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摘　要: 随着鸿蒙生态系统的快速发展, 鸿蒙应用的安全问题逐渐成为研究重点. 在安卓领域, 已有多种成熟的静

态分析框架广泛应用于安全检测任务. 然而, 针对鸿蒙应用的静态分析框架尚处于初步发展阶段. OpenHarmony社
区正在基于鸿蒙应用 ArkTS源代码开展静态分析, 但在实际的安全检测任务中, 应用源代码往往难以获取, 限制了

其适用范围. 为缓解上述问题, 提出一种基于方舟中间表示 (Panda IR)的鸿蒙应用静态分析框架. 该框架提供方舟

Panda IR的基本信息接口, 设计适应 ArkTS语法特性的字段敏感指针分析算法, 并实现与指针分析交互的拓展分

析接口. 具体来说, 对 Panda IR 中的 318 条指令进行语义分类和处理, 进一步定制化设计指针流图. 为了支持

ArkTS语法特性, 新增指向集合传播规则, 对特殊调用的相关语义进行准确建模. 此外, 基于指针分析结果优化过

程间数据依赖关系并提供别名分析能力. 从 ArkTS语法特性覆盖性, 指针分析精度和指针分析速度这 3个方面对

HarmonyFlow进行实验评估. 实验结果表明, HarmonyFlow可以正确处理 ArkTS的关键语法, 在 9个开源鸿蒙应

用上调用边识别的精确率和召回率分别为 98.33%和 92.22%, 在 35个真实鸿蒙应用上的平均运行时间为 96 s.
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Abstract:  With  the  rapid  development  of  the  HarmonyOS  ecosystem,  security  issues  related  to  HarmonyOS  applications  have  gradually
become  a  key  research  focus.  In  the  Android  domain,  various  mature  static  analysis  frameworks  have  been  widely  applied  to  security
detection  tasks.  However,  static  analysis  frameworks  for  HarmonyOS  applications  are  still  in  the  early  stages  of  development.  The
OpenHarmony  community  is  currently  working  on  static  analysis  based  on  the  source  code  of  HarmonyOS  applications  using  ArkTS.
However,  in  practical  security  detection  tasks,  obtaining  application  source  code  is  often  difficult,  which  limits  the  applicability  of  this
approach.  To  address  this  challenge,  this  study  proposes  a  static  analysis  framework  for  HarmonyOS  applications  based  on  the  Ark
intermediate  representation  (Panda  IR).  This  framework  provides  basic  information  interfaces  for  Panda  IR,  designs  a  field-sensitive  pointer
analysis  algorithm  tailored  to  ArkTS  syntax  features,  and  implements  extended  analysis  interfaces  that  interact  with  pointer  analysis.
Specifically,  318  instructions  in  Panda  IR  are  semantically  categorized  and  processed,  and  a  customized  pointer  flow  graph  design  is
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further  developed.  To  support  ArkTS  syntax  features,  new  propagation  rules  for  pointer  sets  are  introduced,  and  the  semantics  of  special
calls  are  accurately  modeled.  In  addition,  based  on  the  pointer  analysis  results,  inter-procedural  data  dependencies  are  optimized,  and  alias
analysis  capabilities  are  provided.The  experimental  evaluation  of  HarmonyFlow  covers  three  aspects:  ArkTS  syntax  feature  coverage,
pointer  analysis  accuracy,  and  pointer  analysis  speed.  Experimental  results  show  that  HarmonyFlow  can  correctly  handle  key  ArkTS  syntax
features.  The  precision  and  recall  rates  for  call-edge  identification  in  9  open-source  HarmonyOS  applications  are  98.33%  and  92.22%,
respectively, with an average runtime of 96 s for 35 real-world HarmonyOS applications.
Key words:  static analysis framework; HarmonyOS application; pointer analysis; Ark bytecode; ArkTS language

鸿蒙操作系统作为国产操作系统的代表, 凭借自研的方舟编译器, 提供了包括编译器前端、工具链和运行时

在内的关键组件, 支撑着手机、平板、电视、汽车和智能穿戴设备等多种终端的应用与服务运行. 其跨平台能力

使开发者能够在不同设备上快速部署应用, 推动了生态系统的快速发展. 然而, 随着鸿蒙系统在各类设备上的广泛

使用, 鸿蒙应用的安全性问题也日益成为关注的焦点.
静态分析是代码优化和安全分析等下游任务的基础, 对缓解鸿蒙应用的安全问题具有重要意义. 在安卓平台,

经过长期发展, 已经形成了一些成熟的静态分析框架, 例如 Soot[1]、WALA[2]、Doop[3]、Qilin[4]和 Tai-e[5]等. 这些

框架主要提供了中间表示 (intermediate representation, IR) 抽象、控制流图 (control flow graph) 构建、指针分析

(pointer analysis)以及别名分析 (alias analysis)等基本功能, 并广泛应用于安卓应用的静态分析场景. 然而, 这些框

架的设计和实现主要针对安卓应用的 Java源代码或 Java字节码, 面向鸿蒙应用的静态分析框架仍缺乏系统性的

研究 [6].
静态分析框架的输入主要包括源代码和字节码两种形式. OpenHarmony开源社区正在基于鸿蒙应用的 ArkTS

源代码开展分析, 提出了面向 ArkTS语言的静态分析框架 ArkAnalyzer[7]. 然而, 在实际的安全检测任务中, 应用的

源代码往往不可获取, 因此我们选择针对鸿蒙应用的方舟字节码进行分析. 在静态分析中, 选取适合的 IR作为分

析对象至关重要. 不同静态分析框架通常采用特定的 IR, 例如 Soot基于 Jimple IR, WALA基于WALA IR. 在我们

的研究中, 选择将鸿蒙应用字节码反汇编得到的 Panda IR作为分析对象. Panda IR作为方舟编译器代码优化过程

中的中间表示, 能够提供丰富的语义信息, 也有助于增强我们的工作与方舟编译器代码优化流程之间的关联性.
在基于方舟 Panda IR 实现静态分析的过程中, 我们面临以下 3 个主要挑战: 1) Panda IR 信息处理的复杂性:

指针分析需要聚焦于程序中的内存访问指令和函数调用指令, 例如 New、Assign、Load、Store、Call 和 Return
等. 然而, Panda IR采用了独特的节点海 (sea of nodes)[8] 结构, 并经过了方舟编译器的优化处理. 这种优化使得难

以直接在 IR指令与源代码语义之间建立映射关系, 从而增加了提取关键指令信息的难度. 将这些信息建模为指针

流图 (pointer flow graph)成为一项复杂且至关重要的任务. 2) ArkTS语法特性的复杂性: 鸿蒙应用开发在很大程

度上依赖于 ArkTS 中的语言特性, 例如函数对象和回调、作用域链与闭包等机制, 以实现事件驱动的编程模式.
这些特性会显著影响程序的控制流和数据流, 为分析精确性带来极大挑战. 为了保证静态分析能够准确捕捉程序

行为, 需要针对这些特性进行逐一适配和处理, 从而提升分析的全面性和精确性. 3) 静态分析框架的可拓展性: 静
态分析框架需要具备良好的可拓展性, 以支持集成下游分析任务, 尤其是与指针分析交互的工作. 设计一种机制能

够有效提供指针分析的中间结果, 并在此基础上构建下游分析任务, 是提升静态分析框架功能性和易用性的关键.
本文提出了基于鸿蒙应用 Panda IR 的静态分析框架——HarmonyFlow, 框架主要包含以下 3 个核心模块:

Panda IR 信息处理模块、针对 ArkTS 语法的指针分析模块和拓展分析模块. 1) Panda IR 信息处理模块: 我们对

Panda IR的 318种指令进行了系统分析, 筛选出与内存访问和函数调用相关的关键指令. 在此基础上, 提出了一套

基于回溯的指令语义建模规则, 结合指令间依赖关系及指令内部属性, 逐一提取必要的语义信息. 随后, 针对关键

指令构建局部指针流图, 并整合为完整的指针流图结构. 该结构具备通用性, 既可作为字段敏感分析的基础数据结

构, 也为上下文敏感分析提供了有效的程序抽象. 此外, 指针流图融合了 ArkTS的语言特性, 例如将函数建模为特

殊对象类型, 以适应其函数作为一等对象且可包含字段的特性. 2) 针对 ArkTS语法的指针分析模块: 针对 ArkTS
特有的回调机制和显式绑定调用等语法特性, 我们设计并补充了指向集合的传播规则, 以确保对复杂语法特性的

精确建模. 这些规则在现有面向 Java的安卓平台指针分析算法中尚属空白, 缓解了分析能力的不足. 3) 拓展分析
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模块: 在完成基础指针分析之后, HarmonyFlow提供了针对变量指向集合的查询接口, 以及调用指令目标函数的解

析能力. 基于上述结果, 我们进一步实现了通用的别名分析能力. 同时, 结合指针分析所构建的精确调用图, 并考

虑 ArkTS支持可修改外部变量的多样化闭包机制, 我们优化了词法变量间的数据依赖建模. 通过分析 Panda IR中

词法变量的作用域信息, 并在调用图中回溯检索相关变量的最近修改位置, 实现了对闭包语义下数据依赖关系的

精准建模. 总体来说, 本文的主要贡献如下.
• 通过对 Panda IR的深入理解, 提取了 Panda IR中的控制流图和数据依赖关系, 分类并处理了与内存访问和

函数调用相关的关键指令.
• 基于 Panda IR实现了字段敏感的指针分析算法, 适配了 ArkTS语言的语法特性, 并同步构建了程序的调用

图 (call graph).
• 在指针分析的基础上, 提供了别名分析接口, 并优化了 Panda IR的过程间数据依赖关系, 提供了指令间的数

据依赖关系接口.
• 针对鸿蒙应用首次提出了静态分析框架——HarmonyFlow, 并在合成数据集、开源数据集和真实数据集上

评估了其准确性与效率. HarmonyFlow已成功落地应用.
本文第 1节介绍静态分析框架和指针分析的相关研究. 第 2节介绍关于方舟 Panda IR和 ArkTS语法特性的

基础知识. 第 3介绍本文的静态分析框架设计. 第 4节在合成测试用例、开源鸿蒙应用和真实鸿蒙应用上评估指

针分析算法的准确性和效率. 第 5节讨论 HarmonyFlow框架设计与实现中的局限性和发展方向. 第 6节对本工作

进行总结.

 1   静态分析相关工作

我们回顾代表性的静态分析框架, 展示针对鸿蒙应用设计静态分析框架的重要性. 关注基于不同 IR和编程语

言语法特性设计指针分析算法的工作, 将 HarmonyFlow置身于此研究背景, 启发下文的框架设计思路.

 1.1   静态分析框架

长期以来, 静态分析框架主要应用于 Java和 C/C++语言. 近年来, 针对 Rust和 JavaScript等语言的静态分析

研究也逐渐兴起. 首先介绍针对 Java 语言的静态分析框架 [9]. Soot[1]旨在优化 Java 字节码, 设计了 BAF、Jimple
IR和 GRIMP这 3种中间表示, 并在 SPARK[10]和 Paddle[11]模块中拓展了指针分析. WALA[2]的核心目标是静态和

动态的程序分析, 基于 WALA IR 实现了过程间数据流分析和切片工具等. Doop[3]基于 Soot 的 Jimple IR, 通过

DataLog语言实现了高效的静态分析工具. Qilin[4] 基于 Soot提出了变量级别的上下文敏感指针分析算法. Tai-e[5]

根据以上框架遵循 HBDC (利用经典的最佳设计) 原则开发了易用的高效系统. 然后介绍针对 C/C++语言的静态

分析框架. PHASAR[12]提出了基于 LLVM的静态分析框架, 可以自动化解决数据流问题. SVF框架 [13]基于指针分

析的指向信息实现了精确的过程间静态值流分析, 便于客户端应用程序的跨过程边界分析值流 (例如内存泄漏检

测). 最后, Li 等人 [14]还开发了针对 Rust 语言的指针分析和调用图构建工具. JSAI[15]提供用户可选择分析敏感度

的 Javascript静态分析平台. 综上, 针对鸿蒙应用的静态分析框架亟待提出.

 1.2   指针分析算法

指针分析是静态分析的基础工作, Soot中提供了 SPARK上下文不敏感指针分析模块和 Paddle上下文敏感指

针分析模块, WALA中提供了 Andersen[16] 风格的流不敏感指针分析框架, Qilin在 Soot的基础上开发了细粒度上

下文敏感指针分析框架. 现有工作主要关注指针分析精度与速度之间的平衡, 致力于通过增强敏感性 [17] 提升分析

精度, 通过选择性上下文敏感分析 [18] 和增量指针分析 [19] 等加速分析速度. 为了适应 Panda IR设计和 ArkTS语法

特性, 本文需要关注中间表示和源代码特性对指针分析影响的工作.
首先讨论中间表示对指针分析影响的工作. Guo等人 [20] 提倡在低级中间表示上进行指针分析, 认为高级中间

表示上的指针分析过程未考虑链接库和运行时加载代码, 而且已有别名信息传播到低级中间表示时存在偏差, 准
确性不及在低级别中间表示上重新进行指针分析. 于是, 他们提出了第 1个在汇编级别上运行的上下文敏感、部
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分流敏感的指针分析方法. Prakash 等人 [21] 发现在 Doop 同等精度的调用点敏感指针分析下, 针对 Jimple IR 和

WALA IR的指向分析结果在指向集合和效率方面存在差异. 也就是说, 不同的中间表示形式会对指针分析算法的

设计和性能产生影响.
然后讨论源代码特性对指针分析影响的工作. 当前不存在针对 ArkTS语言的指针分析工作, 由于 ArkTS语言

是 JavaScript (JS)语言的超集, 因此我们关注针对 JS语言的指针分析工作. Jang等人 [22] 提出了首个针对 JS的指

针分析方法. 具体来说, 他们提出了一种基于集合约束的分析框架, 能够生成和解决对象动态特性 (例如属性添加

或更新)的约束. 通过定义一种约束生成规则, 分析器可以在 JS程序中追踪属性的读写操作, 进而计算准确的指向

集合. Sridharan等人 [23] 分析了 JS语言无类型声明、动态创建属性和函数参数的灵活性对指针分析结果的影响,
针对 JS的对象模型开发了字段敏感的指针分析方法. Feldthaus等人 [24] 提出了一种可扩展的基于字段的流分析方

法, 用于构建 JavaScript程序的近似调用图. 该分析方法通过对相同属性名的字段进行抽象, 显著减少了需要分析

的抽象对象数量, 适用于现代集成开发环境 (IDE)实现代码导航.

 2   基础知识

 2.1   Panda IR 中间表示

方舟字节码是 ArkTS编译后的二进制产物, 其可以被进一步反汇编为可读的 Panda IR. Panda IR被设计为节

点海形式, 具有全新的语法结构. 下文介绍节点海 IR的设计理念和 Panda IR的具体信息.
• 节点海 IR设计理念: 节点海是控制流图与静态单赋值形式结合的进一步优化. 其主要特点在于更清晰地表

达程序的依赖关系, 同时消除了控制流图中一些不必要的约束.
在传统 IR中, 控制流通过控制流图进行表示, 而 IR本身则侧重于表示数据流. 以 LLVM IR[25] 为例, 其控制流

图由基本块节点和有向跳转边组成. 基本块为连续的三地址码序列, 控制流只能从该序列的起始指令进入, 并且只

能从该序列的最后一条指令退出. 从基本块 A到基本块 B之间通过有向跳转边连接, 跳转关系成立的条件是: 存
在有条件或无条件跳转从 A到 B, 或者 B是 A的紧邻块且 A的最后一条指令不是无条件跳转. 与此同时, LLVM
IR的 SSA形式能够直观地体现值的定义与使用关系, 从而清晰地描述程序的数据流信息.

节点海 IR通过一个数据结构同时表示控制流和数据流, 并放宽了指令间的顺序约束. 在图 1所示的示例程序

中, 第 4行的语句中, 变量 b仅依赖于 a, 因此不需要放在循环体内. 在传统编译器中, 这一步通常需要先分析出与

循环无关的变量, 然后将该语句移出循环. 而在采用节点海数据结构的情况下, 变量 b一开始并未被归属于特定的

基本块, 因此也无需专门进行代码重排或移动.
  

1

2

3

4

5

6

7

int foo(int a){

int sum = 0;

for(int i = 0; i< 10; i++){

int b = a*2;

sum += b;

}

}

图 1　节点海 IR中浮动特性展示的源代码示例
 

为了实现这种浮动特性, 节点海 IR设计了特殊的语法结构 [26]. 在语法结构层面, 节点被分为数据计算节点和

控制流执行节点. 每个节点根据其输入和操作定义一个值. 数据计算节点的输入来源于其前驱节点, 输出值则被所

有后继节点所使用. 控制流执行节点包括 Jmp、If和 Return这 3类, 其输入和输出代表程序的控制流执行顺序. 特
别地, 控制流执行 Region节点和数据计算 Phi节点均具有多个有序输入, Region的实际输入与 Phi的实际输入一

一映射, 从而同步了 IR中的控制流与数据流表示. 上述语法结构的差异需要我们深入理解并加以处理, 以便更好

地适应指针分析算法的需求.
• Panda IR的具体实现: 方舟编译器提供了逐级遍历方舟字节码文件中模块、类和函数的接口. 通过遍历函数

结构, 可以访问其包含的 Panda IR 指令节点. Panda IR 被实现为节点海结构. IR 中每条指令由操作码 (即指令名
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称)和指令参数列表组成. 指令的参数可以包括寄存器 (前驱指令节点)、立即数、String ID、Method ID和 Literal
ID等. 除此之外, 部分指令中使用累加器作为默认参数. Panda IR通过指令的寄存器参数确定其直接前驱指令, 从
而维护了指令之间的控制和数据依赖关系.

为了充分包含鸿蒙应用信息, Panda IR中还存在全局变量、模块 (module)命名空间和模块变量、词法环境和

词法变量、补丁变量这 4种值存储方式. 指令可以使用这 4种储值位置中的值作为入参. 全局变量是一个存储在

全局唯一的映射中的变量, 其键值为全局变量的名称, 值为全局变量的值. 全局变量可通过全局相关的指令进行访

问. 模块命名空间是指模块中的变量、函数和类所处的作用域, 而模块变量是定义在模块级别的变量, 这些变量在

模块的整个命名空间中是可用的. 此外, 为了兼容 ArkTS 中的作用域链和闭包特性, Panda IR 通过词法环境相对

层级编号和词法变量顺序索引二元组来表示一个词法变量. 方舟编译器仍在不断演进发展中, Panda IR也在优化

更新, 基于 Panda IR的静态分析框架能更快适应方舟编译器的更新迭代过程.

 2.2   ArkTS 指针分析语言特性

ArkTS 是鸿蒙应用的主要开发语言, 支持与 JS/TS 的高效互操作, 并兼容 JS/TS 生态. TS 是 JS 的超集, 通过

在 JS的基础上添加静态类型定义扩展了 JS的语法. ArkTS在保持 TS基本语法风格的同时, 进一步通过规范加强

静态检查和分析, 从而在开发阶段就能发现更多潜在错误, 提升代码的健壮性, 并优化运行性能. 方舟编译器支持

ArkTS、JS和 TS源代码输入, 并通过编译优化将其转换为统一的 Panda IR. 为了有效地进行针对鸿蒙应用的静态

分析, 我们对 ArkTS的语法特性进行了详细总结与分析.
• 静态语言特性: JS是典型的动态语言, 其动态特性体现在两个主要方面: 变量声明无需绑定类型, 类型与具

体的值关联; 对象的属性和方法可以在运行时动态增加、删除或修改, 并支持通过反射动态访问和遍历属性. TS
在保留 JavaScript动态语言特性的同时, 还引入了结构化类型系统 (structural typing)增强类型安全性. 在变量类型

方面, TS默认通过类型推断为变量分配类型, 类型确定后不可更改, 但可支持 Any类型. 在对象布局方面, TS对对

象的属性和方法施加了严格的类型约束, 不允许新增或删除未定义的属性, 但可以通过索引签名动态添加属性.
ArkTS采用名义化类型系统 (nominal typing), 通过规范约束了 TS中过于灵活而影响开发正确性或者给运行时带

来不必要额外开销的特性, 其对象字面量必须标注类型, 不支持在运行时更改对象布局, 也不支持 TS 中的

structural typing. 由于纯血鸿蒙应用基于 ArkTS语言开发, 因此我们主要基于 ArkTS的静态语言特性设计静态分

析框架.
• 函数对象和回调: ArkTS中的每个函数都是作为一个内部对象被维护和运行的. 通过函数对象的性质, 可以

方便地将一个函数赋值给一个变量或者函数作为参数传递. 将函数作为参数传递, 或者将函数赋值给其他变量是

所有事件机制的基础, 例如回调函数的使用. 此外, 借助于函数的原型对象, 可以很方便地修改和扩充 Function类
型的定义, 如增加属性和方法等. 特别的, ArkTS为函数对象定义了两个方法: Apply和 Call, 它们的作用是将函数

绑定到另一个对象上运行, 实现显式绑定调用. 这种特殊性为我们的指针分析工作带来了挑战.
• 作用域链与闭包: 作用域链与闭包是 ArkTS的重要特性之一. ArkTS中包含两种作用域: 函数作用域和全局

作用域. 全局作用域是唯一的, 例如浏览器中的Window对象; 每个函数则具有自己的函数作用域, 函数内部声明

的变量和参数共享同一作用域. 函数嵌套即在一个函数中定义另一个函数, 嵌套函数形成闭包. 由于闭包特性, 内
嵌函数能够访问外部函数的参数和变量, 而外部函数无法访问内嵌函数的参数和变量, 从而形成作用域链. 访问变

量时, ArkTS会从当前作用域的本地变量和参数开始, 逐层向上遍历作用域链, 直到全局作用域. 这里关于作用域

的讨论对于精确的数据依赖分析至关重要.

 3   HarmonyFlow 框架设计

图 2展示了 HarmonyFlow静态分析框架的总体设计思路. 首先在第 3.1节介绍我们如何从 Panda IR中提取

基础信息并处理关键指令, 然后在第 3.2 节介绍我们的指针分析过程, 依次说明我们构建指针流图、设计传播规

则、实现算法框架和适配 ArkTS语法的全过程, 最后在第 3.3节说明静态分析框架提供的拓展分析模块.
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输入层 中间表示层 指针分析层 拓展分析层

鸿蒙应用

Ark

compiler

控制流图 ArkTS 语法特性处理 传播规则 别名分析

LexVar CallBack

Apply Super 优化数据依赖分析

Entry

数据依赖

指令分类处理 指针流图构建 算法框架

字节码文件 ObjA→ObjField→ObjB

{Oa}
调用
列表

工作
列表

ArkTS
Inst: x=y.f o  PTS (y)

PTS (o.f) ⊆ PTS (x)

{Oa.f} {Ob}

NEW STORE

CALL RETURN

LOAD
Panda IR

STORET

CALLtest LOAD?

STOREA

CALLmain

图 2　HarmonyFlow 框架设计概览
 

 3.1   Panada IR 信息处理

 3.1.1    基础信息提取

HarmonyFlow旨在对 Panda IR进行高效的静态分析, 将其集成到方舟编译器中时会面临高耦合性和低效率

的问题, 因此需要单独实现 Panda IR 的文件解析和信息提取. 方舟编译器由编译工具链和运行时两部分组成, 编

译工具链将源代码编译为方舟字节码, 运行时负责执行生成的字节码. 为了实现 Panda字节码文件 (.abc文件)的

解析, 我们借鉴方舟运行时中承载字节码的 ArkCompiler File 组件, 提取其中的模块、类、函数和全局变量等信

息, 并进一步提取每个函数中的节点海形式的 Panda IR.

为提高框架的通用性, 我们基于 Panda IR构建了基本块级别和指令级别的过程内控制流图, 并根据数据依赖

关系构建了指令间的 Def-Use 链. 此外, 针对作用域链和闭包问题, 我们注意到 Panda IR 中的词法变量操作指令

(StLexVar和 LdLexVar)的参数表示相对词法环境层级, 这使得直接判断操作的具体变量变得困难. 为此, 我们提

供了接口, 能够获取与 LdLexVar指令对应的所有 StLexVar指令.

 3.1.2    指令分类和处理

Panda IR包含 318条指令, 需要对指令进行分类处理. 在指针分析过程中, 重点关注 5类指令: NEW、LOAD、

STORE、CALL和 RETURN. 这些指令与内存操作和函数调用相关. 我们逐一分析所有指令, 筛选出这 5类关键

指令, 并从每条关键指令的参数和上下文中提取必要信息.

由于 Panda IR 设计为节点海结构, 具有独特的语法和语义, 增加了指令分类和处理的难度. 对于一个指令操

作, 需要向上追溯多条指令获得. 在指令语义处理过程中, 我们首先将 ArkTS源代码映射到 Panda IR的一条指令,

然后通过解析该指令的参数和 Def-Use 链向上检索必要信息, 向上检索的过程的终止条件为: 1) 获得目标信息.

2)检索到已经处理过的指令; 3)目标信息为指针分析预期结果.

图 3 展示了一个字段敏感的函数调用示例, 其左侧为源代码, 右侧为相应的简化 Panda IR. 例子中, 第 16 行

的 x.foo() 调用了类 B 的 foo 方法. 具体而言, 函数 test 首先调用函数 getA, 后者实例化类 A 并返回该实例. 类 A

的构造函数在隐式创建类 B的实例后, 将该实例赋值给 obj属性. 随后, test函数通过 p.obj引用类 B的实例, 并调

用其 foo方法. 在解析此调用时, 需依次确定 x指向对象的类型 (即类 A的实例), 随后解析其 obj属性的类型 (类

B的实例), 最终解析到 foo方法作为被调函数. 此示例体现了跨类实例化与字段引用的解析流程, 是字段敏感分析

的典型情况.

根据图 3可以理解 Panda IR的结构组成. Panda IR对每个模块的代码抽象为一个入口函数 func_main_0, 该

函数包含全局的类声明、函数声明以及其他语句. 在 Panda IR中, 类 A和类 B的定义分别表示为独立的函数, 其

内部包含类的成员变量和成员方法. 类似的, 源代码中的函数 getA和 test也被表示为 Panda IR中的函数, 其内部

由具体的指令构成. 对于这些指令, 主要关注以下核心属性: 前驱指令 (inputs), 用于表示当前指令依赖的输入; 字

符串 (string), 用于标识相关的符号或常量; 词法环境层级 (lexEnv), 表示指令所属的词法作用域; 词法变量

(lexVar), 用于标识当前指令涉及的变量.
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class A{

constructor(){

Let y = new B();

this.obj = y;

}}

class B{

foo() {

console.log("B.foo");

}}

function getA(){

let q = new A;

return q;}

function test() {

let p = getA();

let x = p.obj;

x.foo();}

test()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

func_main_0:

[4]. DefineFunc {string:"getA"}

[5]. StLexVar {lexEnv:0, lexVar:2, inputs:[4]}

[6]. DefineFunc {string:"test"}

[8]. DefineClass {string:"A"}

[10].StLexVar {lexEnv:0, lexVar:1, inputs:[8]}

[12].DefineClass {string:"B"}

[14].StLexVar {lexEnv:0, lexVar:0, inputs:[12]}

[15].CallArg0 {inputs:[6]}

A:

[2]. Parameter {}

[4]. LdLexVar {lexEnv:0, lexVar:0}

[6]. NewObj {inputs:4}

[7]. StObjByName {string:"obj", inputs:[2,6]}

15

16

17

18

19

20

21

22

23

24

25

26

B: ...

foo: ...

getA:

[3]. LdLexVar {lexEnv:0, lexVar:1}

[5]. NewObj {inputs:[3]}

[6]. Return {inputs:[5]}

test:

[3]. LdlexVar {lexEnv:0, lexVar:2}

[4]. CallArg0 {inputs:[3]}

[5]. LdObjByName {string:"obj", inputs[4]}

[6]. LdObjByName {string:"foo", inputs[5]}

[7]. CallThis0 {inputs:[5,6]}

指令模板：[\d+].\w+ {string:"[^"]*", 

lexEnv:\d+, lexVar:\d+, inputs:\[\d+(,\d+)*\]}

string:"[^"]*"：字段字符串字面量

[\d+]：函数内指令编号 \w+：指令名称
lexEnv:\d+：词法环境相对层级编号
lexVar:\d+：词法变量顺序索引
inputs:[\d+(,\d+)*]：输入指令编号列表

图 3　Panda IR 程序中的字段敏感性分析示例
 

Oa

Ob

Ob Oa

图 4描述了我们针对方舟字节码关键指令的语义处理过程. 以 StObjByName指令为例, 我们需要获得其左操

作数对象、右操作数对象和字段名称. 左操作数对应第 11行的 Paramter指令, 其为 Class类的第 2个参数, Panda
IR将第 2个参数作为函数或类的 this指针, 即左操作数为  . 右操作数对应第 13行的 NewObj指令, 这个指令处

理后的结果为  . 字段名称可以根据 StObjByName指令的 String字段获得, 其值为“obj”. 于是, 这里 StObjByName
的语义为将   储存到   的“obj”字段.
 
 

源代码 指令语义处理 局部指针流图

Line22: LdLexVar {<0, 2>}

Line18: LdLexVar {<0, 1>}

Line19: NewObj {(Line18)}

对象 Oa 依赖指针分析结果获得

Line23: CallArg0 {}

Line11: 左操作数对象为 Oa 依赖 Panda IR 规定
Line13: 右操作数对象为 Ob 依赖 New 指令获得
Line11: Parameter

Line13: NewObj

Line3: StLexVar {<0, 2>, (Line2)}

{Oa}

{Ob}

{Oa}

{OgetA}

Objec

Objec

StaticField<0, 2>

Objectt3:LdLexVar

对象类型 Oa 依赖 LdLev 指令获得

Line15: let x=p.obj

Line4: this.obj=y

StaticField<0, 2>

Line11: let q=new A

Line24: LdObjByNAME {"obj", (Line23)}

Line14: StObjByName {"obj", (Line13, Line11)}

Line10: function getA()

Line14: let p=getA()

Line2: DefineFunc {"getA"}

Objectline19: NewObj

line23: CallArg0

ObjectFiedLine23 #obj

Objectline24: LdObjByName

line13: NewObj

Objectline11: Parameter

ObjectFieldline11 #obj

Objectline2: DefineFunc

图 4　指令语义处理和局部指针流图构建规则
 

 3.2   针对 ArkTS 的指针分析算法

指针分析是最基本的静态程序分析之一, 几乎所有其他分析都是建立在它之上的. 下文介绍基于 Panda IR设

计的指针分析算法设计, 算法实现为 Andersen风格的字段敏感算法. 我们首先构建指针流图, 作为指针分析的基

础数据结构. 然后介绍指向集合传播规则, 定义如何在指针流图上传播指向信息. 最后介绍算法框架, 说明以何种

顺序完成传播过程. 此外, 我们特别说明了算法针对 ArkTS语法的特殊支持.
 3.2.1    指针流图构建

指针流图表示程序中有哪些指针以及它们可能的传播关系. 指针流图的节点是指针, 代表变量或对象的域成

员; 边是传播关系, 指针的指向集合需要被传播到其所有的后继节点. 本文的指针流图设计不仅继承了传统指针分

析图结构的抽象能力和可拓展性, 还针对 Panda IR结构和 ArkTS语言做出了一些列关键调整. 一方面, 我们提出

了一种指令粒度的局部图构建策略, 通过关键指令的识别和连接, 提升了图的紧凑性和精度, 有效支持字段敏感和

上下文敏感指针分析; 另一方面, 我们将函数统一建模为具备字段属性的对象节点, 从而支持函数作为一等对象的
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建模与追踪.

new T()

arr[i]

• 节点设计: 程序执行时会分配大量的堆对象, 如何对堆对象建模是指针分析中的重要问题. 通过分析 ArkTS
中涉及堆操作的语法, 我们将堆对象分为 4类, 并相应的实现为 4类指针. 指针的实现充分近似了每种堆对象的数

据结构形式. 1) 对象指针 (Object): 它包括通过关键字 new 显式分配的所有对象 (例如   ). 该指针通过

NewObj指令标识. 2)对象字段指针 (ObjectField): 它通常由对象引用与字段名称共同确定, 指向对象的特定字段

或属性. 例如 obj.field表示指向 obj对象中 field字段的指针. 该指针通过其输入指令 (包含其对象信息)和字段名

称标识. 3) 数组元素指针 (ArrayElement): 它通过数组引用和元素的索引来确定, 指向数组中的特定元素. 例如,
 表示指向数组 arr中第 i 个元素的指针. 该指针通过其输入指令 (包含其数组信息)和索引数值标识. 4)静态

字段指针 (StaticField). 静态字段指针指向在词法作用域中声明的全局变量以及类或函数中的静态成员. 静态成员

包括类的静态属性和方法, 以及函数内部定义的静态变量. 该指针通过一个二元组<词法环境相对层级编号, 词法

遍历顺序索引> 唯一标识这些变量在词法作用域中的位置和访问路径.
• 边设计: 节点之间通过有向的传播边连接. 指针 x到指针 y的传播关系表示指针节点 x的指向集合可能传递

到指针节点 y的指向集合.

Oa

Objectsrc→ ObjectField→ Objectto Objectsrc

Objectto Objectsrc→ ObjectField Objectto→ ObjectField

Objectsrc Objectto

Objectsrc→
StaticField→ Objectto

• 图构建过程: 针对不同类型的指令, 我们基于指令语义处理的结果设计了相应的规则创建局部指针流图的节

点和边. 如图 4所示, 对于创建新对象的指令类型, 以 NewObj为例, 我们基于当前指令创建 Object指针, 局部的传

播关系和指向关系为 Object:{   }; 对于引入别名关系的指令, 以单个对象加载的 LoadObjByName指令为例, 建
立    的传播关系 ,  基于此可以将    对象的目标字段的指向集合传递到

 中; 同样的, 对于 StoreObjByName指令, 建立   和   两条传播关

系, 从而可以将   对象的指向集合传递到 ObjectField中, 这里通过   确定 ObjectField的对象类型. 对
于操作静态字段如全局变量的指令, 例如一对 StLexVar和 LdLexVar指令, 局部的传播关系和指向关系为 

, 基于此可以联系针对词法变量的储存和加载操作. 类似的, 我们针对不同类型的语句, 设计

了多种局部图构建规则, 完成了针对 Panda IR的指针流图构建, 作为指针分析的基础.

Objectline25:LdObjByName

{
Oa.obj.foo

}
ObjectFieldline11#obj

{
Oa.obj,Ob

}
Oa.obj

通过图 4展示的局部指针流图构建规则, 可构建完整的指针流图, 如图 5所示. 图中灰色部分为初始化的指针

流图, 包含灰色的指针节点和灰色实线的传播边. 此外, 针对创建新对象的节点, 还初始化了其指向集合. 后续的指

针分析算法将在这个图上进行. 图中的红色部分代表传播过程中生成的新增内容 (传播规则将在后续章节详细说

明), 包括新识别的调用边和更新后的指向集合. 传播完成后, 通过指令   的指向集合  , 可

以推导出调用路径. 首先通过   的指向集合   可确定   属于类 B 的实例. 基于此, 可以

进一步调用类 B 的 foo 函数. 该过程展示了指针流图在解析字段敏感调用时的作用, 通过逐步确定对象及其字段

的类型和指向关系, 完成对调用链的精准解析.
 3.2.2    传播规则设计

针对内存影响和函数调用指令, 我们分别设计了对应的传播规则, 用于精确建模指针流图中各节点的指向关

系, 指针流图在图结构的遍历与规则执行过程中不断传播和汇聚指向集, 直到达到稳定状态. 在经典 Andersen 算
法的通用传播框架基础上, 我们针对 ArkTS 的语言特性, 包括回调函数、显式绑定调用、函数作为对象属性等复

杂语法结构, 逐一进行了扩展建模, 确保分析结果在精度与覆盖范围上的可用性. 我们为上述语义特性定义了相应

的传播规则, 以形式化方式描述指向集的传递与更新过程. 下文将给出这些传播规则的形式化定义.
设 V、H、T、M、F、C和 I分别表示变量集、堆抽象、类型、方法、字段、类和指令, 定义以下符号.

V∪H×F→ P(H)• PTS: 
I→M• MethodOf: 

V→ C• ClassOf: 
C→ CSuper• ParentOf: 

M→ P(I)• Inst: 
M×H→M• Dispatch: 
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I×T→ H• HeapAbs: 
这里的 PTS记录了对象、静态字段和常量的指向信息集合, MethodOf给出了包含语句的函数, ParentOf给出

当前类的父类, ClassOf 给出变量的类型, Inst 返回了函数中的指令集合, Dispatch 用来解析对目标方法的调用,
HeapAbs定义了对于一个对象的堆抽象规则.
 
 

初始化的指向集合

传播过程中新建的指向集合

传播过程中新建的传播边

数据依赖关系

初始化的传播边

{O
*
}

{O
*
}

Objectline2: DefineFunc

StaticField<0, 2>

Objectline23: LdLexVar

{OgetA}

{OgetA}

{OgetA}

Objectline8: DefineClass

StaticField<0, 1>

Objectline18: LdLexVar

Objectline19: NewObj

Objectline23: CallArg0

ObjectFieldline23 #obj

Objectline24: LdObjByName

ObjectFieldline24 #foo

Objectline25: LdObjByName

{Oa}

{Oa}

{Oa}

{Oa}

{Oa}

{Oa} Objectline6: DefineClass {Ob}

StaticField<0, 0>
{Ob}

Objictline12: LdLexVar {Ob}

{Ob}Objectline13: NewObj

Objectline11: Parameter

ObjectFieldline11 #obj

{Oa.obj} {Oa.obj, Ob}

{Oa.obj}

{Oa.obj.foo}

{Oa.obj.foo}

图 5　Panda IR 程序字段敏感性分析的指针流图示例
 

以下给出了形式化的指向集传播规则, 这些规则支持动态调用图构建. 

[NEW]
I : x = newT o = HeapAbs(I, T)

o ∈ PTS(x)
(1)

 

[LOADobject]
I : x = y.f o ∈ PTS(y)

PTS(o.f) ⊆ PTS(x)
(2)

 

[STOREobject]
I : x.f = y o ∈ PTS(x)

PTS(y) ⊆ PTS(o.f)
(3)

 

[CALL]
I : x = ao.f (a1, . . . ,ar) o ∈ PTS(a0) m′ = Dispatch(f,o)

o ∈ PTS(thism′ ) ∀i ∈ [1, r] : PTS(ai) ⊆ PTS(param′

i ) PTS(retm′ ) ⊆ PTS(x)
(4)

 

[CALLSuper]

I : x = Super.f(a1, . . . ,ar) m = MethodOf(I) c = ClassOf(thism)
c′ = ParentOf(c) m′ = Dispatch(f,c′) o ∈ PTS(thism)

o ∈ PTS(thism′ ) ∀i ∈ [1, r] : PTS(ai) ⊆ PTS(param′
i ) PTS(retm′ ) ⊆ PTS(x)

(5)
 

[CALLApply]
I : x = a0.f(aapply,a1, . . . ,ar) o ∈ PTS(ao) m′ = Dispatch(f,o) o′ ∈ PTS(aapply)

o′ ∈ PTS(thism′ ) ∀i ∈ [1, r] : PTS(ai) ⊆ PTS(param′
i ) PTS(retm

′
) ⊆ PTS(x)

(6)
 

[CALLBack]
I : acallback () m = MethodOf(I) m′ = Dispatch

(
parameterm)

∀i ∈ [1, r] : PTS(ai) ⊆ PTS(param′
i )

(7)

o ∈ H LOADobject STOREobject

CALLSuper CALLApply CALLBack

如公式 (1)–公式 (7)所示, 在内存访问方面,   是 HeapAbs创建的堆抽象对象.   和   是

已有的标准规则, 这里我们进一步拓展支持了数组元素. 在函数调用方面, CALL 指令表示标准的对象方法调用,
我们对 ArkTS中的父类调用 ( )、显式绑定调用 ( )和回调 ( )等调用方式进行了适配.
对于父类调用, 实际调用的方法是当前函数的 this指针指向对象的父类方法. 在显式绑定调用中, 参数列表中指定

了被调函数的 this指针, 因此在被调函数的 this指针与相应参数之间建立了传播边. 对于回调, 被调函数作为当前
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函数的参数, 通过当前函数的参数来解析目标函数.
 3.2.3    基于工作列表和调用列表的算法框架

在工作列表层面, 我们借鉴了 Andersen[16] 提出的增量工作列表算法. 在找到新的被调函数时, 我们一方面解

析其所有指令构建该函数的指针流图, 另一方面通过参数和返回值将该函数的指针流图连接到整个程序的总体指

针流图中. 完成指针流图构建后, 我们将指针流图新增的待传播指针节点添加到工作列表中. 然后算法按照传播规

则逐一将工作列表中指针节点的指向集合传播到其后继节点中.
在调用列表层面, 我们设计了基于深度优先搜索的调用图遍历算法, 用于对整个程序的函数进行指针分析. 为

了避免无限循环, 我们对已解析的调用边不再进行处理, 即当某一调用点重复调用同一被调函数时, 该函数将不再

被处理. 深度优先遍历能够确保符合程序实际的函数执行顺序, 从而保证指针分析结果的真实性和可靠性.
算法 1给出了我们指针分析算法的整体伪代码. 指针流图 PFG维护为指针节点映射到其后继节点的集合. PTS

表示每个指针节点可能指向的对象实例集合. 算法首先通过 VisitGraph函数构建指针流图, 然后通过 SolveConstraint
函数进行指向集合的传播. 在第 11行, 针对 LoadObj指令的处理, 展示了第 3.2.1节中指针流图构建的具体方法.
第 33行 PropPTS函数列举了典型传播规则. 第 26行和第 30行则实现了基于工作列表和调用列表的传播过程.

算法 1. HarmonyFlow整体算法流程.

输入: 待测试鸿蒙应用字节码文件 (.abc文件);
输出: 指向集合 PTS, 调用边 CallInst2CalleeFunc.

Function AliasAnalysis (abcfile)1. 
∀ (p) ∈ P : PTS

(
p
)← ⟨∅⟩2. 　 

∀ (p) ∈ P : PFG
(
p
)← ⟨∅⟩3. 　 

WorkList← CallList← ReachCallEdge← ⟨∅⟩4.　 

VisitGraph
(
mentry

)5.　 

SolveConstraints ()6.　 
Function VisitGraph(m)7. 

for I : NewObj ∈ Inst(m) do8. 　 

Pointerobject = HeapAbs(I)9.   　　 

PTS
(
Pointerobject

)∪ = {Pointerobject}10. 　　 

for I : LoadObj ∈ Inst(m) do11. 　 

PointerObjectsrc = HeapAbs (I.input[0])12.　　 

PointerObjectField = HeapAbs(I.input[0], I.string )13. 　　 

PointerObjectto = HeapAbs(I)14. 　　 

PFG
(
PointerObjectsrc

)∪ = {PointerObjectField}15. 　　 

PFG
(
PointerObjectField

)∪ = {PointerObjectto }16. 　　 

. . .17.　 
for p: Pointer do18. 　 

if (PTS
(
p
)
, ⟨∅⟩) and (PFG

(
p
)
, ⟨∅⟩) do19.　　 

AddWorkList(p)20.　　　 
for I : Call ∈ Inst(m) do21. 　 

Index = GetIndex(currentCallInst)22.　　 
CallList.insert(Index+1, I)23.　　 

Function SolverConstraints()24. 
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while WorkList , ∅ or CallList , ∅ do25.　 
if WorkList , ∅ do26. 　　 

Pointersrc = Poll(WorkList)27.　　　 
for each Pointerto = PFG(Pointersrc)28.　　　 
PropPTS(Pointersrc, Pointerto)29.　　　　 

else if CallList , ∅ do30.　　 
CallInst = Poll(CallList)31.　　　 
currentCallInst = CallInst; HandleCall(currentCallInst)32.　　　 

Function ProPTS(src, to)33. 
for each alias in PTS(src)34.　 

if alias.Inst == to.Inst and to.type == ObjectField do35. 　　 

PointerObjectField = HeapAbs(alias.Inst, to.string)36.　　　 

PTS (to)∪ = {PointerObjectField}37.　　　 
else38.　　 
PTS (to)∪ = {alias}39.　　　 

. . .40.　　 
AddWorkList(to)41.　　 

42. Function HandleCall(call)
for each alias in PTS(call.input[0])43.　 
curClass = GetClass(alias); funcName = GetFunc(call)44.　　 
mcallee = DisPatch(curclass, funcname,call)45.　　 
if(call,mcallee) < ReachCallEdge do46.　　 

PropPTS(alias, thism′ )47.　　　 

PFG
(
Pointerinput

)∪ = {Pointerparameteri
|i ∈ [1, r]

}
48.　　　 

PFG(Pointerret)∪ = Pointercall49.　　　 
ReachCallEdge∪ = {(call, mcallee)}50.　　　 

VisitGraph(mcallee)51.　　　 

 3.2.4    针对 ArkTS语法的特殊支持

为了保证静态分析的全面性, 我们不仅支持基础的面向对象语法, 而且兼容 ArkTS中的语法特性.
● 基础面对对象语法: 关于 Load和 Store类型指令, 我们广泛处理了对象字段、数组元素和全局变量的内存

操作, 建立了定制化的传播链, 并设计了特定的传播规则. 关于 Call指令, 我们逐一适配了对象方法调用、全局方

法调用、父类函数调用等多种调用方式, 给出了相应的传播规则.
● ArkTS语法特性: 在第 2.2节, 总结了 ArkTS的静态语言特性、函数对象和回调特性、作用域链与闭包问

题. 这里函数对象和回调特性对指针分析算法设计有显著影响. 具体来说, 增添了回调和显式绑定调用两种调用方

式, 需要针对的适配.

CALLBack

如图 6所示, 我们简要介绍适配方法. 针对回调的情况, 首先对函数声明指令 DefineFunc创建 Object指针, 并
将函数对象添加到指向集合中. 由于过程间指针分析会在第 8行 test(foo)的实参和第 1行 function test(callback)
的形参之间建立传播边, 因此传播后 callback形参指向函数对象. 进一步, 根据上文的   传播规则可以成功

解析此函数调用. 针对显式绑定调用, 我们修改了 function函数 this指针的传播关系. 对于第 10行未显式绑定调

用的情况, 直接将接收对象 obj1的指向集合传播到 function的 this指针中. 对于第 11行显式绑定调用的情况, 将
参数 obj2的指向集合传播到 function的 this指针中.
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9

function test(callback) {

console.log("test");

callback();

}

function foo() {

console.log("foo");

}

test(foo);

//

1

2

3

4

5

6

7

8

9

function func1() {

this.p = "func1-";

this.A = function(arg) {console.log(this.p + arg); };}

function func2() {

this.p = "func2-"; }

let obj1 = new func1();

let obj2 = new func2();

obj1.A("byA");

obj1.A.apply(obj2, ["byA"]); 

//回调函数调用 显式绑定调用

图 6　回调和显式绑定示例
 

 3.3   拓展分析接口

在完成基础指针分析之后, HarmonyFlow构建了统一的指向信息查询与调用关系解析能力, 为后续静态分析

任务提供了通用接口支持. 更进一步, 我们实现了两个核心扩展接口: (1)别名分析接口, 用于动态追踪变量间的潜

在别名关系; (2)指令数据依赖接口, 结合调用图与作用域信息, 精确建模闭包场景下的变量修改与使用路径.
 3.3.1    别名分析接口

基于指针分析的指向结果, 我们实现了指令间的别名分析接口. 指令间的别名分析旨在确定不同指令操作的

内存位置是否可能引用相同的内存地址, 这对于静态分析工具至关重要. 通过指针分析得到的指向信息, 我们可以

明确哪些指令操作可能存在别名关系, 从而帮助识别潜在的内存访问冲突或数据依赖.
具体而言, 别名分析依赖于指针分析所提供的指向信息, 首先通过追踪每个指令的操作数及其内存访问模式,

结合指针分析结果, 确定是否存在不同指令指向同一内存位置. 如果两个或多个指令涉及相同的内存地址, 则可以

推测这些指令之间存在别名关系.
 3.3.2    指令数据依赖接口

数据依赖分析的实现是下游安全检测任务的重要基础. 在本研究中, 我们重点关注并解决 Panda IR中词法变

量依赖关系不准确的问题. 此外, 我们设计了接口用于确定特定指令的数据依赖前驱指令.
方舟 Panda IR中仅存在函数内的 Def-Use链, 缺失过程间数据依赖信息. 因此我们基于指针分析构建的调用

图, 在调用函数的形参和被调函数的实参之间创建数据依赖边, 并且在被调函数的返回指令和调用函数的调用指

令之间创建数据依赖边.
ArkTS的闭包机制导致每个函数都有自己的词法环境, 内层函数可以访问外层函数中的变量. Panda IR给定

一个 LdLex指令, 可能找到多个 SdLex指令, 这样是不够精确的. 因此, 我们根据调用语句和词法变量修改语句的

执行顺序确定了 LdLex指令对应的最新的 StLex指令. 如图 7实验分析所示, 首先收集第 3.2.3节指针分析过程中

深度优先调用语句列表, 表示为树状图. 然后将待分析词法变量的 LoadLex语句和 StoreLex语句按照调用顺序和

语句顺序插入到相应位置. 最后将整个将修改后的树节点按照前序遍历排序, LoadLex指令左侧最近的 StoreLex
指令为最新一次针对词法变量的修改.
  

1
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4
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6

7

8

9

10

11

12

function func1(){ pg = new A(); }

function func2(){ pg = new B(); }

function func3(){ pg = new C(); }

var pg = new T();

function test() {

func1();

pg.foo();

func3(); }

function main() {

test();

func3(); }

main();

Entry

STORET CALLmain

CALLtest CALLfunc3

CALL CALLfunc2 STORECpg.foo

STOREB

CALLfunc1 LOAD?

STOREA

图 7　优化数据依赖分析示例

 4   实验分析

为了评估 HarmonyFlow在鸿蒙应用上的指针分析与调用图构建的精确性和效率, 我们分别在自主构建的测

试用例和真实鸿蒙应用上进行了实验评估. 本文提出了以下 3个研究问题以指导实验设计.

12  软件学报  ****年第**卷第**期



RQ1: HarmonyFlow对 ArkTS语法特性的支持效果如何?
RQ2: HarmonyFlow在开源鸿蒙应用中调用边识别的精度如何?
RQ3: HarmonyFlow在真实鸿蒙应用上的运行效率如何?
• 环境设置. HarmonyFlow基于 GCC 11.2.0开发, 由大约 4 000行代码组成, 可以直接分析方舟编译器生成的

方舟字节码文件 (.abc 文件). 方舟编译器为 OpenHarmony v3.2 Beta5 的内置编译器. 所有实验均在一台搭载

Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz的服务器上完成, 操作系统为 Ubuntu 20.04.
• 实验指标. 实验指标的设计旨在全面评估静态分析框架的有效性, 重点关注精度和效率两个方面. 指针分析

是最基本的静态程序分析之一, 几乎所有其他分析都依赖于指针分析 [27]. 于是, 实验主要评估指针分析调用边识

别的精度和效率. 在识别精度方面, 我们主要关注调用边数、精确率和召回率. 调用边数用于衡量工具识别调用关

系的能力, 反映工具发现的调用边数量; 精确率用于衡量工具识别的调用边中真实调用边所占的比例, 体现分析的

精确度; 召回率则反映工具在所有真实调用边中成功识别的比例, 反映工具的健全性. 为评估效率, 我们以运行时

间为主要指标, 并进一步探讨软件规模与运行时间之间的关系, 以分析框架在不同规模应用上的性能表现. 这些指

标共同构成了对静态分析框架适用性和稳定性的全面评价标准.

 4.1   RQ1: ArkTS 语法特性覆盖性

• 实验数据. 为了评估 HarmonyFlow对于 ArkTS的基础面向对象语法和语法特性是否全部支持, 我们和合作

单位共同构建了 19个包含各种语法结构的测试用例. 经统计, 测试数据集合包含了针对对象字段、数组元素、字

典元素和全局变量的内存操作, 还包含了对象方法调用、全局方法调用、父类函数调用和绑定调用等调用过程.
总体来说, 该测试集包含了我们精心构造的 127条调用边, 我们人工标注了这些调用边, 以便评估我们工具的实现

效果.
• 实验结果. 如后文表 1所示, 对于 19个人工构建的测试用例, 我们能够完整处理第 3.2.4节提及的语法特性

并正确识别 127条调用边. 然而, 在 TestGlobal 和 TestField 两个测试用例中均出现了一次误报, 这是由算法的流

不敏感性导致的. 在源代码中, 依次执行了 p=new A()、p.obj=new B()和 p.obj.foo(). 算法一方面正确解析到调用

类 B的 foo函数, 另一方面却先将类 A的 obj属性解析为类 G, 再解析到调用类 G的 foo函数, 从而导致误报.

 4.2   RQ2: 开源鸿蒙应用上的分析精度

● 实验数据. 为了评估 HarmonyFlow 在鸿蒙应用上的运行精度与效率, 我们从 OpenHarmony的 Gitee仓库 [28]

中收集了 9个开源鸿蒙应用. 这些应用具有以下显著特点: 代表性: 这些应用由 OpenHarmony官方提供, 旨在帮助

开发者熟悉 OpenHarmony SDK提供的 API和开发流程, 全面涵盖了 ArkTS组件集、媒体与原生特性、窗口与电

话等系统特性、分布式功能、多线程等语言基础库. 时效性: 这些应用基于 OpenHarmony最新的 Stage模型开发,
采用面向对象的编程范式, 使得代码具备较高的可读性、易维护性和良好的可扩展性, 适用于复杂应用的开发需

求. 通过选取这些样例, 我们能够全面测试 HarmonyFlow在不同应用场景和特性组合下的表现, 从而验证其适配

性、精度和性能的实际效果.
由于软件应用的代码规模较大, 审计全部代码以标注调用边存在较高的成本, 因此我们采用抽样检测的方法

评估准确率和召回率. 具体而言, 我们从 HarmonyFlow输出的调用边中随机抽取 20条 (若总数少于 20条, 则选择

所有调用边), 通过人工核查其正确性以统计精确率. 同时, 从样本应用中随机抽取 20条真实调用边, 观察这些调

用边是否被 HarmonyFlow正确检测到, 以统计召回率. 此方法在保证统计结果可靠性的同时, 有效降低了人工核

查的工作量.
● 实验设置. 由于 HarmonyFlow静态分析框架专注于对鸿蒙应用的安全检测, 因此我们不分析鸿蒙应用框架

中底层自动触发的默认调用, 也不关注官方库的调用行为. 重点检测应用开发者编写的代码, 确保其安全性.
● 实验结果. 如表 2 所示, HarmonyFlow 在 9 个开源鸿蒙应用上的调用边识别精确率和召回率分别达到了

98.33%和 92.22%. 样本应用的代码复杂度显著高于人工合成的测试用例, 平均调用边数量达 194条, 且不同样本

应用的调用边数量变化较大. 总体来看, 调用边的误报比例较低, 但漏报比例相对较高. 误报的主要原因仍源于算
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法流不敏感的局限性. 例如, 在 FileEdit 应用中, 某处调用点的接收对象为 PHI指令, 而 PHI指令的两个输入分别

对应不同的控制流路径, 需要根据控制流信息确定接收对象的真实值. 然而, 算法未能区分这两种情况, 而是将两

个输入的值均作为接收对象, 从而导致误报. 在漏报分析中, 我们发现样本应用的多模块特性是主要原因之一. 一
些跨模块的方法由于模块间依赖关系未能正确解析, 导致调用边未被识别. 在本文讨论部分的第 5.2节, 提供了全

面的结果分析和改进思路.

在分析过程中发现, 鸿蒙样例应用中的动态调用较少, 而通过事件机制触发的回调调用较为常见. 以MyPhone-
FilePage应用为例, 经统计其包含 169个回调调用、91个动态调用和 2个静态调用. 回调调用的被调函数均为全

局唯一的匿名函数, 且 Panda IR 为每个匿名函数分配了唯一的函数名称. 由于回调函数的唯一性, 指针分析在回

调调用中的误报率较低. 然而, 回调机制可能引发复杂的函数嵌套关系, 从而导致变量作用域链中断, 增加了漏报

的可能性. 动态调用作为面向对象语言的主要调用方式之一, 也是指针分析误报的主要来源. 在样例应用中, 我们

共检测到 3处误报. 这表明, 尽管动态调用增加了指针分析的复杂性, 但字段敏感的指针分析算法已能够较好地满

足鸿蒙样例应用的分析需求, 提供较高的精确性和实用性.

 4.3   RQ3: 真实鸿蒙应用上的测试效率

指针分析的效率对于现代软件开发和优化至关重要 [29] . 在真实应用中, 指针分析需要处理大量的内存访问和

调用关系, 直接影响编译器优化速度和静态分析工具性能.
● 实验数据: 在 RQ2中的鸿蒙应用代码规模较小, 为了贴近真实生产需求, 我们与合作单位共同收集了 35个

实际部署在鸿蒙操作系统上的应用字节码文件, 以评估工具的运行效率.
表 3 展示了 HarmonyFlow 在 35 个真实鸿蒙应用中的运行效率, 包括应用大小、调用边数量以及运行时间.

表中显示, 这些应用的大小范围在 50 KB–10.55 MB之间, 分析得出的平均调用边数量为 3 738条, 平均运行时间

为 96 s, 能够满足下游静态分析任务的需求. 从数据分析可以看出, 应用大小与运行时间之间并未呈现严格的正相

关关系. 例如, Health应用的大小为 4.66 MB, 但其运行时间却高达 1 519 s. 通过反汇编分析发现, 该应用导入了加

密算法软件包, 而加密算法中密集的数据处理语句显著增加了分析工具的时间开销. 相比之下, 调用边数量与运行

时间的正相关性较强. 例如, Health和Music是运行时间较长的两个应用, 分别为 1 519 s和 242.68 s, 这与它们较

高的调用边数量 (分别为 9 757和 12 546)密切相关. 总的来说, HarmonyFlow在处理复杂应用时, 调用边数量对运

 

表 1　ArkTS语法特性覆盖结果
 

测试用例 调用边数量 误报数量 漏报数量

TestArray 2 0 0
TestDict 2 0 0
TestPara1 7 0 0
TestPara2 9 0 0
TestPara3 14 0 0
TestReturn1 7 0 0
TestReturn2 8 0 0
TestInherit 10 0 0
TestIndirect1 11 0 0
TestIndirect2 4 0 0
TestGlobal 7 1 0
TestField1 8 1 0
TestField2 12 0 0
TestStatic 2 0 0
TestSuper 8 0 0

TestFuncObj 6 0 0
TestAnonFunc 2 0 0
TestLexVar 6 0 0
TestCallBack 2 0 0

 

表 2　鸿蒙样本应用分析精度
 

样例应用 调用边数量
准确率
(%)

召回率
(%)

VPNFoundation 48 100 95
CameraPage 112 100 90
DlpManager 674 100 95
FileEdit 77 95 95

MyphoneFilePage 259 100 85
ProcessMessage 34 95 95

UpdateWorkScheduler 6 100 100
VideoPlayer 263 95 85
VideoRecorder 273 100 90
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行时间的影响显著, 尤其是循环调用和递归调用可能导致时间开销增加. 同时, 对于轻量级和中等规模的应用,
HarmonyFlow展现了较高的效率和稳定性.
 
 

表 3　鸿蒙真实应用分析效率
 

样例应用 应用大小 调用边数量 时间 (s) 样例应用 应用大小 调用边数量 时间 (s)
AIlife 10.55 MB 10 687 66.30 HwCompassOH 216 KB 126 0.07

AILifeSve 10.62 MB 5 227 630.27 HwHmosVAssitant-V 1.66 MB 4 911 31.43
AppGalleryl 2.12 MB 5 595 20.00 HwHmosVAssitant 2.07 MB 6 088 24.70
AppGallery2 1.14 MB 3 571 18.71 HwSimToolkits 250 KB 973 0.20
AppNotepad 1.59 MB 4 708 2.90 HwStartupGuide 424 KB 553 0.98
Browser 2.15 MB 5 895 12.33 HwThemeManager 2.32 MB 6 672 32.414

CalendarData 210 KB 512 0.17 HwVmall 2.39 MB 6 188 316.192
CallUI 218 KB 520 0.17 Mms 808 KB 2 265 1.27

CallUI-M 95 KB 191 0.08 Music 5.20 MB 12 546 242.68
CallUI-S 146 KB 344 0.17 OUC 1.05 MB 3 022 5.70

CeliaKeyboard 1.8 MB 5 194 12.12 PetalClip 1.64 MB 4 556 19.27
Camera 870 KB 2 881 1.36 PhotosHm 2.76 MB 5 351 9.04
Clock 490 KB 1 299 0.46 Rocket 3.54 MB 3 329 4.25
Contacts 1.22 MB 3 452 2.63 Screenshot 50 KB 164 0.02

Entry-default 2.15 MB 1 896 4.90 Settings 3.58 MB 4 604 2.43
Health 4.66 MB 9 757 1519.00 Tips 1.27 MB 3 145 1.69

HongYan 5.44 MB 5 371 481.25 Watt 2.89 MB 2 377 5.74
HuaweiShare 183 KB 627 0.18 － － － －

 

 5   讨　论

 5.1   与安卓静态分析框架对比

与 HarmonyFlow类似, 安卓平台上也存在诸如 Soot、WALA、Doop、Qilin和 Tai-e等多个主流静态分析框

架. 然而, 由于 Java字节码与方舟字节码在语法结构与语义逻辑方面存在显著差异, 现有分析框架难以实现对跨

平台字节码文件的统一处理, 致使无法进行直接的对比实验. 为此, 本文系统梳理了 Android平台静态分析工具的

发展脉络, 从精确率、召回率与分析效率这 3个维度, 对 HarmonyFlow的优势与局限进行了深入分析.
在精确率方面, Soot、Doop和 Qilin通常通过统计识别出的调用边数量来衡量精确率. 在默认召回率近似的

假设下, 调用边数量越少往往意味着更高的精确率. 然而, 最新研究 Tai-e指出, 现有工具在使用更全面的数据集时

表现出召回率不一致, 表明直接对比调用边数量未必能够准确反映精确率. 因此, Android平台静态分析框架缺乏

可量化的精确率评价标准, 难以与本文方法在数值层面进行直接比较.
指针分析中的敏感性设计原则具有平台无关性, 下面在理论层面进行精确性对比. Soot作为 Android平台上

最早的静态分析框架之一, 首次处理 Java字节码提出了 Jimple中间表示. 在此基础上, 后续的多篇工作逐步增加

了字段敏感性 (SPARK)与上下文敏感性 (Paddle), 还引入了选择性上下文敏感机制 (Qilin、Tai-e), 以提升分析精

确性. 与之类似, HarmonyFlow首次对方舟字节码进行抽象, 设计了可建模关键指令的指针流图, 并在此基础上实

现了字段敏感指针分析算法. 从理论上讲, HarmonyFlow的字段敏感分析算法的精确性低于最新安卓工具的上下

文敏感分析算法. 不过, 本文所提出的指针流图为鸿蒙应用中的指针分析提供了基础数据结构, 并在官方开源的鸿

蒙应用中实现了可接受的精确率 (98.33%). 随着鸿蒙生态系统不断发展, 构建更大规模、更高复杂度的基准测试

集, 以及引入上下文敏感分析模块, 将成为 HarmonyFlow后续演进的重要方向.
在召回率层面, Tai-e 首次系统性地报告了各主流安卓静态分析工具的召回率, 分别为: Soot 73.2%、Doop

68.4%、Qilin 83.5%、Tai-e 91.3%. 本文提出的 HarmonyFlow在同类实验设置下达到 92.22%的召回率, 在数值上

具有竞争力. 一般而言, 静态分析框架的召回能力取决于其对目标语言语法特性的支持程度. 对 Android工具而言,
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支持 Java的反射机制是召回率提升的关键, Doop因未充分解析反射信息而召回率最低. 而在 ArkTS语言中, 分析

的重点变为鸿蒙应用中广泛使用的回调机制的建模与支持. 作为一门快速演进的新兴语言, ArkTS未来可能引入

更多独特的语法特性. 因此, HarmonyFlow需持续跟进语言层面的演进, 确保语法支持的广度与深度.
在效率层面, 考虑到 Android平台 DaCapo数据集与本文所用数据集在应用规模上的潜在差异, 我们采用“单

位兆字节的运行时间 (s/MB)”作为评估指标. 在相同硬件环境和分析敏感度下, Soot、Doop、Qilin与 Tai-e在字段

敏感指针分析中的效率分别为: 13.67 s/MB、12.73 s/MB、9.02 s/MB和 10.35 s/MB; HarmonyFlow在排除含加密

模块的 Health应用后效率为 13.65 s/MB, 与 Soot接近, 但低于其他后续工具. 造成效率差异的主要原因在于分析

架构设计的不同. Doop采用声明式语言 Datalog构建分析引擎, 显著提高了执行效率; Qilin与 Tai-e则分别引入了

增量式工作列表求解器和基于稀疏位集的指向集表示, 进一步优化了性能. 为提升 HarmonyFlow的工程实用性和

可扩展性, 未来可参考上述优化手段, 重构当前分析引擎, 以获得更优的性能表现.

 5.2   实验结果分析与改进思路

根据本文实验结果, HarmonyFlow存在流敏感性不足和模块间依赖关系缺失的问题. 下面我们详细讨论其成

因和可能的解决方案.

{OB}
{OA,OB}

{OA} {OB}
χ/υ

流敏感分析按照程序语句的执行顺序传播和更新变量的状态信息, 因此能够区分变量在不同程序点具体取

值. 在图 8所示的未经 SSA优化的代码中, 以顶级变量 p 为例, 若采用流敏感分析, 则其指向集合为  ; 而在流

不敏感分析中, p的指向集合则为  , 这种不加区分的合并可能导致误报的产生. 幸运的是, Panda IR经过了

方舟编译器的局部静态单赋值 (partial SSA)优化, 对于不被指针引用的顶级变量 (top-level variable), 已经将其多

个定义拆分为多个单独变量实例, 从而保证 IR 中每个变量只被赋值一次; 而对于被指针引用的变量 (Address-
token variables), 由于结构复杂, 保留其原有形式. 针对 SSA形式的顶级变量, 本文的指针分析算法能够准确地将

p1 的指向集合推导为  , p2 为  , 自然避免了误报. 对于保留非 SSA 形式的被指针引用变量, 需要我们对

Panda IR做进一步优化. 可参考稀疏流敏感指针分析 (SFS)方法 [30], 引入   函数, 将通过指针访问的变量转换为

可追踪的“伪 SSA形式”, 再构造精细的 Def-Use图, 使这类变量也具备流敏感, 有效提升指针分析的敏感度.
 
 

1
2
3
4

// Top-level variables

1
2
3
4
5
6
7

Class A{

}

// Address-taken variables

1
2
3
4

// Top-level variables 的 SSA 形式

// Address-taken variables 未优化为 SSA 形式

let p=new A();
p=new B();  constructor(){this.obj=new C();}
p.foo();

let q=new A();
q.obj=new B();

let p1=new A(); q.obj.foo();
let p2=new B();
p2.foo();

图 8　Panda IR的 Partial SSA 优化
 

当前 HarmonyFlow在处理跨模块调用时表现出不同程度的适应性, 主要取决于模块的加载方式: 静态加载或

动态加载. 对于静态加载场景, Panda IR提供了较为完善的全局模块信息支持. 具体而言, Panda IR中的 Module-
Record 能够维护类型与模块之间的映射关系, 使得静态分析器可以基于接收对象的类型准确地推导其所属模块,
并进一步解析跨模块的调用关系. 因此, 在静态加载情况下, HarmonyFlow能够有效还原跨模块调用边. 然而, 在动

态加载场景下, 由于 Panda IR在此类场景中并未预先维护类型与模块的映射信息, 静态分析工具需依赖路径参数

与字节码文件中模块名进行字符串层面的匹配. 这种匹配方式高度依赖开发者实现细节, 并缺乏统一规范, 因此难

以覆盖所有动态加载路径的变种. 在模块名称被动态构造、路径混淆或加载逻辑较为复杂的情况下, 字符串匹配

策略容易失效, 导致调用边识别失败. 为提升分析的全面性与精确性, 后续工作可考虑结合配置文件和资源路径分

析, 还原动态模块加载行为, 从而进一步降低漏报率, 提升调用图的完整性与准确性.

 5.3   鸿蒙样本数据的局限性

目前, 针对 Java应用的静态分析已有广泛使用的 DaCapo标准测试集 [31]. 虽然 ArkAnalyzer[7]开源了鸿蒙应用
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的测试数据集, 但未提供这些应用的调用边标签等关键程序分析指标. 目前, 我们采用抽样的方法手动评估调用边

的准确性, 但这种方式可能引入一定的偏差. 此外, 当前的工作主要面向 OpenHarmony 社区的开源鸿蒙应用, 而
对 HarmonyOS和 Harmony NEXT应用的兼容尚需进一步拓展. 具体而言, OpenHarmony是鸿蒙系统的底层内核,
继承了方舟编译器, 开发者可基于 OpenHarmony SDK 开发鸿蒙应用. HarmonyOS 是基于 OpenHarmony 与安卓

(AOSP)开发的闭源手机操作系统, 兼容安卓生态; 而 Harmony NEXT去除了对安卓 (AOSP)的支持, 代表了鸿蒙

系统未来发展的方向. 由于 HarmonyOS和 Harmony NEXT均为闭源环境, 本研究基于 OpenHarmony生态构建静

态分析框架.

 5.4   面向用户接口

HarmonyFlow作为鸿蒙应用的基础静态分析框架, 为用户提供了便捷易用的接口. 在过程内分析方面, 框架生

成了基本块级别和指令级别的控制流图, 并提供了指令间的 Def-Use链, 为进一步的数据流分析奠定了基础. 在指

针分析方面, 框架提供指令的指向集合查询接口和调用图构建接口, 同时实现了指令间的别名分析接口. 基于这些

指针分析能力, HarmonyFlow优化了数据依赖关系, 提供了更加精确的过程间 Def-Use链, 同时支持生成过程间控

制流图. 尽管如此, HarmonyFlow的功能仍需进一步完善, 以满足更多应用层面的分析需求. 在数据流分析方面, 仍
可扩展实现包括定义可达性分析、活跃变量分析以及可用表达式分析等经典分析方法. 在安全性检测方面, 污点

分析和并发错误检测是常见的拓展方向, 这些功能的实现将进一步提升框架的实用性和适用范围.

 5.5   框架更新迭代

OpenHarmony生态仍在持续发展和演进的过程中, 方舟编译器的 Panda IR也在不断优化和完善, 为开发者提

供更高效的中间表示格式. HarmonyFlow以 Panda IR为主要分析对象, 因此需要随着 Panda IR的优化不断调整和

升级, 确保分析的准确性与效率能够满足新的技术需求.
此外, OpenHarmony SDK也在持续拓展, 加入了更多功能模块和新特性, 以支持更丰富的应用场景. 为了适应

这些变化, HarmonyFlow需要对新特性进行及时的兼容性更新和功能扩展, 使其在分析能力上能够覆盖更多复杂

的开发需求, 同时为开发者提供更加全面的静态.

 6   总　结

HarmonyFlow 旨在为鸿蒙应用提供基础的静态分析能力, 为此, 我们克服了 Panda IR 信息处理的复杂性、

ArkTS语法特性的复杂性以及静态分析框架可扩展性等 3大挑战. 实验评估表明, HarmonyFlow能够较全面地支

持 ArkTS的语法特性, 并在鸿蒙应用的调用边识别任务中表现出较高的精度与运行效率. 随着鸿蒙生态的持续发

展和完善, HarmonyFlow将在更多鸿蒙应用场景中进行优化和迭代, 并将持续更新以长期支持不断演进的 Open-
Harmony系统.
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