目标识别模型中. 根据输入源和攻击入口的差异, 将针对分类问题的安全研究工作划分

为 3类, 分别为攻击相机、激光雷达和多传感器融合架构, 如图 10所示.
  

对抗样本生成

分类问题

相机

静态扰动

回归问题

动态扰动

多传感器融合 激光雷达

图 10　对抗样本生成分类
 

相机是重要的传感器, 价格低廉, 应用广泛, 以特斯拉为代表的一批厂商正在探索纯视觉方案. 但是, 相机一般

只提供二维视角, 无法对外部环境形成立体的认知. 一些工作对以相机为输入源的模型进行安全研究. 交通信号灯

是城市环境的典型特征之一, Yan等人 [73]研究了交通信号灯识别系统. 他们基于信号灯图像搜索出攻击成功率最

大的激光参数集, 以在相机捕获的图像中创建彩色条纹, 误导模型的识别过程, 进而通过实验证明对抗样本可能使

汽车闯红灯或紧急制动. 为了增强对抗样本在不同距离和视角下的鲁棒性, Wang等人 [72]提出了一种可以嵌入现

有对抗攻击工作的系统框架 SysAdv, 设计了新的对象尺寸分布, 并根据控制模型选取合适的采样范围, 在实验中

使自动驾驶系统错误识别停车标志和行人, 平均提高了对象逃逸攻击 70%的成功率.
激光雷达提供了三维视角, 能够描述物体的形状和纹理信息, 但是容易受到天气干扰, 且成本较高. 一些工作

对以激光雷达为输入源的模型进行安全研究. Cao等人 [74]分析了 Apollo中基于激光雷达的目标检测过程, 得出结

论: 传统的对抗攻击方法可以更改目标检测模型的输出, 却无法在感知模块的工作过程生成虚假物体. 随后, 他们

向激光雷达注入激光脉冲, 添加少量点云, 欺骗目标检测模型, 使其在车辆前方检测到不存在的障碍物, 在注入 60
个欺骗点时有 75%攻击成功率, 最终导致自动驾驶车辆紧急制动或永久静止. 但是, 该方法需要在攻击车上放置

激光雷达, 攻击的隐蔽性较弱. 为了提高攻击的可行性, Yang等人 [75]对激光雷达及其目标检测模型进行仿真, 设计

出误导模型检测结果的障碍物. 通过在路边放置该对抗样本生成欺骗性点云, 使系统误检测为存在车道入侵事件,
导致自动驾驶车辆紧急制动或不规则变道.

多传感器融合算法能够综合不同传感器的优点和缺点, 通过多个输入源对外部环境进行实时检测, 使感知结

果的鲁棒性更强, 是当前厂商的主流解决方案. 当前对该算法的基本共识是, 在非所有输入源同时受到攻击的情况

下, 感知模块的输出是可靠的. 因此, 为了验证该算法的安全性, 研究人员试图设计出能够干扰所有输入源的对抗

样本. Cao等人 [76]分析了同时攻击相机和激光雷达的可行性, 并将其建模为优化问题, 逐步生成对抗性的物理世界

对象. 由仿真实验可知, 对抗样本会引发障碍物检测模型产生漏报, 导致碰撞等交通事故, 攻击成功率远高于基于

遗传算法生成扰动的基线实验. 上述研究需要使用逆向工程等方法预先获取模型知识, 属于白盒方法, 局限性较

大. Hallyburton等人 [77]则提出一种黑盒方法——视锥体攻击. 他们将攻击车检测框与受害车传感器连接形成的几

何范围称为视锥体, 使用激光在视锥体内部注入虚假点. 在保持相机和激光雷达语义一致性的前提下, 破坏了二者

的融合架构, 诱导感知模型产生误报或漏报, 损害自动驾驶功能. 该攻击方法对于各种 LiDAR欺骗防御技术的平

均攻击成功率超过 90%, 验证了该方法的有效性.
 4.3.2    回归问题

回归问题负责预测车辆和行人的未来运动轨迹, 研究人员致力于干扰模型的预测值. 根据对抗样本的类型, 将
该部分的工作划分为静态扰动和动态扰动这 2类, 如图 10所示.

最简单的对抗样本只修改单帧图片, 部署静态扰动. Boloor等人 [78]在车道上覆盖由长宽、颜色和旋转角度等

多个参数表征的对抗性线条, 通过网格搜索和贝叶斯优化算法搜索输入空间, 结合目标函数逐步提高对抗样本的

攻击成功率. 在以绝对转向角差为目标函数时, 平均攻击成功率超过 90%. Pavlitskaya等人 [79]选取了特定环境、天
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气和时间下的场景进行测试, 利用基于雅可比的显著性映射方法 (Jacobian saliency map algorithm, JSMA)[86]和投影

梯度下降法 (projected gradient descent, PGD)[87]生成对抗图像扰动, 并注入到仿真环境中车道旁边的广告牌中, 迫
使车辆发生转向错误, 甚至导致碰撞事故. Wu等人 [80]同样以转向角为目标, 设计出通用性对抗扰动, 并为车道旁

边的良性对象注入, 改变模型的转向预测, 攻击成功率远高于随机噪声方案.
为了生成针对性更强、实时性更强的对抗样本, 研究人员设计出涉及连续多帧的动态扰动, 结合车辆状态自

适应生成对抗样本. Jha等人 [81]在自动驾驶系统上部署恶意软件, 并利用前馈神经网络模型选择合理的干扰时机,
连续修改多帧像素, 使感知模块错误计算车辆和行人的轨迹. 实验结果表明, 为在系统层面引发安全事故, 至少需

要持续修改 14帧涉及行人的图片或 48帧涉及车辆的图片. 上述方法需要入侵车载系统, 接管汽车的传感器源, 攻
击过程较为复杂, 一些研究人员试图降低攻击难度. 借助路边的广告牌, Patel等人 [82]提出一种白盒对抗性攻击方

法, 根据车辆相对于广告牌的姿态信息动态生成对抗图像, 逐步修正车辆的方向和速度, 最终控制车辆的驾驶轨

迹, 该方法能够使转向角偏差 90°以上. von Stein等人 [83]耦合车辆轨迹仿真与对抗样本生成过程, 利用 PGD算法

的思想自适应的生成对抗扰动, 使车辆执行恶意机动行为, 相比基准实验提升了 20.7%的成功率.
 4.3.3    小　结

该分类下的工作逐渐拓展测试目标, 从针对相机延展到针对激光雷达, 从针对单一传感器延展到针对多传感

器融合方案; 扰动类型也由单个静态扰动升级为自适应的动态扰动. 随着研究的深度和广度不断提升, 对抗测试的

可行性逐渐增加, 隐蔽性逐渐增强, 成功率也逐渐提高.

 4.4   测试优化

测试优化是现有研究关注的方向之一, 有利于提高测试的速度和精度. 根据优化的阶段, 本节将测试优化工作

划分为两类, 即测试结果优化 [88–90]和测试用例优化 [91–93]. 表 4总结了各工作的具体优化方法.
  

表 4　测试优化分类下的工作对比
 

文献 分类 优化方法 ADS
[88]

测试结果优化

多代理仿真使自动驾驶系统实例控制场景中的每一辆车 Apollo
[89] 模糊测试生成静态障碍物, 蜕变测试筛选出误报 Apollo
[90] 训练了一个多模态模型筛选出误报 Apollo
[91]

测试用例优化

使用代理模型替代仿真器搜索关键场景 Pylot
[92] 使用因果模型筛选出可能引发违规的测试场景 Pylot
[93] 对现有数据集做测试约减和优先级排序 Apollo

 

 4.4.1    测试结果优化

测试场景中的背景车辆通常由 PID等简单算法控制, 仅根据预先规定的速度和驾驶策略行驶, 可能不会遵守

交通规则. 其智能性和自主性较差, 鲁莽的驾驶行为造成了大量误报. 除此之外, 仿真器的环境建模与现实世界有

偏差, 传感器建模与真实传感器也存在差距. 例如, 真实传感器可能被随机噪声影响, 仿真中传感器建模一般是理

想的; 即使在建模时加入噪声, 也难以确定是否符合现实分布. 因此, 测试结果不仅存在误报, 还可能无法在实车上

复现. 为了使测试结果更加精确, 研究人员提出了新的场景执行和验证方案, 如图 11所示.
  

测试优化

测试结果优化

测试用例优化

执行方案|自驾系统控制背景车辆

验证方案|筛选误报和真实违规

替代方案|模型近似仿真器执行

约减方案|测试约减和优先级排序

初始场景

场景执行

结果验证

图 11　测试优化分类
 

一些研究人员修改场景执行方案, 不使用仿真器默认的简单控制器操纵背景车辆, 而是由自动驾驶系统控制.
DoppelTest[88]使用自动驾驶系统的多个实例控制场景中的每一辆车, 保证每辆车都有足够复杂的逻辑对其他交通
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参与者的行为做出合理决策. 实验结果表明, 74.5%的违规场景由自动驾驶系统承担主责, 而使用非智能 NPC的

基线实验仅为 1.1%. 该方法避免了低智能 NPC对测试结果的影响, 但拓展性不强, 无法对现有测试方法进行补充.
为了控制 NPC, DoppelTest提出了一套订阅方案, 难以整合到现有测试框架中.

一些研究人员设计场景验证方案, 筛选出真正的违规场景和误报. MFT[89]使用模糊测试在 AV的驾驶轨迹上

随机生成静态障碍物, 构建蜕变关系检查碰撞事故是否发生变化, 从而区分出系统故障和无法避免的碰撞, 检测自

动驾驶系统面对突发情况的容错能力, 最终筛选出 28.2%的违规场景. Zhou等人 [90]构建了一个包括事故视频和描

述文本的多模态数据集, 并基于 X-CLIP模型训练了一个多模态模型. 该模型集成在测试框架 CollVer中, 能够筛

选出自车承担事故主要责任的违规场景. 实验结果表明, 模型的查准率为 82.2%, 查全率为 77.9%.
 4.4.2    测试用例优化

执行过程是整车系统测试与模块测试的主要区别之一. 模块测试接收图片、轨迹等简单数据, 验证单一模型

功能, 执行速度快、效率高; 整车系统测试需要使用仿真器执行和验证大量测试场景, 时间成本较高, 效率较低. 因
此, 研究人员亟需加速仿真测试, 优化测试用例. 具体方案有两种, 分别是替代方案和约减方案, 如图 11所示.

替代方案使用各种模型完成测试场景的初次筛选, 去除无效场景, 保留违规潜力更大的关键测试场景. 例如,
SAMOTA[91]训练了一个代理模型近似仿真器的执行结果, 评估测试场景的违规程度, 从而只在仿真测试中验证最

大概率发生事故的场景. CART[92]从驾驶记录中推断输入与输出之间的因果关系, 并形式化为因果模型, 输入是测

试场景的参数, 输出是自动驾驶表现的行为与预定义的错误行为之间的距离. 随后用因果推理查询模型, 估算场景

参数的执行结果, 并在仿真器中运行可能性最大的场景. 与 SAMOTA相比, CART在相同的测试时间内能够发现

更多违规场景, 其生成的测试集多样性也更高.
现有软件更新迭代速度快, 为了保证新的功能不会引入安全问题, 需要进行回归测试. 由于不断复用测试数据,

测试用例集合的规模不断增加, 冗余度上升, 且存在测试场景的同质化问题. 约减方案使用选择、约减和优先级排

序方法解决上述问题. 例如, STRAP[93]接收录制的真实驾驶数据集, 依据数据片段的相似性约减长段的驾驶记录,
并利用驾驶场景的特征覆盖率和稀有度对剩余片段进行优先级排序, 加速回归测试, 约简后的测试集平均能发现

原测试集中 98.8%的故障. 测试约减技术已经较为成熟 [94−96], 但多针对车道保持等简单场景, 仍然需要研究人员

将应用领域从高级驾驶辅助系统迁移到自动驾驶系统.
 4.4.3    小　结

误报检测、多代理仿真研究在传统的软件测试领域已取得长足进展, 但在自动驾驶领域才刚刚起步, 仍需深

入研究. 仿真加速、测试约减技术已经被应用于测试高级辅助驾驶系统, 但是研究对象较为简单, 需要研究人员进

行拓展研究和方案迁移. 虽然测试优化技术无法发现自动驾驶系统的缺陷, 但是研究人员可以将其整合到安全测

试框架中, 提高缺陷检测效率和准确率, 辅助漏洞挖掘过程.

 4.5   测试预言

测试预言用于判断测试结果是否符合预期, 评估自动驾驶系统的表现和性能. 道路测试中的测试预言, 如行驶

里程和脱离接管率, 无法应用于仿真测试; 模块安全研究中的测试预言, 如转向角偏离程度和终点预测误差, 只能

用于判断单个模块的执行结果, 无法准确衡量整车系统的安全性. 因此, 研究人员需要设计精确、合适的测试预言

并证明其有效性.
在整车系统安全测试领域, 常用的测试预言有发生碰撞、保持静止等. 最近有研究人员整合了以往工作中提

出的跨越车道线、违反限速等涉及交通规则的测试预言, 利用考虑交规的场景描述语言分析了自动驾驶系统遵守

交通规则的能力 [56]. 由于测试预言服务于测试场景的有效性验证, 属于场景生成和执行步骤后的一个辅助环节.
因此, 上述 4个分类已经涉及了相关工作, 本节不再赘述.

 4.6   总　结

以面向整车系统的自动驾驶安全测试框架为分类支撑, 上述文献覆盖了近年来该领域的主流研究工作. 最核

心的研究工作围绕测试用例生成方法展开, 相关研究时间跨度大、思路方法多、需求迫切, 技术体系也不断融合
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提升. 此外, 为提高测试的效率和准确率, 各种测试优化方案受到关注. 综上所述, 当前研究正呈现出以下趋势: 从
手工定义简单场景, 过渡到利用人工智能构建复杂场景; 从只关注漏洞挖掘的效果, 过渡到效率与效果并重; 从发

生碰撞行为等简单的测试预言, 过渡到处理交通规则间复杂逻辑的测试预言.

 5   面向整车系统的自动驾驶安全测试评估

 5.1   常用评价指标

研究人员使用多种评价指标评估实验的效果和效率. 由于部分指标服务于研究工作的特定需求, 适用性有限,
因此本文仅总结了具备较强通用性的评价指标, 涉及的文献如表 5所示.
 
 

表 5　常用的评价指标
 

评价指标 涉及文献

安全性指标 [48−60,61−66,68−70,88−93]
多样性指标 [48,50,51,92]
效率指标 [48,50,51,54,57−59,68,69,90,91,93]

攻击效果指标 [72−78,80,81,83]
 

(1)安全性指标. 发现更多自动驾驶系统的安全问题是测试工作最主要的目标之一. 为了衡量研究方案的有效

性, 研究人员统计了测试结束后揭露的安全问题数量, 以及经过归纳分类后的安全问题类型数量. 此外, 部分研究

人员还使用“独特安全问题数量”作为评价指标, 具体定义根据不同文献的研究需求而有所差异. 例如, 文献 [55]将
其定义为导致该安全问题的代码级决策逻辑与其他安全问题不同; 文献 [60] 则将其定义为诱发该安全问题的场

景与其他场景的部分参数配置不同.
(2)多样性指标. 多样化的场景有助于暴露自动驾驶系统中更多类型的安全缺陷, 轨迹距离是典型的多样性评

价指标. 轨迹距离指标计算不同驾驶场景中 NPC轨迹之间的距离, 以此衡量场景的多样性. 此外, 文献 [92]还使用

了测试集直径 (test set diameter, TSD)作为评估测试集多样性的指标.
(3)效率指标. 该类指标用于衡量测试的时间成本, 比较方案的运行效率. 典型代表包括发现首个或首类安全

问题所需时间或所需仿真次数, 发现所有类型安全问题所需时间或所需仿真次数, 测试用例缩减数量等.
(4)攻击效果指标. 此类指标以攻击成功率为主, 包括相对成功率、平均成功率等指标. 例如, 相对成功率指相

对于基准实验所提升的攻击成功率. 此类指标主要被对抗样本生成分类下的工作采用, 如果感知模型未完成正常

的任务, 则视为攻击成功.

 5.2   常用对比方法

为了验证所提方案的有效性, 研究人员选择多种比较基准实施对比实验, 包括随机方案、消融方案等. 本节列

举了现有工作中常用的对比方法, 涉及的文献如表 6所示.
(1) 随机方案. 在研究的早期阶段, 研究人员采取随机算法作为基准进行比较, 这是最简单的对比方案. 例如,

AV-Fuzzer使用随机生成场景的模糊测试器作为对比方案; 文献 [76]使用随机噪声扰动模型完成对比实验.
(2) AV-Fuzzer. 文献 [48]设计了一个模糊测试器 AV-Fuzzer, 这是首个完整测试了自动驾驶系统的研究成果,

其测试方法和实验设计指导了后续多项工作, 部分研究工作选择将其作为基准比较实验效果. 值得注意的是, AV-
Fuzzer框架最初在仿真器 Lgsvl上实现. 然而, 该平台现在已经停止提供相关服务, 研究人员需要在新平台上重新

实现相关算法, 以实施有效的实验对比和分析.
(3) 消融方案. 消融实验在机器学习领域被广泛用于评估模型中不同组件对整体的重要程度. 基于这一概念,

本文将“消融方案”定义为: 通过移除或替换测试框架的部分组件, 验证这些组件在测试过程中的作用, 进而评估它

们对于整体的贡献度. 实施此类实验能够证明组件在测试框架中的重要性. 例如, 文献 [53] 禁用了驾驶质量反馈

引擎, 发现在无指导的情况下, 发现的安全问题数量下降了 47%.
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表 6　常用的对比方法
 

对比方法 涉及文献

随机方案 [48,54,56−59,65,66,68−70,76,78,80,81,88,91,92]
AV-Fuzzer [49−54,60,65,66,90]
消融方案 [50−53,55,60,61,66,72,81,90−93]

 

 5.3   总　结

在评价指标方面, 关键场景生成分类下的工作更关注安全性指标和效率指标, 试图更快的生成更多危险场景;
对抗样本生成分类下的工作则选择攻击成功率作为衡量攻击效果的标准. 测试充分性分类和测试优化分类下的工

作更倾向于结合具体实验设置独特的评价指标, 以证明覆盖率度量或优化工作的有效性.
在对比方法方面, 早期阶段研究人员通常采用随机方案和 AV-Fuzzer实施对比实验. 随着研究工作的逐渐深

入, AV-Fuzzer不再成为首选方案, 研究人员更倾向于根据研究的主要问题选择更匹配的对比方案. 此外, 采取消

融方案已经成为一种有效的策略, 以证明组件的重要性.

 6   挑战与机遇

本节结合自动驾驶安全领域的主要研究方向, 提出了面向整车系统的安全测试研究面临的现实挑战和研究机

遇, 如表 7所示.
 
 

表 7　整车系统安全测试研究的挑战与机遇
 

研究方向 现实挑战 研究机遇

关键场景生成 低置信度的测试场景 基于真实性的场景生成技术

测试充分性 通用性受限的覆盖率度量 覆盖分析框架设计

对抗样本生成 离线的模型验证方案 感知模型闭环测试

测试优化 低智能的交通参与者 智能代理规控方案
 

 6.1   现实挑战

(1) 低置信度的测试场景. 现实世界的输入空间具有几何级别的参数量, 且存在小概率事件, 如前车随意丢弃

的异物、蓄意冲出马路的行人等. 而局限于成本和效率, 仿真测试中场景空间的参数量较少, 无法拟合真实环境.
同时, 仿真器中的汽车模型和传感器模型可能与真实对象存在差距, 影响测试结果的有效性. 除此之外, 现有研究

的测试场景基于专家知识构建, 由算法自动化生成, 与驾驶数据集脱钩. 此类测试场景缺乏合理性和真实性, 导致

其中的约束条件可能超越车辆的动力学极限, 安全事故无法避免, 与自动驾驶系统无关. 因此, 现有的工作中测试

场景的置信度存疑, 亟需研究人员设计出更有效的场景生成方法.
(2) 通用性受限的覆盖率度量. 现有研究通过覆盖率度量衡量测试充分性, 研究人员根据各自的研究目标定义

了不同的覆盖率度量, 或对相同的度量使用不同的术语, 没有统一和规范的标准. 尽管 Tahir等人 [97]调研了自动驾

驶领域的覆盖率研究, 并将其分为场景覆盖率、情景覆盖率和需求覆盖率这 3类. 但他们的工作从宏观视角出发,
使用宽泛的概念定义覆盖率. 但是, 实际测试中的覆盖率随测试目标的不同而发生改变, 不存在可以套用的通用框

架. 由此导致在面对新问题或新条件时, 迁移成熟的解决方案十分困难, 阻碍了研究人员拓展测试充分性领域的研

究深度和广度.
(3) 离线的模型验证方案. 在自动驾驶系统中, 深度学习模型逐渐被引入用于分析和处理数据, 尤其是在感知

模块. 研究人员生成对抗样本验证模型的正确性和可靠性. 然而, 目前大部分工作仅针对单独的模型实施离线测

试, 而没有在仿真环境中进行闭环的在线测试. 在线测试能够提供控制输出对感知输入的反馈, 在实际环境中评估

模型的性能和表现. 相比之下, 离线测试方案缺少上述反馈机制, 无法持续地发起针对性攻击, 难以全面验证模型

的安全性. 因此, 在对整车系统进行安全分析时, 此类方法的效果并不理想, 亟需闭环测试方案.
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(4) 低智能的交通参与者. 为了充分测试自动驾驶系统与 NPC的交互能力, 研究人员使用场景描述语言构建

了存在多个 NPC的测试场景, 涉及各种类型的背景车辆. 然而, 由于仿真器缺少相关功能, 现有解决方案尚未实现

背景车辆与外部环境的有效交互, 即无法根据环境的反馈实时控制背景车辆的驾驶行为. 因此, 背景车辆的智能性

不足, 无法处理突发状况, 测试结果中误报占比极高. 例如, 自车切入背景车辆所在车道, 而背景车辆维持固定速

度, 于自车的侧后方发生追尾. 上述事故的原因是背景车辆没能对切入的车辆做出合适的反应, 不应该将责任归咎

于自动驾驶系统. 此外, 现有工作关注的 NPC主要是场景中的背景车辆, 较少考虑在测试中纳入具有不同运动方

式的行人对象. 因此, 亟需研究人员从误报产生的源头展开分析, 提高 NPC的智能性并丰富其类型.

 6.2   研究机遇

(1) 基于真实性的场景生成技术. 场景生成技术是当前研究的热点之一, 在安全测试框架中占据核心地位. 尽

管研究人员设计了各种算法引导生成关键场景, 但无法确认测试结果能否在现实中复现, 仍然需要进一步验证. 为

了提高测试场景的置信水平, 一方面可以使用基于数据驱动的场景生成技术, 从驾驶数据集中提取驾驶习惯和特

征, 以真实数据为支撑, 构建更合理的场景; 另一方面, 需要研究仿真世界与现实世界的一致性问题 [98], 评估和量

化二者的差距, 提高仿真器中环境、传感器和车辆的建模精度.

(2) 覆盖分析框架设计. 覆盖率量化了自动驾驶系统的测试充分性, 有助于估算测试结束的时机, 判断软件测

试是否完备. 为了设计并实现通用的覆盖分析框架, 工业界和学术界应当达成产学共促、统一标准的共识, 进行长

期的合作、交流与讨论, 使研究人员认识、理解并商讨出有效的覆盖率度量, 以及基于覆盖率的通用测试框架. 例

如, 未来的覆盖率度量应当综合考虑汽车自身状态和外部环境, 增强在不同测试方案之间的可移植性.

(3) 感知模型闭环测试. 闭环测试在漏洞挖掘能力、测试全面性等方面都存在优势, 值得深入研究. 然而, 该方

案面临着一些难点. 首先是在测试工具方面, 开环测试针对单个模型进行研究, 而闭环测试需要在仿真器中运行庞

大的自动驾驶系统, 这意味着测试效率受到限制. 其次是在测试数据方面, 开环测试利用开源数据集验证对抗样本

的有效性, 而闭环测试需要将对抗样本融入测试场景, 在仿真环境中验证, 增加了时间和经济成本. 最后是在测试

方法方面, 开环测试只需要设计优化算法欺骗感知模型, 而闭环测试必须结合规划和控制环节设计对抗样本生成

策略, 综合考虑模型之间的关联性. 综上所述, 未来的工作可以基于这 3个方面进行改进, 研发通信效率更高、操

作规范更简单的测试工具, 结合自动驾驶全流程研究对抗样本生成策略, 构建体系化的测试方案.

(4) 智能代理规控方案. 背景车辆的智能程度限制了与其他代理的交互能力, 随着测试要求逐渐提高, 简单

的控制模型无法满足复杂的测试需求, 设计具备复杂逻辑的规控系统是当前研究的重要方向之一. 人工智能等新

兴技术的发展提供了新的研究思路. 例如, 利用强化学习或大语言模型训练一个驾驶模型, 使背景车辆的决策方法

更接近驾驶员. 多代理测试也是可行的解决方案, 用自动驾驶系统控制所有背景车辆, 避免了低智能性对测试的干

扰. 除此之外, 智能化和对抗性的行人对象也能使测试场景更具挑战性. 部分文献深入分析了更真实的行人模型,

如Muktadir等人 [99]建模了乱穿马路的行人模型, 研究人员可以将此类建模方案集成到现有测试框架中.

 7   总　结

自动驾驶系统将人工智能算法集成到复杂生态系统中, 完成数据处理、环境感知、决策控制等关键任务, 同

时也引入了长尾场景分布、对抗样本等新的安全问题. 针对当前面临的安全挑战, 本文深入研究并整理分析了面

向整车系统的自动驾驶安全测试研究的历史工作和最新进展. 首先, 通过研讨现有研究并融入通用测试框架, 形成

面向整车系统的自动驾驶安全测试框架. 其次, 基于上述框架总结出现有工作的 5类核心研究问题, 并深入对比每

类问题的关键技术、研究现状和发展脉络. 此外, 还对现有研究中广泛使用的评价指标和对比方法进行了分析和

总结. 最后, 给出了整车系统安全测试研究领域可能存在的现实挑战与未来研究机遇, 展望了更真实、更通用、更

智能的解决方案. 伴随着自动驾驶算法在车辆上开始部署实装, 未来从整体视角开展的安全测试研究将更加深入,

本文希望能够对此有所帮助和启发.
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