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摘　要: 结合机器学习相关技术的启发式测试用例生成方法可显著提高测试效率. 已有研究关注于利用部分测

试用例构建高效的代理模型, 忽略了初始种群质量以及代理模型对多路径测试效率的影响. 由此, 提出一种结合

K-means与 SVR (support vector machine regression, 支持向量机回归)的测试用例约简与生成方法. 通过 K-means

将随机生成的用例聚为若干簇, 保留与簇中心距离在一定阈值内的用例, 生成这些用例的路径覆盖矩阵. 利用该

矩阵评估测试用例的路径覆盖潜能以及路径的难易覆盖程度, 并基于这两者对测试用例进行排序, 分别从不同

簇中选取若干用例构成测试用例约简集, 将其作为初始遗传种群. 这不仅增强初始种群的多样性, 降低其冗余性,

还有助于减少多路径覆盖的测试用例进化次数. 同时, 将聚类前的用例及其适应度作为样本训练适应于多路径

覆盖的 SVR 适应度预测模型, 并使用遗传进化生成的新用例更新模型, 进一步提高模型精度, 可减少执行插桩

程序带来的大量时间消耗. 这样, 种群质量与测试效率均得以提升. 实验表明, 在 15 个程序上, 所提方法在覆盖

率、平均进化代数等指标上均有较好改善. 其中在覆盖率上, 与 3 类基准方法相比, 最少可提高 7%, 最多可达

49%; 与 5种具有竞争性的方法相比, 可提高约 10%, 最多可达 25%. 所提方法对融合机器学习的多路径测试研究

提供了方法指导.
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Abstract:  The  heuristic  test  case  generation  method  that  combines  machine  learning-related  technologies  can  significantly  improve  the  test
efficiency.  Existing  studies  focus  on  building  efficient  surrogate  models  with  partial  test  cases,  but  ignore  the  influence  of  both  the  initial
population  quality  and  surrogate  models  on  the  multi-path  testing  efficiency.  Therefore,  this  study  proposes  a  test  case  reduction  and
generation  method  combining  K-means  and  support  vector  machine  regression  (SVR).  The  randomly  generated  test  cases  are  clustered  into
several  clusters  by  adopting  K-means,  and  only  the  test  cases  that  are  within  a  particular  distance  away  from  the  cluster  center  are
retained,  with  the  path  coverage  matrix  for  these  test  cases  constructed.  This  matrix  is  employed  to  evaluate  the  path  coverage  potential  of
test  cases  and  the  coverage  difficulty  of  paths.  Additionally,  based  on  these  two  conditions,  the  test  cases  are  ranked,  and  several  test  cases
are  selected  from  different  clusters  to  construct  the  test  case  reduction  set,  which  is  taken  as  the  initial  genetic  population.  This  not  only
increases  the  diversity  of  the  initial  population  and  reduces  its  redundancy,  but  also  helps  to  reduce  the  iteration  number  for  multi-path
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coverage  test  cases.  Meanwhile,  the  test  cases  before  clustering  and  their  fitness  are  employed  as  the  samples  to  train  the  SVR  fitness

prediction  model  designed  for  multi-path  coverage,  and  then  the  new  test  cases  generated  by  genetic  evolution  are  utilized  to  update  the

model,  thus  improving  the  model  accuracy  and  reducing  the  time  consumed  due  to  the  instrumentation  program  execution.  In  this  way,

both  population  quality  and  test  efficiency  can  be  improved.  The  experimental  results  show  that  on  fifteen  programs,  the  proposed  method

has  better  improvements  in  terms  of  indicators  such  as  the  coverage  rate  and  average  evolutionary  generation.  Specifically,  in  terms  of  the

coverage  rate,  the  proposed  method  demonstrates  an  improvement  of  at  least  7%  and  up  to  49%  compared  to  three  types  of  baseline

methods,  and  shows  the  enhancement  of  approximately  10%  to  a  maximum  of  25%  compared  to  five  competitive  methods.  The  proposed

method provides guidance for the research on multi-path testing that combines machine learning.

Key words:  test case; K-means clustering; support vector machine regression (SVR) model; multi-path coverage; genetic algorithm

 1   引　言

近来, 基于搜索的启发式测试用例生成研究十分广泛 [1−3]. 在众多进化算法中, 遗传算法作为一种全局搜索方

法, 在软件测试中取得了丰硕成果 [4,5], 合理地应用该算法可高效地筛选与生成目标用例.

传统进化生成算法效率较低 [6], 通常利用随机生成的测试用例作为初始种群, 并通过演化生成目标测试用例.

此外, 在选择较优种群个体时, 每个个体均需执行程序以评估它们的优劣, 这对于规模较大、存在数量较多且较难

覆盖路径的程序而言, 必将会花费大量测试时间 [7].

不少学者通过改进遗传算法提高用例生成效率. 就已有研究来看, 改进种群遗传进化方向, 是提高用例生成

效率的关键. 为更好地引导个体朝向目标用例进化, 有研究者设计适应度函数来评估个体覆盖情况, 以尽早筛选

出可覆盖目标路径的用例进行演化 [5]. 利用已覆盖的分支路径信息也可引导和改善种群个体进化方向 [8]. 相比之

下, K-means方法作为一种高效的相似性挖掘策略, 将其应用于测试领域可挖掘用例间的关系 [9−11], 有助于提高优

秀个体被选中参与进化生成的概率, 加快目标用例的生成. 这些研究虽可改进种群进化方向, 但每次进化后的个

体均需执行程序, 而且由于部分路径较难覆盖, 则种群个体需不断地演化与执行程序, 这带来了较高的执行时间

成本. 为减少执行程序带来的时间消耗, 利用机器学习构建代理模型是一种有效途径 [12]. 近来, 不少学者利用机

器学习相关技术构建代理模型以减少测试时间 [13,14], 包括神经网络、SVM等. 但他们往往只针对单路径的个体

适应度预测, 若生成多目标路径覆盖的用例则需构建多个代理模型, 这十分耗时且低效. 此外, 由于训练数据的限

制, 他们使用的初始代理模型难以用于部分难覆盖路径, 模型更新也复杂且耗时. 因此, 构建轻量级的适应度预测

模型有助于提升测试效率.

然而, 现有研究均忽略了初始种群对测试用例进化生成的影响, 未从源头缓解进化生成缓慢的问题. 已有研究

中采用的随机初始种群往往质量较低且冗余, 这制约了用例的进化生成, 且降低了测试稳定性. 另外, 初始种群中

若相似用例过多, 则难以引入其他类型个体基因, 即使通过改进种群进化方向也很难快速优化个体基因, 还可能陷

入局部最优. 而且, 代理模型作为减少执行程序时间的一种有效工具, 难以改善种群进化方向. 此外, 这些基于适应

度预测模型的用例生成方法只针对单目标路径 [7,13,14], 且它们依赖于初始代理模型. 相较于单路径的代理模型, 构

建可适用于多目标路径的代理模型在用例生成方面具有更高的适用性与效率. 在工业领域中, 如目标路径冗余度

较高的信息验证与管理系统、安全需求严格的航海系统等, 它们功能复杂、模块较多, 通过增强初始种群质量与

多样性, 以及构建代理模型有助于提升它们的测试效率.

由此可见, 一方面, 初始种群质量影响进化生成目标用例的进程. 提高初始种群的质量及多样性, 可引导个体

更好地进化生成, 减少迭代次数; 另一方面, 种群个体的评估效率也是影响测试的一个关键因素. 构建高效的多路

径个体适应度代理模型可有效提高种群个体的评估效率. 在众多机器学习方法中, K-means策略可高效地将测试

用例进行聚类, 有利于挖掘与分析用例间的关系, 提高种群质量与多样性; SVR 模型可快速且精确地构建测试用

例与其对应适应度间的关系, 有助于增强个体评估能力, 提升多目标路径覆盖的测试用例生成效率.
基于此, 本文提出一种结合 K-means方法与 SVR模型的多路径测试用例生成策略, 主要解决以下几个问题.
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1) 挖掘用例间的潜在相似度, 约简冗余数据. 聚集的用例具有覆盖相似路径的潜能, 利用 K-means 聚类方法

挖掘测试用例间的联系有助于筛选可覆盖多目标路径的用例. 另外, 随机生成的用例一般冗余性高, 尽可能增加与

目标用例距离相近的用例, 可提高优秀用例的选中概率, 进而加快生成可覆盖多目标路径的测试用例.
2) 提高个体适应度计算效率, 减少时间消耗. 种群个体适应度计算是进化生成目标用例的关键, 通常情况下,

此过程较为耗时. 利用 SVR 构建高效的多路径个体适应度预测模型可有效降低多路径用例生成的时间成本. 而
且, SVR的轻量级特性也为模型的快速更新提供支撑.

3) 融合多角度的测试用例生成方法, 提高测试效率. 相较于仅从单一角度考虑的测试用例生成方法, 多角度分

析对测试效率的提升比较明显, 不过需兼顾各角度间的互补性与互斥性. K-means方法与 SVR预测模型可相辅相

成, 两者的有效结合能提高用例生成效率.

 2   相关工作

进化算法有助于生成测试用例、最小化测试用例套件, 已被广泛应用于测试中. 目前, 已有较多研究者已从不

同角度优化进化算法, 有效地提高了测试效率.
钱忠胜等人 [15]根据路径覆盖的关键点概率设计适应度函数引导个体进化, 生成可覆盖多路径的测试用例. Di

Nucci等人 [16]基于超体积的遗传算法提升用例选择与排序的效率, 但对于高冗余测试嵌套系统, 该方法性能有所

下降. Amarif等人 [17]将遗传算法引入 JUnit测试框架中, 以期在单元测试阶段实现自动化测试. Ji等人 [18]将粒子群

优化理论引入遗传算法中, 减少进化生成中因随机性带来的影响. Wang等人 [19]利用量子退火进化算法解决经典

软件上的测试用例最小化问题. 此外, 测试用例的执行路径以及已覆盖路径是指导用例生成的关键信息. Wang等人 [1]

根据两种不同路径结构的函数设计多任务路径覆盖模型, 并提出一种求解该模型的多因子优化框架. Guo等人 [3]

提出一种基于路径结构矩阵和主折叠搜索的用例自动生成策略.
可见, 进化算法, 尤其是遗传算法, 作为一种优化策略, 在进化生成测试数据中展现出较强的适应性与优越性.

将路径覆盖等信息融入其中进行优化, 可有效提高用例生成质量. 但上述研究在个体评估时均需花费较多时间, 如
应对功能复杂、规模较大的工业系统等. 而机器学习相关技术有助于挖掘用例间的关系, 减少种群进化次数及提

高个体评估效率, 进而缩减测试时间.
聚类策略是一种可用于特征相似性挖掘的机器学习方法, 可很好地挖掘测试用例间的联系. Chen 等人 [9]

利用 K-means设计频率变换和改进的小波变换方法, 更好地识别用例间的相似性, 缓解随机测试效率低下的问题,
但未考虑聚类簇的个数对测试效率的影响. Pei等人 [10]通过 K-means方法将测试结果与距离相结合, 动态调整测

试轮廓, 增加优秀个体被选中的概率, 但必须建立在完备的测试用例套件上. Pradhan等人 [20]将聚类思想用于遗传

算法中, 降低父解中的随机性, 进而实现多目标用例生成. 但该方法忽略不同主题对算法的影响. Chen等人 [21]使用

K-medoids算法对用例集进行更细粒度的分类, 并通过簇内贪婪排序提高早期测试用例的多样性.
另外, 构建合适的个体适应度预测模型也可显著提高测试效率. 钱忠胜等人 [7]针对单目标路径构建代理模型,

并以此来代替传统插桩方式获取遗传进化中每个个体的适应度, 但若生成可覆盖多目标路径的用例则需构建若干

代理模型. 他们还从测试路径角度 [22]构建路径预测模型以减少基于覆盖路径的个体适应度计算时间. Gong等人 [12]

根据多模态特性将程序样本聚为若干簇, 每个簇训练一个代理模型, 在进化过程中, 使用代理模型估计个体适应

度, 这使得每一次评估个体均需对若干代理模型进行筛选, 此过程较为耗时. Gao等人 [14]构建全局和局部两个代理

模型, 分层获取个体适应度值, 以减少适应度获取的计算开销. Skocelas等人 [23]提出一种利用 RANN的测试用例

生成方法, 降低测试的复杂性, 提高资源受限的嵌入式系统适用性.
然而, 机器学习方法有助于筛选簇中优秀用例, 降低冗余性. 此外, 利用这些技术构建代理模型可有效降低进

化生成中带来的较多适应度获取时间. 但现有研究均忽略了种群质量对测试的影响. 此外, 他们构建的代理模型难

以适用于多目标路径的用例生成. 因此, 改善初始种群质量, 构建可应用于多路径覆盖的代理模型, 有助于减少模

型构建次数, 提升多路径测试生成效率.
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 3   基础理论

为便于理解, 以三角形判定程序为例 (如算法 1所示), 简述 K-means测试用例约简及 SVR模型的基本理论.

算法 1. 三角形判定算法.

输入: 三角形的三条边, 分别为 a, b, c;
输出: 三角形类型判定.

Begin
1.　 Def triangle(a, b, c):
2.　　 If a>0 and b>0 and c>0:
3.　　　 instrument(p(1));
4.　　　 If a+b>c and b+c>a and a+c>b:
5. 　　　　instrument(p(2));
6.　　　　 If a==b and b==c:
7. 　　　　　instrument(p(3));
8. 　　　　　return (“这是等边三角形”)
9.　　　　 Elif a==b or b==c or c==a:
10. 　　　　　instrument(p(4));
11. 　　　　　return (“这是等腰三角形”)
12.　　　　 Else:
13. 　　　　　return (“这是不规则三角形”)
14. 　　　　End If
15. 　　　Elif a+b==c or b+c==a or a+c==b:
16. 　　　　instrument(p(5));
17. 　　　　return (“这是个退化三角形”)
18.　　　 Else:
19. 　　　　return (“这不是个三角形”)
20.　　　 End If
21.　　 Else:
22. 　　　return (“请输入大于 0的数字”)
23.　　 End If
End

 3.1   基于 K-means 聚类的测试用例约简

在测试中应尽可能地减少易覆盖路径的测试用例, 而将难覆盖路径的测试用例保留下来. 相比于其他聚类方法,
K-means聚类策略具有低复杂性、高效性等优势. 基于 K-means聚类的测试用例约简方法通过挖掘用例间的相似

性, 不仅可减少随机生成中的冗余数据, 促进目标用例的生成, 而且可增强用例的多样性, 实现多目标路径覆盖的

用例生成.
T = {t1, t2, . . . , tn}对于随机生成的一组用例  , 计算它们与 k 个测试簇心 (C1, C2,…, Ck)的欧氏距离, 并将它们分

别聚合到最近簇中心所在的测试用例簇中. 距离计算如公式 (1)所示: 

D(ti,C j) =

√√
m∑

a=1

(t(a)
i −C(a)

j )
2

(1)
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1 ⩽ i ⩽ n t(a)
i 1 ⩽ a ⩽ m 1 ⩽ j ⩽ k

C(a)
j

其中, ti ( ) 为第 i 个测试用例,  ( ) 为该测试用例的第 a 个输入分量; Cj ( ) 为第 j 个测试

聚类中心,   为该中心的第 a 个输入分量.

为优化测试用例的聚类结果, 通过 SSE 指标衡量簇内测试用例到簇中心的均方误差. 当均方误差达到最小时,
聚类终止, 如公式 (2)所示: 

SSE =
k∑

j=1

n∑
i=1

D(ti,C j)2 (2)

例 1: 假定存在一组三角形判定程序的测试用例 T={t1=(1, 2, 3), t2= (1, 2, 5), t3=(4, 3, 5), t4=(7, 9, 7), t5=(7, 9, 9),
t6=(20, 1, 25)}, 根据公式 (1) 和 (2) 将它们聚为 3 个簇{t1, t2, t3}、{t4, t5}与{t6}, 它们的聚类中心分别为 C1=(2, 3,
4.33), C2=(7, 9, 8)以及 C3=(20, 1, 25).

聚类后的测试用例簇 Clus 质量会受噪声用例的干扰, 而噪声用例因与其他用例距离较远, 往往难以覆盖难覆

盖的目标路径, 不利于测试用例的约简与选择. 而且, 将其引入初始种群制约了用例的进化与生成. 轮廓法 [10]通过

计算用例簇内的紧密程度以及簇间的分离程度, 可有效评估测试用例聚类质量. 因此, 我们利用轮廓法对聚类后的

测试用例簇 Clus 中每一个用例 ti 进行质量评估, 剔除噪声用例. 测试用例质量评估如公式 (3)所示:  
Qti =

valueAvgti ,Clusclst − valueAvgti ,Clus j

max{valueAvgti ,Clus j ,valueAvgti ,Clusclst }
s.t. valueAvgti ,Clus j = avgti ,Clus j (D(ti, ti,other)), valueAvgti ,Clusclst = avgti ,Clusclst (D(ti, ti,Clusclst ))

(3)

valueAvgti ,Clus j valueAvgti ,Clusclst

Qti

其中,   为用例 ti 与其所在簇 Clusj 中所有其他用例 ti,other 间的平均距离;   为 ti 到最近的

其他簇内所有用例的平均距离;   为 ti 的质量, 若其值在 (0, 1]内, 则该个体在合适的簇中, 将其保留, 否则视为噪

声, 将其剔除.

valueAvgt1 ,Clus1 = 2.87 valueAvgt1 ,Clusclst = 10.52 Qt1 = 0.73

Qt6 = 0.00

例 2: 根据公式 (3) 可得  ,  , 故  . 依此方式, 其他 5 个测试

用例的 Q 值分别为 0.74、0.53、0.77、0.79、0.00. 因  , 故将其视为噪声点并剔除. 剩余测试用例簇为{t1,
t2, t3}与{t4, t5}. 由 t2=(1, 2, 5)和 t6=(20, 1, 25)两个测试用例可知, 它们具有相同的测试功能, 即判定“这不是个三角

形”. 但是, 相比于 t6, 测试用例 t2 通过将输入数据“1”进行一定轮次的进化即可生成能覆盖其他目标路径的用例;
而 t6 的输入数据相差较远, 通过进化则难以生成. 此外, t2 和 t6 的覆盖路径往往较易覆盖, 故无需保留较多此类用

例. 因此, 将 t6 剔除, 可提高测试用例约简集质量, 优化遗传进化效率; 也可在一定程度上减少迭代次数, 缩减测试

时间.

Pcov利用保留下来的测试用例执行程序, 生成路径覆盖矩阵  , 如公式 (4)所示: 

Pcov =


p(1)

1 p(2)
1 . . . p(s)

1

p(1)
2 p(2)

2 . . . p(s)
2

· · · · · · . . . · · ·
p(1)

r p(2)
r . . . p(s)

r

 (4)

p(1)
u p(2)

u p(l)
u p(s)

u p(l)
u

1 ⩽ u ⩽ r, 1 ⩽ l ⩽ s

矩阵的行表示一条完整路径 pu=( ,  ,...,  ,...,  ), 其中,   表示第 u 条路径的第 l 个节点的状态

( ), 即用例经过或未经过 (记为 1或 0)某一节点.

Pcov

例 3: 将剩余用例执行算法 1的程序, 其中 t1 的覆盖路径 p1=(1, 0, 0, 0, 1), 其他用例的覆盖路径分别为: p2=(1,
0, 0, 0, 0), p3=(1, 1, 0, 0, 0), p4=(1, 1, 0, 1, 0), p5=(1, 1, 0, 1, 0). 因此, 可得如下路径覆盖矩阵  . 

Pcov =


1 0 0 0 1
1 0 0 0 0
1 1 0 0 0
1 1 0 1 0
1 1 0 1 0

 .
已覆盖路径与目标路径间的相似性可体现出测试用例覆盖目标路径的能力以及路径的难易覆盖程度. 通过衡

量用例能力及路径难易覆盖程度, 有助于测试用例的约简, 筛选出较强潜在覆盖能力、可覆盖难覆盖路径的测试
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用例. 路径相似度计算如公式 (5), 多路径相似矩阵如公式 (6)所示: 

sim(pu, p∗v) =
1
s
×

s∑
l=1

SN l, s.t.
{

SN l = 1, if p(l)
u = p∗(l)v

SN l = 0, if p(l)
u , p∗(l)v

(5)
 

R = Pcov×Ptar =


p1
p2
...
pr

×[p∗1, p
∗
2, . . . , p

∗
c] =


sim11 sim12 sim13 · · · sim1c
sim21 sim22 sim23 · · · sim2c

· · · · · · · · · . . . · · ·
simr1 simr2 simr3 · · · simrc

 (6)

SN l p∗v 1 ⩽ v ⩽ c

sim(pu, p∗v) p∗v

其中,   记录用例覆盖路径 pu 与目标路径   ( )第 l 个路径节点状态是否相同, 相同则将其记为 1, 否则

为 0;   则表示路径 pu 与   的相似度, 简写为 simuv.

p∗1 p∗2 Pcov =

[
1 1 1 0 0
1 1 0 0 1

]
p∗1 sim(p1, p∗1) = 0.4 sim(p1, p∗2) = 0.8

sim(p2, p∗1) = 0.6 sim(p2, p∗2) = 0.6 sim(p3, p∗1) = 0.8 sim(p3, p∗2) = 0.8 sim(p4, p∗1) = 0.6 sim(p4, p∗2) = 0.6 sim(p5, p∗1) = 0.6

sim(p5, p∗2) = 0.6

例 4: 假定多目标路径为   =(1, 1, 1, 0, 1),   =(1, 1, 0, 0, 1), 则多目标路径矩阵  . 根

据公式 (5)和 (6)可知, 测试用例 t1 的覆盖路径 p1 与目标路径   的相似度  ,  ; 同理,
,  ,  ,  ,  ,  ,  ,
. 因此, 可得如下多路径相似矩阵 R: 

R =


0.4 0.8
0.6 0.6
0.8 0.8
0.6 0.6
0.6 0.6

 .

PTti

多路径相似矩阵 R的行表示某一用例的覆盖路径与目标路径的相似度, 若相似度较大, 且与多个目标路径均

相似, 则表明该测试用例具备覆盖更多目标路径的潜能. 因此, 我们根据测试用例与目标路径的相似程度来衡量测

试用例的覆盖潜能, 约简并保留高潜能的用例. 测试用例 ti 的潜能   为达到相似度阈值路径数与总目标路径数

的比值, 如公式 (7)所示: 

PTti =
Numti

Totalp∗
×100% (7)

Numti Totalp∗其中,   表示测试用例 ti 的覆盖路径与目标路径的相似度大于阈值的个数,   为总目标路径数.

p∗1 p∗2 Totalp∗ = 2 PTt1 = 1/2 =

PTt2 = 2/2 = 1 PTt3 = 2/2 = 1 PTt4 = 2/2 = 1 PTt5 = 2/2 = 1

例 5: 假定相似度阈值为 0.6, 因目标路径为   和  , 则  , 利用公式 (7)计算 t1 的潜能为 

0.5, t2 的潜能  , t3 的潜能  , t4 的潜能  , t5 的潜能  .

p∗v DPp∗v

此外, 随机生成的用例往往难以覆盖难覆盖的目标路径. 因此, 覆盖难覆盖路径的相似用例有助于进化生成难

覆盖目标路径的测试用例. 多路径相似矩阵 R的列可反映目标路径被用例覆盖的程度. 若达到相似度阈值的测试

用例较多, 则表明该路径越容易被覆盖, 反之亦然. 因此, 通过衡量路径的难易覆盖程度, 可在约简测试用例时尽可

能地保留更多的与覆盖难覆盖目标路径相似的用例. 目标路径   被覆盖的难易程度   则为达到相似度阈值的

测试用例数与总测试用例数的比值, 如公式 (8)所示: 

DPp∗v =
Nump∗v

Totalt

(8)

Nump∗v Totalt DPp∗v其中,   为与第 v 个目标路径相似的覆盖路径对应的用例数,   为用例总和. 若   值越大, 则该目标路

径越易被覆盖, 反之则越难被覆盖.

p∗1 p∗2 DPp∗1
= 4/5 = 0.8 DPp∗2

= 5/5 = 1

p∗1 p∗2 p∗1

例 6: 根据公式 (8)计算可得, 目标路径   与   的覆盖难易程度分别为  ,  . 故生

成覆盖   的测试用例难度高于  , 选择用例时则更多考虑可覆盖难覆盖路径   的测试用例.
通常, 同一簇中的用例相似度较高, 它们的覆盖路径存在一定的相似性, 且一般覆盖难覆盖路径的概率较低.

为筛选出具有多样性的较优用例组, 使它们尽早地参与遗传演化以覆盖目标路径, 需在每个簇中约简测试用例, 保
留潜能较大的测试用例, 同时还需侧重考虑与难覆盖路径相似的路径对应的用例.

基于此, 依据用例潜能对不同簇的测试用例排序, 并对目标路径的难易覆盖程度排序. 用例簇中的测试用例

数占总测试用例数的比例越高, 表明此类用例更易生成. 因此, 依据用例的占比选择少部分此类用例, 而在约简
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集中保留更多难生成的用例. 不同簇中用例数量的选取方式如公式 (9) 所示, 测试用例约简集表达形式如公式

(10)所示: 

TCNum j =

[(
1−

TC j

KMNum

)
/k

]
×Numtar, 1 ⩽ j ⩽ k (9)

  
TCRed = {tcr1, tcr2, . . . , tcrk, tcrDP}

s.t. tcr j = (t1, t2, . . . , tTCNum j ), 1 ⩽ j ⩽ k, tcrDP = (t1, t2, . . . , td), d = Numtar−
k∑

j=1

Num j
(10)

tcrDP

在公式 (9)中, TCj 为第 j 个簇中的用例数, KMNum 为经 K-means聚类后保留下来测试用例的数量, Numtar 为

预设的约简集中用例总数, TCNumj 为第 j 个簇中保留的约简用例的数量. 公式 (10)中, TCRed 为测试用例约简集,
其包含 k 个用例簇 tcr1, tcr2,…, tcrk (选取每个簇中的前 TCNum 个用例) 与依据路径难易覆盖程度选取的用例组

 (选取与覆盖难覆盖路径相似的前 d 个用例).

p∗1

例 7: 基于前述例子可知 KMNum=5, 为便于描述, 假设约简集的用例总数 Numtar 为 4. 根据公式 (9)可知, 需从

第 1 个簇中选取 1 个用例, 从第 2 个簇中选取 2 个用例, 第 3 个簇中的用例为噪声数据, 已被删除. 因此, 当前 k

为 2, 根据公式 (10), 仅从前两个簇中选择测试用例作为测试用例约简集. 根据用例潜能择优原则, 选择第 1 个簇

中 t2 (随机从 t2、t3 中选择), 第 2个簇中的 t4、t5 为约简集中的测试用例. 另外, 根据目标路径的难易覆盖程度, 从这

些用例中选出一个与难覆盖路径   更相似的测试用例 t3 加入约简集中. 故最终测试用例约简集 TCRed={t2, t4,

t5, t3}.

 3.2   基于 SVR 模型的适应度值预测

适应度函数作为个体择优的评判方式, 在启发式测试用例生成中起到至关重要的作用. 因用例的覆盖路径与

目标路径越相似, 且与之相似的目标路径越多, 该用例则可能具备更高的目标路径覆盖概率 (即, 用例潜能越大),
故我们将公式 (7)作为个体适应度评估函数.

在个体优劣评判过程中, 尤其是针对规模较大或目标路径较多的工业程序, 直接利用启发式算法生成用例

需更多的进化次数, 进而需多次地执行程序以评估用例是否覆盖目标路径, 这必然会增加一定测试成本. 而
SVR是一种基于惩罚学习的轻量级回归模型, 通过学习 n 个输入用例 x 及其对应的适应度 y 间的回归关系 f(x),
构建精确的 SVR适应度预测模型, 以利用该模型代替执行程序获取多路径个体适应度, 有助于缩减多次执行程

序的测试时间. 此外, 充分且多样的测试数据可提高 SVR模型精度, 故我们采用比约简集数据量更多的初始随

机数据, 并剔除通过公式 (3)评估的噪声数据, 进行 SVR训练. 可用于多路径覆盖的 SVR个体适应度预测模型

如公式 (11)所示: 

y = f (x) =
n∑

i=1

wxi+b (11)

其中, w 表示个体适应度预测模型的权重, 引入偏置 b 提高个体适应度预测模型的泛化能力.

例 8: 选取初始测试数据 T={t1=(1, 2, 3), t2= (1, 2, 5), t3=(4, 3, 5), t4=(7, 9, 7), t5=(7, 9, 9)} (来源于例 1), 每个用

例的 3个输入分量为模型的输入特征. 通过式 (7)计算它们的适应度值, 分别为 y1=0.5, y2=1, y3=1, y4=1, y5=1. 故由

测试用例及其对应适应度值构成的 SVR适应度预测模型的训练数据形如 (xi, yi)=((1, 2, 3), 0.5). 设模型根据公式 (11)

训练学习到的初始参数值为 w=(0.02, 0.05, 0.03), b=0.4. 假定在演化过程中生成新个体 t7=(3, 4, 1), 利用初始模型

可得其适应度预测值为 y7=0.69. 若不采用 SVR 模型预测, 则需再次执行算法 1 中的程序获取 t7 的适应度值, 得

到 0.5. 可见, 若不采用 SVR模型则必然会花费一定程序执行时间才可得到当前用例的适应度值. 若面向规模较大

或目标路径数较多的程序, 测试用例所消耗的多次执行时间往往会远高于 SVR模型构建与预测时间. 这里, 当前

t7 的预测值与真实值间的误差为 0.19, 为使得预测值更加接近真实值, 便于 SVR模型能替代程序执行获取个体适

应度, 用于演化生成目标用例, 则需对模型进一步优化.

钱忠胜 等: 结合 K-means与 SVR的多路径覆盖测试用例约简与生成 7



ξ+ ξ−

值得注意的是, 在训练数据集中仍难免存在噪声测试用例. 为使部分噪声用例对模型的影响降低到最小, 引入

松弛因子   与   (表示超出和未超出 ε 惩罚区间的情况), 以及参数 C 优化个体适应度预测模型, 使得对适应度的

预测更准确, 优化后的目标函数如公式 (12)所示:  
MinR(w, ξ+, ξ−) =

1
2
∥w∥2+C

n∑
i=1

(ξ++ ξ−)

s.t. f (x)− yi ⩽ ε+ ξi−, yi− f (x) ⩾ ε+ ξi+且 ξ+ ⩾ 0, ξ− ⩾ 0

(12)

y′3
ξ+

y′′3 y′3
y′′3

例 9: 设 ε 惩罚区间为 (−0.2, 0.2), 该区间允许存在一定的小误差, 有助于提高模型的泛化能力. 以 t3=(4, 3, 5)
为例, 其预测值   =0.78, 与真实值 (y3=1)间的误差为 0.22, 超过了惩罚范围, 超越值为 0.02. 为优化该预测偏差, 引
入常用的松弛因子   =0.1对模型进行调整, 使其更接近真实值. 松弛因子可有效缓解噪声用例对模型训练的干扰,
提升个体适应度预测的准确性. 设通过公式 (12)优化后的 SVR模型对 t3 的适应度预测值   =0.85. 相比于  , 调
整后的适应度预测值   更接近真实值 y3.

α−i

α+i

直接优化目标函数复杂度高, 会制约适应度预测模型的参数优化. 因此, 引入 Lagrange 因子 α–i (记为  ) 和
α+i (记为  ), 将优化目标转化为二次规划问题, 以更高效地学习 SVR适应度预测模型参数. 利用 Lagrange函数

将约束条件融入目标适应度预测函数, 得到 Lagrange 因子与 w 的关系. 优化目标函数转化为如公式 (13)所示: 

y = f (x,α+i ,α
−
i ) =

n∑
i=1

(α+i −α−i )(xi · x)+b (13)

y′′′3 y′′3 y′3

例 10: 为进一步提高模型的拟合精度并加速参数求解过程, 通过引入 Lagrange 优化后的模型参数值为 w'=
(0.011, −0.039, 0.1), b'=0.47. 此时 t3 的适应度预测值为   =0.897. 相比于   和  , 其与真实值间的误差最小, 从而

进一步提升适应度预测结果的准确性.
此外, 在测试用例的输入特征与其适应度间往往存在非线性关系, 导致样本在特征空间中线性不可分, 影响

SVR 模型预测的准确性. 为此, 利用核方法将测试用例转换到高维特征域中, 进一步优化模型. 然而, 高维映射会

增加计算开销, 故可引入径向基核函数 K 简化在同一特征空间中内积<xi, x> 的计算, 有效提高适应度预测模型精

度以及降低模型计算的复杂度, 最终目标函数如公式 (14)所示: 

y = f (x,α+i ,α
−
i ) =

n∑
i=1

(α+i −α−i )K(xi, x)+b (14)

例 11: 假定 t3 是一个线性不可分的用例样本, 直接计算 t3 与其他用例间的内积无法体现非线性关系, 故需通

过径向基核函数 K 计算该用例与其他用例间的相似性, 以替代高维内积运算, 解决线性不可分的问题, 降低计算

复杂度. 即, K(t3, t1)=exp(−7), K(t3, t2)=exp(−5), K(t3, t4)=exp(−24.5), K(t3, t5)=exp(−30.5), 这些核函数值反映了用例

t3 与其他用例映射到高维空间后的相似性强弱, 即它们在高维空间的差异性. 将这些结果代入公式 (14), 可提升

SVR模型对线性不可分用例的拟合能力, 进而优化模型.
上述步骤通过模型训练阶段的参数优化提高了 SVR模型的预测能力, 但由于用例的多样性及非线性特征分

布, 适应度预测值与真实值间仍可能存在偏差. 为衡量 SVR模型预测每一次个体适应度的准确性, 利用广泛使用

的平方损失函数计算预测值与真实值间的偏差, 达到更佳预测效果, 同时增强其泛化能力, 如公式 (15)所示: 

L(Y, f (X)) = (Y − f (X))2 (15)

其中, f(X)与 Y 分别为模型获取的个体适应度预测值与程序执行获得的精确值.

y′7 y′7

例 12: 根据例 10 和例 11 学习得到的模型参数, 可得这 5 个用例的适应度预测值为 f(t1)=0.703, f(t2)=0.903,
f(t3)=0.897, f(t4)=0.896, f(t5)=1.096, 它们的损失分别为 L(y1, f(t1))=0.0412, L(y2, f(t2))=0.0094, L(y3, f(t3))=0.0106, L(y4,
f(t4))=0.0108, L(y5, f(t5))=0.0092, 总损失为 Ltotal=0.0813. 利用梯度下降以寻找最小化总损失, 优化后的参数为

w''=(0.0013, −0.0039, 0.1), b''=0.47. 在该参数下的这 5个测试用例总损失 Ltotal=0.0803. 此时, 测试用例 t7 的预测值

 =0.5583, 与真实值 0.5间的误差为 0.058 3. 相比于初始 SVR模型的预测结果 y7=0.69 (见例 8),   更接近真实值,
误差较小. 可见, 通过上述一系列 SVR模型优化策略能有效提高模型精度, 使误差控制在可接受范围内, 进而在获
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取测试用例适应度值时利用 SVR预测模型替代程序执行, 减少用例多次执行程序带来的显著时间消耗, 提高多目

标路径的测试用例生成效率.
我们针对多目标路径覆盖的测试用例生成, 前期利用 K-means生成的测试用例约简集作为遗传初始种群, 提

高初始种群质量并使得用例具备多样性, 后期通过 SVR模型在种群进化中预测个体适应度, 减少因种群迭代产生

个体需多次执行插桩程序所带来的时间消耗.

 4   结合 K-means 与 SVR 的测试用例约简与生成

融入机器学习的启发式用例生成方法在测试生成方面效果显著. 本文先利用 K-means对不同簇中的测试用例

进行约简, 提高种群质量; 再利用 SVR模型预测种群中个体适应度, 减少多路径个体适应度求解时间. K-means与
SVR模型相结合的测试用例约简与生成框架如图 1所示.
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图 1　结合 K-means与 SVR模型的测试用例约简与生成框架
 

主要包括 3个模块, 分别为 K-means测试用例集约简模块、支持向量机回归模块和测试用例进化生成模块.

① K-means 测试用例集约简模块主要利用 K-means 聚类策略及测试用例对目标路径的覆盖能力, 以簇为单位对

聚类后的测试用例进行约简, 选取精英用例, 减少冗余, 提高初始种群质量; ② 支持向量机回归模块主要是将初始

测试用例输入插桩程序计算适应度值, 利用测试用例及对应的适应度值训练可模拟覆盖多路径的个体适应度

SVR模型, 减少插桩时间; ③ 测试用例进化生成模块主要利用约简集和 SVR模型启发生成目标测试用例. 在生成

用例时, 从用例约简模块中获取测试用例约简集作为初始遗传种群, 提高种群个体质量; 对生成的个体调用构建

的 SVR模型预测其适应度, 提高用例生成效率. 在种群进化中引入训练样本中部分优秀个体基因进行重用, 并利

用进化种群中生成的优秀个体更新 SVR模型, 进一步提高测试效率.

 4.1   利用 K-means 聚类约简测试用例

一方面, 距离相近的个体划分到一个簇中, 可覆盖相同或相似目标路径; 另一方面, 初始种群中的个体质量在

一定程度上影响遗传进化的方向与效率. 本节采用 K-means聚类获取约简集, 并将其作为遗传初始种群, 这可避免

随机种群普遍质量较低的问题, 同时减少数据的冗余, 并让初始种群具备多样性. 具体过程如算法 2所示.
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算法 2. 利用 K-means生成测试用例约简集.

输入: 随机测试用例集 TCRand, 聚类数 k, 目标路径集 PTLst;
输出: 测试用例约简集 TCRedLst.

Begin
1. clusterCen, clusterTC ←cluKM(TCRand, k);
// 利用公式 (1), (2)获取 K-means聚类后的簇中心及用例

2. For cen in range(clusterCen):
3.　　 For tc in range(clusterTC):
4.　　　　 dist ← calcDist(tc, cen); // 利用公式 (3)计算每个簇中用例与簇中心的距离

5.　　　　 If dist > 0:
6.　　　　　　 clusLst ← Save(tc); // 保存距离大于 0的测试用例

7.　　　　 Else:
8.　　　　　　 Delete(tc); // 删除距离小于 0的测试用例

9.　　　　 End If
10.　　 End For
11. End For

∅12. TCRedLst ←  ; // 初始化测试用例约简集

13. path ← Instru(clusLst); // 执行插桩程序获取覆盖路径

14. pathCovMat ← genMatrix(path); // 生成如公式 (4)的路径覆盖矩阵

15. pathSimMat ← calcSim(pathCovMat, PTLst); // 利用公式 (5), (6)获取路径相似度矩阵

16. TCPoten ← calcPoten(pathSimMat); // 利用公式 (7)计算用例潜能

17. pathDegree ← calcDegree(pathSimMat); // 利用公式 (8)计算路径难易覆盖度

18. TCRedLst ← Reduce(TCPoten, pathDegree); // 利用公式 (9), (10)筛选并生成用例约简集

19. Output TCRedLst
End

首先, 在第 1行, 利用 K-means将随机生成的测试数据聚为 k 个簇, 获取聚类中心以及簇中测试用例. 其次, 在

第 2–11行, 利用公式 (3)计算每个簇中用例与簇中心的距离, 保留距离大于 0的用例, 将小于 0的剔除 (噪声值).

通常情况下, 若聚类效果较优, 噪声值往往较少. 然后, 在第 12–17行, 计算测试用例潜能以及路径难易覆盖程度.

最后, 在第 18行, 利用公式 (9)和 (10)对不同簇中的测试用例进行约简, 构成用例约简集.

 4.2   利用 SVR 模型预测适应度值

随着程序规模及其复杂度的增大, 在遗传进化中个体适应度计算时间显著增加, 尤其是面向多目标路径的测

试用例生成. 为减少因多次执行插桩程序获取适应度带来的高昂时间成本, 我们构建适用于多路径覆盖的个体适

应度预测模型. 具体过程如算法 3所示.

算法 3. 利用 SVR模型预测个体适应度值.

输入: 测试样本 TCSamp, 优秀个体集 EPLst, 模型更新阈值 UT;
输出: 个体适应度预测值 fitValue.

Begin
1. TCTrain, TCTest ← Divide(TCSamp); // 划分训练集和预测集
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2. SVRModel ←constructFitPredSVR(); // 构建 SVR适应度预测模型

3. fitValue ← SVRModel.predFit(TCTest); // 利用 SVR模型预测个体适应度值

4. Output fitValue
// 子函数 constructFitPredSVR(), 构建 SVR适应度预测模型

5. Def constructFitPredSVR():
6. 　　SVRModel ← trainModel(TCTrain); // 利用公式 (11)–(15)训练 SVR回归模型

7.　　 If len(EPLst) ≥ UT: // 优秀个体数达到阈值

8. 　　　　updateModel(SVRModel);
9.　　 End If
10.  　 Return SVRModel
11. End Def
End

在第 1行, 把初始测试用例输入插桩程序, 计算每个用例的精确适应度, 将用例及其对应的适应度作为训练样

本, 并将它们划分为训练集与预测集, 以构建 SVR 模型. 在第 2 行, 调用函数 constructFitPredSVR(), 根据公式

(11)–(13)求解公式 (14)的目标函数, 并利用公式 (15)的损失函数不断优化 SVR模型, 直到损失值最小, 此时 SVR
模型构建完成. 另外, 由于初始种群质量对 SVR模型精度具有一定影响, 故需利用演化生成中产生的一定数量较

优个体更新 SVR模型, 进一步提高模型精度. 在第 3行, 将测试用例输入训练好的 SVR模型, 并在第 4行输出对

应的适应度预测值.

 4.3   进化生成测试用例

这里借助遗传算法生成目标路径的测试用例, 并将第 4.1节的测试用例约简集作为遗传初始种群, 将第 4.2节
的 SVR模型用于预测个体适应度, 以生成覆盖多目标路径的测试用例. 具体过程如算法 4所示.

算法 4. 结合 K-means方法与 SVR模型生成测试用例.

输入: 测试用例约简集 TCRedLst, 外部优秀个体集 EEPLst, 插桩阈值 IT, 目标路径集 PTLst, 目标适应度 fitTarg, 种
群大小 popSize, 最大进化代数 ET, 交叉概率 CP, 变异概率 MP;
输出: 目标测试用例集 TCTargLst.

Begin
1. TCTargLst ← [ ]; // 初始化目标测试用例

2. initPop ← TCRedLst; // 将算法 2的约简集作为遗传初始种群

3. SVRModel ←constructFitPredSVR(); // 利用算法 3的 constructFitPredSVR()函数, 构建 SVR模型

4. trueValue, TCTargLst ← getTCTarg(initPop, predValue); // 获取个体精确适应度与目标用例集

5. evotime = 0;
6. For evotime in range(ET):

∅7.　　 If PTLst <> :
8.　　　　 popLst1 ← Roulette(popSize, trueValue); // 轮盘赌法选择个体

9.　　　　 popLst2 ← Crossover(popLst1, EEPLst, CP); // 引入优秀个体交叉并保留

10.　　　   newPopLst ← Mutate(popLst2, MP); // 变异操作

11.　　　   newTC ← convertToDecimal(newPopLst); // 转换成十进制

12.　　　   predValue ← SVRModel.predFit(newTC); // 根据算法 3预测个体适应度

13.　　　   trueValue, TCTargLst ← getTCTarg(newTC, predValue);
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　　　　   // 获取个体精确适应度与目标用例集

14.　 Else:
15. 　　　Break;
16.　 End If
17.　 If len(TCTargLst) ≥ UT: // 优秀测试用例数达到阈值

18. 　　　SVRModel ← constructFitPredSVR();
　　　　// 利用算法 3的 constructFitPredSVR()函数, 更新 SVR模型

19.　 End If
20.　 evotime += 1
21. End For
22. Output TCTargLst;
　// 子函数 getTCTarg(), 删除目标路径集 PTLst 中已覆盖路径, 保存目标用例 TCTargLst
23. Def getTCTarg(TC, tempValue): // 获取目标测试用例

24.　 If tempValue ≥ IT: // 达到插桩验证的阈值

25.　　　 trueValue, path ← Instru(TC); // 将当前用例输入插桩程序获取精确值及覆盖路径

26.　　　 If path ∈ PTLst:
27. 　　　　　PTLst.drop(path);
28. 　　　　　TCTargLst.append(TC); // 保存可覆盖目标路径的测试用例

29.　　　 End If
30.　 End If
31.　 Return trueValue, TCTargLst
32. End Def
End

在第 1行, 初始化目标测试用例; 在第 2行, 从算法 2中获取约简集, 将其作为遗传初始种群. 在第 3行, 利用

算法 3的 constructFitPredSVR()函数训练 SVR模型, 并在第 4行, 调用 getTCTarg()函数, 判定目标路径是否全覆

盖, 并保存目标用例. 在第 5–21行, 若目标路径集不为空, 表明仍有目标路径未被覆盖, 则需进行遗传进化, 在交叉

过程中引入适应度较高的个体基因进行用例重用; 为避免陷入局部最优, 某一个体被引入次数超过给定次数则将

其删除. 生成新一代种群后, 将其转换为十进制, 调用 SVR模型以预测适应度. 再次调用 getTCTarg()函数, 若当前

用例覆盖了目标路径, 则将该路径从目标路径集中剔除; 优秀用例集中的用例数达到一定阈值, 则调用算法 3 的

constructFitPredSVR()函数更新 SVR模型, 使得在后续用例进化生成中个体适应度预测更加精确; 当目标路径集

中的所有路径均被覆盖或达到最大进化代数, 进化操作终止. 在第 22行, 输出目标测试用例集. 为便于理解, 下面

接着前述若干示例介绍结合 K-means与 SVR的多路径测试用例生成过程.

t′3 t′4 t′3 t′4
t′3 t′4

t′4

例 13: 由例 7可知, 初始种群为 initPop={t2, t4, t5, t3}, 而由例 12可得最优多路径个体适应度预测 SVR模型. 先
将这 4个测试用例执行三角形判定程序, 获取它们的真实适应度值以及覆盖路径. 由例 4可知, 这些用例并未覆盖目

标路径, 故需根据它们的适应度值, 通过轮盘赌法选择优秀用例, 进行遗传进化. 适应度决定了它们被选中的概率. 假
定选中个体{t3, t4}作为交叉变异的父代. 接着, 将这两个用例转换为二进制编码, 并进行交叉与变异, 形成新的两个

子代. 之后, 将子代转换为十进制表示为   =(4, 3, 6),   =(7, 7, 7), 获得第 2代种群为{t3, t4,  ,   }. 将当前种群中的个

体输入 SVR模型, 预测适应度值, 它们的适应度分别为: 0.897、0.896、1.005、0.998. 相比于 t3 和 t4, 用例   和   的

适应度预测值更接近于 1, 故选择这两个用例执行程序, 验证其真实值及覆盖路径, 而 t3 和 t4 则不执行程序. 由此可

知,   覆盖了例 4中的一条目标路径 [1, 1, 1, 0, 0], 并将该路径移除. 由于目标路径集中仍存在一条未覆盖目标路径

[1, 1, 0, 0, 1]. 故需继续执行上述遗传进化操作, 直至目标路径被全覆盖或达到迭代阈值, 则完成用例生成.
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由于例 13的路径数较少, SVR模型无需进行更新. 但在用例数量及目标路径数较多时, 则需根据路径覆盖情

况动态更新多路径个体适应度预测模型, 以提高 SVR模型预测效率. 下面通过实验验证结合 K-means与 SVR模

型方法的有效性.

 5   实验设计与分析

为检验基于 K-means的测试用例约简法以及 SVR模型代替插桩法预测个体适应度对用例生成的有效性, 本
节通过大量仿真实验进行对比.

 5.1   问题研究

本文提出的测试用例生成方法能否提高测试效率, 一方面取决于采用 K-means 聚类方式筛选的约简集的质

量, 另一方面取决于 SVR模型预测多路径个体适应度的准确性. 实验中围绕以下几个问题探讨本文方法在测试用

例生成方面的优势.
问题 1: 测试用例约简集能否改善初始种群质量, 推进遗传进化过程, 提高多目标路径测试用例生成效率?
针对此问题, 分别从约简集中的测试用例数、聚类簇数, 以及利用约简集生成测试用例效率这几方面进行验

证. 通过初始种群的不同选取方式设计对比实验, 选取方式包括随机生成测试用例与 K-means聚类约简测试用例

这两种. 在对比方法中, 它们仅初始种群来源不同, 其他操作均相同. 实验设计与分析见第 5.4.1节.
问题 2: (a) SVR模型预测个体适应度的准确性如何? (b) 利用 SVR模型能否提高面向多路径的测试效率?
针对问题 (a), 为验证 SVR 模型在不同复杂度程序上的准确性, 随机抽取 1 个功能较单一程序与功能较复杂

程序, 利用一定数量的样本训练 SVR回归模型, 通过已训练模型获取预测样本的适应度, 将预测样本的预测值与

其精确值作对比. 针对问题 (b), 通过个体适应度的不同获取方式设计对比实验, 包括适应度函数计算方式 (即执行

插桩程序)与 SVR模型预测方式. 在对比方法中, 它们仅获取个体适应度的方式不一样, 其他操作均相同. 实验设

计与分析见第 5.4.2节.
问题 3: 结合 K-means 与 SVR 模型的测试用例约简与生成方法 (即本文方法) 是否可提高测试效率? 其效率

可提高到何种程度?
针对此问题, 在前两个问题的基础上设计消融实验, 将基于 K-means的测试用例约简集与 SVR模型预测的适

应度均用于遗传进化中, 与仅采用约简集等方法做对比, 以验证本文将两者相结合的方法在测试方面的效率以及

提高程度. 实验设计与分析见第 5.4.3节.
此外, 为进一步验证本文方法的优势, 在第 5.4.4节还与其他典型的测试用例生成方法对比, 比较这些对比方

法在不同程序上的测试效率.

 5.2   评价标准

为检验基于 K-means 的约简集以及通过 SVR 模型计算种群个体适应度的方法对测试用例生成效率的影响,
主要使用如下几个指标进行评价.

1) 覆盖率: 执行若干次实验, 在最大进化代数内目标路径均被覆盖的次数总和占总执行次数的比例.
2) 进化代数总量: 在若干次实验中, 覆盖任一条目标路径所需进化代数的总和.
3) 平均进化代数: 若干次实验进化代数总和的平均值. 具体地, 在执行若干次实验中, 若在最大进化代数内, 待

测程序的目标路径均被覆盖, 则记录此时的进化代数, 若未被全覆盖, 则记录最大进化代数.
4) 执行时间: 若干次实验中测试用例生成的时间消耗总和.
本文实验均执行 100次对结果进行综合统计, 以更合理地说明所提方法的有效性. 为更全面地呈现各方法间

的差异性, 我们在覆盖率、进化代数、执行时间这几个方面的基础上设置额外的对比指标 (如覆盖率差值), 在第

5.4.3与 5.4.4节实验的对应部分给出了相关阐述.

 5.3   程序信息与实验参数

本文选取 2个基础程序和 13个工业程序进行实验, 它们已被广泛运用于测试分析中, 具体信息如表 1所示.
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表 1　实验程序信息表
 

程序类型程序编号 程序名称 代码行数函数个数目标路径数 程序来源

基础
程序

PG1 冒泡排序 8 1 2 https://blog.csdn.net/s1156605343/article/details/106177863
PG2 三角形判定 15 1 5 https://www.jb51.net/article/184534.htm

工业
程序

PG3 LuhnCheck 24 1 2 https://blog.csdn.net/weixin_33716557/article/details/91539545
PG4 计算器 196 5 21 https://www.cnblogs.com/quemengqio/p/7799468.html
PG5 Snake 163 11 35

https://gitee.com/explore
PG6 Gobang 470 23 57
PG7 Account 1 670 36 61
PG8 Nav Acc Data PP 3 990 155 123
PG9 Sed 9 341 77 12

https://sir.csc.ncsu.edu/php
PG10 Flex 14 405 162 20
PG11 DepSolver 8 988 227 20 https://github.com/chef-boneyard/depsolver
PG12 ClustalW 23 265 468 30 https://github.com/coldfunction/CUDA-clustalW

PG13 AllTrue32 7 1 33 文献[14]
PG14 Transmit 30 1 2

https://github.com/Cloudslab/iFogSim
PG15 Send 47 1 9

 

在表 1中, PG1和 PG2为基础程序, 它们的代码行数、函数个数, 以及目标路径均较少. PG3–PG15为工业程

序, 它们的代码行数在 7–23 265范围内, 函数个数在 1–468范围内, 目标路径数在 2–123范围内. 由于被测程序的

语言各异, 我们选择程序 PG1和 PG10用于消融实验, 以检测本文方法各模块的有效性; 程序 PG11–PG15作为与

其他测试生成方法对比的实验对象, 以验证本文方法的优势.
本实验在Windows 10平台下完成, 采用 Python语言与 jdk1.8, 并使用 PyCharm开发环境. 为使多样性种群以

及 SVR适应度预测模型更好地适用于遗传进化策略, 同时使基于用例潜能的个体选择策略以更大概率生成覆盖

多目标路径的测试用例, 以及尽可能地覆盖多目标路径, 搜索更广泛的空间, 设置多点交叉概率为 0.9, 变异概率

为 0.1, 进化代数阈值为 1 000等. 此外, 基准方法的参数设置基本相同, 除了初始种群规模因测试方法、程序等不

同而有所区别, 其他参数均相同.

 5.4   实验对比与分析

这里先介绍本文实验中涉及的各类不同方法的特点, 具体信息如表 2所示.
 
 

表 2　不同测试用例生成方法介绍
 

方法类别 方法名 方法简述

基准方法

插桩法
随机生成初始种群, 通过执行插桩程序计算个体适应度, 并以一定概率对个体实施交叉变异等操
作, 生成测试用例

约简法 利用第3.1节提出的测试用例约简集作为遗传初始种群, 其他过程与插桩法一致

支持向量机回归法
(SVR法)

利用第3.2节构建的SVR模型预测遗传进化中种群个体的适应度, 并对较优个体进行插桩验证, 其他
过程与插桩法一致

对比方法

关键点概率[15] 将可覆盖关键点的测试用例优先参与遗传进化, 启发生成目标测试用例

DSGEO[13]
利用代理模型评估个体适应度并指导生成测试用例

HSADE[14] 结合全局与局部代理模型在目标子空间中进行精确的适应度估计, 指导生成测试用例

DNTSA[3] 基于路径结构矩阵和mainfold-inspired搜索自动生成测试用例

MfO-PC[1] 基于MfO-PC框架与种群的搜索算法生成测试用例

本文方法 KM-SVR法 将K-means用例约简集作为初始种群, 利用SVR模型预测个体适应度, 并在遗传进化中引入优秀个
体基因, 其他过程均与插桩法一致

 

 5.4.1    用例约简实验

针对问题 1, 将利用 K-means聚类方法约简后的用例作为遗传初始个体实施进化生成过程, 其中用例数量与
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质量均对测试效率具有一定影响. 下面分别从约简集中的用例数量、聚类簇数, 以及约简集对测试效率影响等方

面, 验证约简集在测试用例生成中的有效性.
1) 约简集中用例数量对测试生成效率的影响

覆盖率是评价测试方法有效性的核心指标, 可直接体现方法的有效性. 为验证约简集中用例数量的作用, 选取

不同数量的用例以观察它们在不同程序上对覆盖率的影响, 如图 2所示. 其中横坐标为测试用例数量, 纵坐标为目

标路径覆盖率.
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图 2　在不同程序上测试用例数量对覆盖率的影响
 

由图 2 可知, 随着用例数增加, 每个程序的覆盖率大致呈上升趋势. 其中, 大部分程序在用例数为 40、80、
120、160、200时覆盖率提升相对缓慢; 在数量为 300时, PG2、PG3、PG7、PG8提升较为明显, 程序 PG1、PG4、
PG5、PG9、PG10提升较少. 由此可见, 约简集中的用例数量在不同程序上对覆盖率影响不同.

另外, 初始测试用例数量越多, 在个体进化生成中所需时间也越多, 因此, 选择初始种群个体数量时不仅需考

虑覆盖率, 还需兼顾执行时间. 下面采用与图 2 同样规模的测试用例, 观察它们在不同程序上对执行时间的影响.
说明: 由于程序规模、复杂度等不同, 它们在执行时间上存在较大差异, 采用表格形式表达更清晰, 实验结果如

表 3所示.
  

表 3　在不同程序上测试用例数量对执行时间的影响 (s)
 

待测程序 40 80 120 160 200 300
PG1 50.27 53.58 51.04 48.39 51.33 52.91
PG2 65.02 65.53 67.10 67.59 69.44 73.25
PG3 77.05 83.16 79.32 78.77 79.46 88.20
PG4 62.41 62.38 65.73 68.33 69.51 68.72
PG5 85.10 92.74 85.82 86.03 89.25 86.55
PG6 178.51 185.27 185.06 186.34 183.75 187.42
PG7 301.20 312.86 317.65 318.77 325.12 351.37
PG8 831.28 845.51 838.03 841.25 846.50 867.92
PG9 66.84 67.85 71.39 67.92 68.13 70.05
PG10 129.30 143.06 131.32 135.88 138.03 138.47

各程序在所选较为合适的测试用例数量下的执行时间用粗体表示.
 

由表 3可知, 在一定范围内增加种群个体数并不会给测试带来较大额外时间消耗, 这是因为相较于随机生成

的种群, 经约简后其质量得到提高. 部分程序随种群数量的增加, 执行时间略有减少, 例如在程序 PG1和 PG3上,
种群数量为 160时, 执行时间均少于种群数量为 120时, 其主要原因是: 增加的种群个体质量有所提升, 在进化过

程中可更早地覆盖目标路径, 减少迭代次数, 进而减少交叉变异的时间消耗. 此外, 结合图 2, 相较于时间, 用例数

量对覆盖率影响更为明显. 因此, 在选择个体时应优先考虑用例数对目标路径覆盖率的影响, 再考虑执行时间.
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具体地, 结合图 2和表 3可知, PG1、PG4、PG5、PG6、PG9、PG10这 6个程序在用例数量 300以内时, 覆
盖率呈波动变化. 其中, 程序 PG1、PG5在用例数量为 160时覆盖率最佳, 且相较于数量为 200和 300时时间消耗

最少; 程序 PG4、PG9的覆盖率在用例数量为 160时与在 200和 300时相当, 但执行时间更少; 程序 PG6在用例

数量为 200时覆盖率最佳, 且相较于 160与 300时所需执行时间最少; 程序 PG10在各用例数量情况下所需执行

时间相差不大, 但在 200时覆盖率最佳. 在执行时间方面, 程序 PG1在用例数量为 160时, 所需执行时间最少; PG4、
PG5、PG9在用例数量为 160时相较于数量为 200和 300时时间消耗最少; PG6在用例数量为 200相较于 160与
300时, 所需执行时间最少; 程序 PG10在各用例数量情况下所需执行时间相差不大, 但在 200时覆盖率最佳.

而程序 PG2、PG3、PG7、PG8这 4个程序在用例数量为 200以内时, 覆盖率增加较为平缓, 在 200时达到最

佳; 在 200–300间覆盖率有所增加. 在执行时间方面, 用例数量为 200以内时, 增加缓慢, 且在 200时所消耗时间与

其他组相当; 用例数量为 300时, 它们的执行时间均呈显著性增加.
结合以上分析, 基于优先考虑覆盖率的同时, 权衡测试的执行时间消耗, 分别将程序 PG1–PG10的初始种群数

设置为 160、200、200、160、160、200、200、200、160、200.
2) 约简集中聚类簇数对测试效率的影响

本文针对不同簇构建测试用例约简集, 因此聚类簇数对测试效率也有一定影响. 这里, 考虑到不同程序的目标

路径存在差异 (见表 1), 以及执行程序的时间消耗, 将目标路径数超过 50 的程序 (PG6–PG8) 的随机种子数设

为 800, 其余均设为 400, 并采用常用的手肘法 (见公式 (2)), 针对种群大小选择不同程序的聚类簇数, 结果如图 3
所示.

由图 3可知, 聚类簇数的选择与程序规模, 以及目标路径数息息相关. 其中, 规模较小且目标路径数较少的程

序 PG1–PG5, 最优聚类簇数为 3; 规模较大且目标路径数较多的程序 PG6–PG8, 最优聚类簇数分别为 4、5、5. 相
较于程序 PG6–PG8, 程序 PG9、PG10虽然程序规模较大, 但目标路径数较少, 因此, 它们最优聚类簇数小于 5. 由
此可见, 针对代码行数或被测目标路径数较多的测试对象, 可适当增加用例数以及聚类簇数.
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图 3　不同程序的聚类簇数选取
 

此外, 聚类簇数在一定程度上反映了种群的多样性. 为验证多样性种群对多路径用例生成的影响, 设置不同聚

类簇数 (根据图 3, 可设置聚类簇的个数上限为 5), 根据测试用例约简法获取每个簇中的用例, 对比它们在不同程

序上的用例生成效率, 结果如表 4所示.
由表 4可知, 在大部分程序上, 随着聚类簇数的增加, 测试效率均得到一定改善.
(1) 在程序 PG1–PG6、PG9、PG10上, 当聚类簇数达到设定的最优簇数 (见图 3)时, 测试效率普遍最佳. 其原

因是: 当聚类簇数较少时, 测试用例种类较为单一, 遗传进化时易出现局部最优收敛的问题, 较难生成可覆盖多目

标路径的用例. 当聚类簇数持续增加时, 覆盖率并未有明显提高; 进化代数总量和平均进化代数有时呈略微增长的

趋势; 执行时间也随之增加. 例如, 对于程序 PG4, 在聚类簇数为 3 (最优值)时, 覆盖率达 85%, 进化代数总量为 95 163,
平均进化代数为 237.90, 执行时间为 69.51 s; 当聚类簇数增加到 5 时, 覆盖率仅提高 1%, 执行时间则需多消耗
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5.12 s. 其主要原因是, 当聚类簇数超过最优值时, 不同聚类簇中的用例存在一定的耦合, 导致存在较多相似用例,

破坏了最佳测试簇的多样性, 降低了在遗传进化时选中优秀种群基因的可能性. 此外, 前期也需消耗更多的时间以

选取测试用例, 这必会导致测试时间增加.
 
 

表 4　不同聚类簇数对用例生成效果的对比
 

待测程序 评价指标 1 2 3 4 5

PG1

覆盖率 (%) 65 82 88 88 90

进化代数总量 58 741 42 873 36 034 35 784 33 684
平均进化代数 419.21 245.43 193.08 185.71 172.12
执行时间 (s) 56.74 52.12 48.39 47.69 50.70

PG2

覆盖率 (%) 57 76 93 92 93

进化代数总量 87 487 48 632 45 368 46 735 47 867
平均进化代数 507.24 366.47 121.10 128.34 131.89
执行时间 (s) 74.30 63.88 69.44 70.12 65.73

PG3

覆盖率 (%) 52 68 75 76 78

进化代数总量 69 712 57 745 47 032 49 962 50 175
平均进化代数 636.43 545.37 349.43 356.78 351.99
执行时间 (s) 87.78 84.34 79.46 81.51 83.46

PG4

覆盖率 (%) 69 78 85 85 86

进化代数总量 153 649 107 156 95 163 94 413 100 414
平均进化代数 398.63 306.84 237.90 227.67 246.32
执行时间 (s) 79.35 75.65 69.51 68.72 64.39

PG5

覆盖率 (%) 60 69 76 74 75

进化代数总量 246 713 185 936 182 885 218 710 202 473
平均进化代数 461.37 406.75 375.55 397.64 385.22
执行时间 (s) 97.52 93.75 89.25 91.35 92.56

PG6

覆盖率 (%) 71 80 86 91 91

进化代数总量 340 684 248 346 185 422 164 720 165 153
平均进化代数 303.46 254.28 217.75 134.62 153.47
执行时间 (s) 194.04 188.38 186.91 183.75 183.83

PG7

覆盖率 (%) 76 83 87 90 93

进化代数总量 368 547 328 735 285 341 268 745 226 839
平均进化代数 326.41 300.24 197.63 178.08 166.28
执行时间 (s) 358.94 246.83 335.66 330.39 325.12

PG8

覆盖率 (%) 61 69 72 75 79

进化代数总量 668 326 577 481 547 435 533 261 479 412
平均进化代数 525.88 437.32 367.36 353.52 294.37
执行时间 (s) 897.36 876.90 863.66 854.36 843.50

PG9

覆盖率 (%) 63 68 72 72 73

进化代数总量 238 723 188 736 169 005 129 745 102 431
平均进化代数 477.52 402.37 385.90 387.21 352.74
执行时间 (s) 69.37 66.07 68.92 66.74 67.39

PG10

覆盖率 (%) 70 76 81 84 85

进化代数总量 238 417 199 857 177 549 136 331 156 874
平均进化代数 382.22 316.30 279.36 255.62 279.77
执行时间 (s) 145.95 140.87 137.68 135.88 138.84

注: 粗体表示在最优聚类簇数下的测试效率
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(2) 在 PG7、PG8上, 随着聚类簇数增加, 当达到最优聚类簇数 5时测试效率最佳. 相对于其他程序, 这两种程

序的目标路径数较多, 则所需用例的种类也较多. 虽在前期需花费选取合适聚类簇的时间, 但构建满足覆盖路径的

初始用例约简集可减少后期种群进化时间. 例如, 在 PG8 (航海系统)上, 当聚类簇数为 3时, 平均进化代数为 367.36,
当聚类簇数为 5时, 平均进化代数为 294.37, 显著减少了约 73代.

综上可知, 当目标路径较多时, 需选择更多的聚类簇作为用例约简集的筛选子集, 提高个体的多样性, 从而提

升生成覆盖多目标路径的测试效率.

3) 基于约简集的多路径覆盖测试用例生成

为充分发挥约简集在测试中的优势, 可根据上述实验针对不同待测程序设置合适的用例数量以及聚类簇数.

约简集中的用例数设置在 160–200内较为合理, 若目标路径数较多或存在较难覆盖的路径, 则此时选取 200个用

例数, 提高约简集中可覆盖相似目标路径的用例被选中的概率. 此外, 聚类簇数对测试效率也有一定影响, 在大部

分待测程序上, 其值普遍设置为 3较为合适, 对于规模较大且目标路径数相对较多的程序, 例如 PG7和 PG8, 可将

聚类簇数设置为 5. 具体设置如表 5所示.
 
 

表 5　不同程序的初始种群参数设置
 

待测程序 初始种群大小 (约简集的用例数) 聚类簇数 (k) 待测程序 初始种群大小 (约简集的用例数) 聚类簇数 (k)
PG1 160 3 PG6 200 4
PG2 200 3 PG7 200 5
PG3 200 3 PG8 200 5
PG4 160 3 PG9 160 3
PG5 160 3 PG10 200 4

 

接下来, 为验证测试用例的选取策略 (约简法)对测试效率的影响, 将约简法与插桩法对比 (注意, 约简法中初

始种群参数见表 5), 结果如表 6所示.
 
 

表 6　插桩法与测试用例约简法的结果对比
 

待测程序 评价指标 插桩法 约简法 待测程序 评价指标 插桩法 约简法

PG1

覆盖率 (%) 77 88

PG6

覆盖率 (%) 75 91
进化代数总量 43 252 36 034 进化代数总量 292 493 164 720
平均进化代数 314.47 193.08 平均进化代数 291.28 134.62
执行时间 (s) 53.38 48.39 执行时间 (s) 178.50 183.75

PG2

覆盖率 (%) 60 93

PG7

覆盖率 (%) 82 93
进化代数总量 75 540 45 368 进化代数总量 285 126 226 839
平均进化代数 457.07 121.10 平均进化代数 248.74 166.28
执行时间 (s) 65.02 69.44 执行时间 (s) 301.20 325.12

PG3

覆盖率 (%) 58 75

PG8

覆盖率 (%) 65 79
进化代数总量 64 814 47 032 进化代数总量 615 621 479 412
平均进化代数 612.43 349.43 平均进化代数 498.05 294.37
执行时间 (s) 77.05 79.46 执行时间 (s) 831.28 843.50

PG4

覆盖率 (%) 73 85

PG9

覆盖率 (%) 67 72
进化代数总量 128 470 95 163 进化代数总量 175 379 169 005
平均进化代数 335.32 237.90 平均进化代数 430.67 385.90
执行时间 (s) 62.41 69.51 执行时间 (s) 66.84 68.92

PG5

覆盖率 (%) 64 76

PG10

覆盖率 (%) 71 84
进化代数总量 215 473 182 885 进化代数总量 190 217 136 331
平均进化代数 425.38 375.55 平均进化代数 357.07 255.62
执行时间 (s) 85.10 89.25 执行时间 (s) 129.30 135.88
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由表 6可知, 对比约简法与插桩法, 可得到如下几点结论.
(1) 覆盖率、进化代数方面. 在覆盖率上, 约简法较插桩法提升明显. 例如, 在目标路径数较多的程序 PG5 (游

戏程序)上, 覆盖率可提高 9%; 在 PG7 (功能较为复杂的网站登录系统)上提高了 11%; 在 PG8 (程序规模较大且目

标路径数较多的航海系统) 上提升显著, 达 14%; 在程序 PG9 (非交互式文本处理工具) 上提高相对较少, 但也有

5%的提高. 在进化代数上, 约简法均有所减少, 这表明在同一进化代数内, 约简集中的种群个体信息较为丰富, 可
覆盖更多目标路径.

(2) 执行时间方面. 约简法在执行时间上一般高于插桩法, 但不明显. 例如, 在路径高度冗余程序 PG3 (银行卡

号校验系统)、PG9上的时间高出约 2 s, 因在约简测试用例时需花费一定时间, 另外约简集的用例数较大, 在遗传

进化中也必然会消耗更多时间.
综上分析, 在多测试用例覆盖相同或相似路径而产生高冗余路径的程序或目标路径数较多的应用上, 约简集

可改善初始种群质量, 使得在相对较少的进化代数内生成目标用例, 但稍许耗时. 接下来验证本文方法所结合的

SVR模型在测试时间方面的优势.
 5.4.2    适应度预测实验

针对问题 2(a), 随机选取一个功能较单一程序与功能较复杂程序, 将 SVR预测的用例适应度值与插桩法计算

的精确值对比, 分析 SVR模型的性能, 如图 4所示. 其中, 横坐标为用例编号, 纵坐标为用例的适应度差值百分比

(即, SVR模型获取的预测值与传统插桩方式得到的精确值之差占精确值的百分比).
由图 4 可知, 本文方法模拟预测的适应度值与执行插桩程序获取的精确值之差的百分比分布在较小的范围

内, 但不排除极少数预测值与精确值差值较大的个体 (在图 4中已用三角形标记). 功能较单一程序的差值百分比

集中分布在 [−10%, 9%], 功能较复杂程序的集中分布在 [−5%, 6%].
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图 4　适应度值之差百分比结果
 

从适应度值之差百分比曲线可知, 本文的 SVR模型预测结果即使与精确值存在一定差异, 但差值会在较小的

范围内. 我们将适应度在一定范围内的个体输入程序并计算其准确的适应度值, 让误差降低到最小. 由此可知: SVR
模型模拟测试用例适应度的效果良好, 适合利用训练模型代替插桩法进行适应度的获取.

针对问题 2(b), 将 SVR模型应用于测试用例的进化生成中, 并与插桩法对比分析, 验证 SVR模型对测试效率

的影响. 结果如表 7所示.
根据表 7, 可得如下几点结论.
(1) 覆盖率、进化代数等方面. 插桩法的覆盖率普遍高于 SVR法, 但相差较小. 在程序 PG8上, 两种方法差值

达到最大, 但差值也仅为 9%; 在程序 PG2上差值最小, 仅为 1%. 在进化代数方面, 插桩法略少于 SVR法. 插桩法

在覆盖率和进化代数方面略优于 SVR法的主要原因是, 插桩法得到的适应度值是准确值, 而 SVR模型预测的适

应度值与准确值存在一定偏差, 这导致在利用 SVR法选择优秀个体进化生成目标用例时的准确性有所降低, 故在
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这几个指标上 SVR法略逊于插桩法.
(2) 执行时间方面. 随着程序规模的扩大, 插桩法在时间方面的消耗呈现显著上升趋势, 而 SVR法表现出相对

平缓的增长, 且 SVR 法在大部分程序上优于插桩法. 在规模较小的程序 PG1 和 PG2 上, 插桩法的执行时间少于

SVR法, 分别减少 3.96 s和 0.36 s. 但随着程序规模及其复杂度的增加, SVR法在执行时间方面越显优势. 例如, 在
稍大程序 PG3、PG4与 PG5上, SVR法比插桩法分别节约了 8.90 s、9.49 s与 12.51 s; 在规模最大的程序 PG8上
更是节约了 152.04 s. 可见, SVR法对于规模相对较大的程序更能体现执行时间方面的优势.
  

表 7　插桩法、SVR法与本文方法对程序测试的结果对比
 

待测程序 评价指标 插桩法 SVR法 本文方法 待测程序 评价指标 插桩法 SVR法 本文方法

PG1

覆盖率 (%) 77 73 100

PG6

覆盖率 (%) 75 70 100
进化代数总量 43 252 46 017 636 进化代数总量 292 493 310 422 74 652
平均进化代数 314.47 384.59 5.48 平均进化代数 291.28 365.83 52.26
执行时间 (s) 53.38 57.34 57.85 执行时间 (s) 178.50 152.28 136.81

PG2

覆盖率 (%) 60 59 100

PG7

覆盖率 (%) 82 79 100
进化代数总量 75 540 76 914 2 308 进化代数总量 285 126 295 038 86 326
平均进化代数 457.07 473.41 6.86 平均进化代数 248.74 264.87 61.13
执行时间 (s) 65.02 65.38 66.90 执行时间 (s) 301.20 248.05 263.01

PG3

覆盖率 (%) 58 51 100

PG8

覆盖率 (%) 65 56 98
进化代数总量 64 814 69 837 4 392 进化代数总量 615 621 657 962 186 892
平均进化代数 612.43 683.60 27.31 平均进化代数 498.05 530.07 85.13
执行时间 (s) 77.05 68.15 63.17 执行时间 (s) 831.28 679.24 692.53

PG4

覆盖率 (%) 73 65 100

PG9

覆盖率 (%) 67 62 100
进化代数总量 128 470 138 039 21 095 进化代数总量 175 379 188 325 28 904
平均进化代数 335.32 427.22 35.56 平均进化代数 430.67 473.84 23.88
执行时间 (s) 62.41 52.92 47.92 执行时间 (s) 66.84 59.72 61.24

PG5

覆盖率 (%) 64 63 100

PG10

覆盖率 (%) 71 67 97
进化代数总量 215 473 212 562 20 358 进化代数总量 190 217 218 083 43 652
平均进化代数 425.38 437.21 25.14 平均进化代数 357.07 410.32 59.98
执行时间 (s) 85.10 72.59 65.62 执行时间 (s) 129.30 112.73 127.82

 

根据第 5.4.1 节与第 5.4.2 节实验可知, 约简法在覆盖率等方面具有优势, 但在执行时间方面欠佳; SVR 预测

法在执行时间这一指标上表现较优, 而在多路径的覆盖率上效果欠佳. 这两种方法分别在种群质量与执行时间方

面各具优势, 且互为补充. 第 5.4.3节对这两种方法结合的可行性展开实验分析.
 5.4.3    消融实验

为验证结合 K-means用例约简法与 SVR模型预测法的有效性, 及其对测试效率方面的综合影响, 下面设计消

融实验分析.
针对问题 3中结合 K-means聚类与 SVR模型对测试效率的影响, 将本文方法与插桩法对比, 由第 5.4.2节的

表 7可得如下几点结论.
(1) 覆盖率、进化代数方面. 在简单程序 PG2与路径冗余较高程序 PG3上, 本文方法相较于插桩法的覆盖率

提升较为明显, 分别提高 40% 和 42%; 对于规模较大程序 PG7 以及安全需求严格且目标路径数较多的安全型关

键系统 PG8, 本文方法仍可有较大提升, 分别提高 18%和 33%. 进化代数方面, 本文方法也有明显改善.
(2) 执行时间方面. 除较小程序 PG1 和 PG2 外, 本文方法在其他程序上均少于插桩法, 尤其是在较大规模程

序 PG8上, 可节约更多的执行时间, 减少达 138.75 s. 由此可见, 本文方法在执行时间方面也具有优势.
综上所述, 通过 K-means聚类获取约简集, 并利用 SVR模型评估个体, 可从种群质量与测试时间方面提高测

试效率.
针对问题 3中本文方法对测试效率的提升程度, 结合表 6、表 7的实验结果, 对比插桩法、约简法、SVR法

20  软件学报  ****年第**卷第**期



以及本文方法在不同评价指标上的数值差异, 以百分比形式表示, 如表 8所示. 注意: 为说明结合 K-means与 SVR
的有效性, 这里选取插桩法、约简法以及 SVR法作为基准方法与对比方法. 另外, 覆盖率差值是指其他方法的覆

盖率与基准方法的差值; 进化代数总量比 (或平均进化代数比/执行时间比)是指基准方法的进化代数总量 (或平均

进化代数/执行时间)与其他方法的进化代数总量 (或平均进化代数/执行时间)差值占基准方法的比例.
 
 

表 8　不同方法的效率对比 (%)
 

待测程序 评价指标
与插桩法对比 与约简法对比 与SVR法对比

约简法 SVR法 本文方法 SVR法 本文方法 本文方法

PG1

覆盖率差值 11 −4 23 −15 12 27
进化代数总量比 16.69 −6.39 98.76 −27.70 98.51 98.84
平均进化代数比 38.60 −22.30 98.26 −99.19 97.16 98.58
执行时间比 9.35 −7.42 −8.37 −18.50 −19.55 −0.89

PG2

覆盖率差值 33 −1 40 −34 7 41
进化代数总量比 39.94 −1.82 96.94 −69.53 94.91 97.00
平均进化代数比 73.51 −3.57 98.50 −290.92 94.34 98.55
执行时间比 −6.80 −0.55 −2.89 5.85 3.66 −2.32

PG3

覆盖率差值 17 −7 42 −24 25 49
进化代数总量比 27.44 −7.75 93.22 −48.49 90.66 93.71
平均进化代数比 42.94 −11.62 95.54 −95.63 92.18 96.00
执行时间比 −3.13 11.55 18.01 14.23 20.50 7.31

PG4

覆盖率差值 12 −8 27 −20 15 35
进化代数总量比 25.93 −7.45 83.58 −45.06 77.83 84.72
平均进化代数比 29.05 −27.41 89.40 −79.58 85.05 91.68
执行时间比 −11.38 15.21 23.22 23.87 31.06 9.45

PG5

覆盖率差值 12 −1 36 −13 24 37
进化代数总量比 15.12 1.35 90.55 −16.23 88.87 90.42
平均进化代数比 11.71 −2.78 94.09 −16.42 93.31 94.25
执行时间比 −4.88 14.70 22.89 18.67 26.48 9.60

PG6

覆盖率差值 16 −5 25 −21 9 30
进化代数总量比 43.68 −6.13 74.48 −88.45 54.68 75.95
平均进化代数比 53.78 −25.59 82.06 −171.75 61.18 85.71
执行时间比 −2.94 14.69 23.36 17.13 25.55 10.16

PG7

覆盖率差值 11 −3 18 −14 7 21
进化代数总量比 20.44 −3.48 69.72 −30.06 61.94 70.74
平均进化代数比 33.15 −6.48 75.42 −59.29 63.24 76.92
执行时间比 −7.94 17.65 12.68 23.71 19.10 −6.03

PG8

覆盖率差值 14 −9 33 −23 19 42
进化代数总量比 22.13 −6.88 69.64 −37.24 61.02 71.60
平均进化代数比 40.90 −6.43 82.91 −80.07 71.08 83.94
执行时间比 −1.47 18.29 16.69 19.47 17.90 −1.96

PG9

覆盖率差值 5 −5 33 −10 28 38
进化代数总量比 3.63 −7.38 83.52 −11.43 82.90 84.65
平均进化代数比 10.40 −10.02 94.46 −22.79 93.81 94.96
执行时间比 −3.11 10.65 8.38 13.35 11.14 −2.55

PG10

覆盖率差值 13 −4 26 −17 13 30
进化代数总量比 28.33 −14.65 77.05 −59.97 67.98 79.98
平均进化代数比 28.41 −14.91 83.20 −60.52 76.54 85.38
执行时间比 −5.09 12.82 1.14 17.04 5.93 −13.39

本文方法的实验结果用粗体表示.
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根据表 8, 可得如下几点结论.
(1) 与插桩法相比, 在覆盖率方面, 约简法与本文方法均有提高, SVR法略有降低. 其中, 约简法最少提升 5%,

最多提升达 33%; 本文方法最少提升 18%, 最多提升 42%; SVR法最多降低 9%. 在进化代数总量、平均进化代数

方面, 约简法与本文方法均有减少, 这说明采用约简集可尽早地生成目标测试用例; SVR 法有所增加, 这是由于

SVR模型预测个体适应度存在偏差, 并未对初始种群进行择优筛选. 执行时间方面, SVR法与本文方法具有明显

优势, 而约简法耗时略多.
(2) 与约简法相比, SVR法的优势体现在执行时间方面, 最少减少 5.85%, 最多可达 23.87%, 而本文方法在各

评价指标下均最优 (较小程序 PG1除外).
(3) 与 SVR法相比, 本文方法可在较少的进化代数内即可生成目标测试用例. 执行时间方面, 本文方法在部分

被测程序上略高于 SVR法, 相差不大, 主要是因为 SVR法仅是本文方法的一部分, 而本文方法无法避免初始测试

用例约简集筛选以及 SVR模型训练的时间, 从而导致测试所需时间稍有提高.
从以上消融实验的结果可看出, 仅采用 K-means聚类约简法与仅采用 SVR法启发生成测试用例, 它们只从某

些方面改善测试生成进程, 而本文方法将两者结合, 对于规模较大、路径冗余性高或数量较多等的工业系统, 以及

安全关键型系统, 可在覆盖率、进化代数、执行时间方面综合提高测试效率.
 5.4.4    对比实验

为进一步评估问题 3中结合 K-means与 SVR的测试用例生成效率, 下面将本文方法与其他相关典型方法展

开对比, 包括关键点概率 [15]、DSGEO[13]、HSADE[14]、DNTSA[3]和 MfO-PC[1]. 这些方法均聚焦于多路径用例生

成, 研究目标与本文相近, 因而可作为代表性的对比方法.
接下来, 将本文方法与上述经典的测试用例生成方法进行对比. 特别地, 为更清晰地呈现本文方法相较于这些

对比方法的优越性, 我们延伸第 5.2节中提及的“覆盖率”这一指标, 设计“覆盖率差值” (本文方法与对比方法的覆

盖率之差)指标. 各方法在不同程序上的多指标实验结果如表 9所示.
  

表 9　6种方法在不同程序上的多指标对比
 

评价指标
PG9 PG11 PG2 PG4 PG14

关键点概率[15] 本文方法 DSGEO[13]
本文方法 HSADE[14]

本文方法 DNTSA[3]
本文方法 MfO-PC[1]

本文方法

目标路径数 30 12 398 20 4 5 15 20 2 2
覆盖率 (%) 100 100 95 100 100 100 100 100 100 100

平均进化代数 6 292 23.88 － 63.76 23.88 － 91.68 － 68.12
覆盖率差值 (%) 0 5 0 0 0

评价指标
PG10 PG12 PG13 PG15 PG15

关键点概率[15] 本文方法 DSGEO[13]
本文方法 HSADE[14]

本文方法 DNTSA[3]
本文方法 MfO-PC[1]

本文方法

目标路径数 20 20 2 537 30 33 33 9 9 9 9
覆盖率 (%) 100 97 70 95 100 100 66.67 78 54.5 78

平均进化代数 5 947 59.98 － 112.38 － 157.45 － 379.65 － 379.65
覆盖率差值(%) −3 25 0 11.33 23.5
注: ① 因PG9–PG15为非Python代码程序, 为便于本文方法与其他经典方法进行比较, 此处选取它们的部分程序统一转换成
Python代码进行实验; ② 表中数据均来源于各文献的原始数据, 由于不同的对比方法选择实验对象不同, 故存在部分程序缺少实
验数据的情况
 

由表 9可知, 相较于其他几种方法, 本文方法总体上占优, 分析如下.
(1) 对比关键点概率、DNTSA以及MfO-PC这 3种基于搜索的测试用例生成方法, 本文方法的覆盖率在大部

分程序上有显著提升. 例如, 在程序 PG15 (资源管理系统)上最少提升 11.33%, 最多提升 23.5%. 在程序 PG10 (词
法分析器)上, 本文方法虽稍逊于关键点概率法, 但在平均进化代数上, 仅需 59.98代, 远少于关键点概率法的 5 947
代. 可见, 本文方法优势比较明显, 这是因为在初始种群阶段经过种群多样性的筛选, 保证携带优秀基因尽早地被

选中.
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(2) 对比 DSGEO和 HSADE这两种采用代理模型生成测试用例的方法, 本文方法在覆盖率上表现较好. 相较

于 DSGEO, 所提方法的覆盖率有所提高, 例如在 PG11上提升 5%, 在 PG12上提升 25%. 在 PG2和 PG13上, 我们

的覆盖率与 HSADE方法均达到 100%. 可见, 相较于代理模型的方法, 我们前期对测试用例进行聚类与排序, 不仅

有助于改善初始种群的质量, 还具备种群多样性, 提高了多目标路径的覆盖率, 且提出的 SVR适应度预测模型预

测误差较小, 降低了优秀用例的适应度预测结果偏差较大的风险.
从以上几种对比方法的结果可看出, 本文方法融合了 K-means聚类及 SVR模型具有一定优势. 一方面, 通过

K-means聚类降低初始用例的冗余性, 同时使其具备多样化, 提高优秀用例尽早被选中的概率; 另一方面, SVR模

型在保证多路径个体适应度预测结果准确性的同时, 大幅减少执行待测程序获取个体适应度的时间.
为进一步阐明本文采用的 K-means聚类策略与 SVR模型在时间复杂度上的优势, 我们选取较新的利用代理

模型生成测试用例的方法 DSGEO[13]和 HSADE[14]进行对比分析, 如表 10所示.
  

表 10　模型时间复杂度对比
 

对比项
DSGEO[13] HSADE[14]

本文方法

RBFN模型 GPR模型 RBFN模型 K-means策略 SVR模型

单模型 － O(N2D+N3) O(KND)+O(N2D)+O(N3) O(KND) O(N2)

多模型 M×(O(KND)+O(N2D)+O(N3)) － －

多目标路径 Numtar×M×ORBFN(·) Numtar×((OGPR(·)+ORBFN(·)) <<OK-means(·)+Numtar×OSVR(·)

整体复杂度 O(N3) O(N3) O(N2)
 

由表 10可知, 相较于 DSGEO和 HSADE这两种方法, 我们采用的 K-means策略与 SVR模型更具轻量级, 时
间复杂度较低.

(1) 就模型而言, DSGEO方法采用的径向基函数神经网络模型 (RBFN)的时间复杂度为 O(KND+N2D+N3), 分
别为利用 K-means选择神经元中心向量的时间复杂度 O(KND), 计算核函数的时间复杂度 O(N2D), 以及求解模型

权重的时间复杂度 O(N3), 其中 K 为聚类中心数, N 为训练样本数 (即参与训练的测试用例数), D 为测试用例的维

度. HSADE方法结合了高斯过程回归模型 (GPR)与 RBFN模型, 其中 GPR的时间复杂度为训练用例构成的协方

差矩阵以及求解该逆矩阵的时间复杂度之和 O(N2D+N3). 本文模型的时间复杂度为 K-means聚类的复杂度 O(KND)
与 SVR求解优化目标函数的时间复杂度 O(N2)之和. 与 DSGEO和 HSADE方法相比, 我们方法采用的模型时间

复杂度较低. 由此可知, 各方法使用模型的时间复杂度关系为 HSADE＞DSGEO＞本文方法.
(2) 本文方法与 HSADE方法均采用单模型进行个体适应度预测, 而 DSGEO方法采用多模型集成的代理模型

预测个体适应度, 时间复杂度更高, 为 M×(O(KND+N2D+N3)), 其中 M 为模型的个数. 另外, 本文构建的模型可应用

于多目标路径生成中, 模型的时间复杂度远小于 OK-means(·)+Numtar×OSVR(·), 其中 Numtar 为目标路径数; 而 DSGEO
方法与 HSADE方法的代理模型仅针对单目标路径进行个体适应度预测, 若用于多目标路径覆盖中, 它们的模型

时间复杂度分别为 Numtar×M×ORBFN(·)和 Numtar×(OGPR(·)+ORBFN(·)), 这显著高于本文方法. 故本文模型在多路径

覆盖用例生成中时间复杂度更低. 此外, 本文方法采用的 SVR模型在小样本数据集上的准确性优于 GPR与 RBFN
两类模型, 泛化性更高.

综上分析, 在多路径覆盖的测试用例生成中, 相比于其他代理模型, 利用 K-means聚类策略与 SVR模型在时

间复杂度方面更占优.

 5.5   回答问题

通过分析实验结果, 对第 5.1节中提出的几个问题做如下回答.
问题 1: 测试用例约简集能否改善初始种群质量, 推进遗传进化过程, 提高多目标路径测试用例生成效率?
由第 5.4.1节图 2可知, 在被测的 10个程序上, 约简集影响目标路径的覆盖率, 将其融入遗传算法中可使得大

部分待测程序的覆盖率达 75%以上. 结合图 2、图 3和表 3、表 4可知, 合适的聚类簇数可在提高覆盖率的同时,
尽量减少测试时间消耗. 此外, 由表 6 可知, 与插桩法相比, 约简法在大部分指标上具有明显改善. 例如, 虽然在
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PG2、PG3、PG6的执行时间上稍多于插桩法, 但在覆盖率上至少可提升 12%. 综合来看, 约简集可提高对目标用

例生成效率.
问题 2: (a) SVR模型模拟个体适应度的准确性如何? (b) 利用 SVR模型能否提高测试效率?
由第 5.4.2 节图 4 可知, SVR 模型模拟用例适应度的效果良好, 在功能较单一程序上适应度差值百分比在

[−11%, 14%]范围内, 功能较复杂程序上适应度差值百分比在 [−8%, 10%]范围内. 此外, 由表 7可知, 在路径覆盖

率及平均进化代数方面, 利用 SVR模型预测个体适应度值的 SVR法与插桩法均相差较小. 在时间方面, 随着程序

规模及其复杂度增加, SVR法的执行时间显著少于插桩法, 在规模较大程序上的时间减少可达 18.29%. 由于 SVR
模型模拟个体适应度的时间与测试用例本身密切相关, 不会随着程序规模增加而有太大变化, 故 SVR法随程序规

模的增加, 其时间优势越明显.
问题 3: 结合 K-means 与 SVR 模型的测试用例约简与生成方法 (本文方法) 是否可提高测试效率? 其效率可

提高到何种程度?
由第 5.4.3节表 8可知, 仅采用 K-means的约简法在覆盖率、进化代数方面效果较优, 但在执行时间方面略微

耗时, 需多花费约 1.47%–11.38%. 仅采用 SVR模型 (SVR法)在覆盖率、进化代数方面效果欠佳, 但在执行时间

方面优势明显, 可减少约 10.65%–18.29%. 在规模较大、目标路径数量较多的工业系统, 或安全需求较高的安全关

键型系统上, 本文方法将两者结合, 覆盖率可提高约 9%–49%, 进化代数总量降低约 61.02%–98.84%, 平均进化代

数降低约 75.42%–98.58%, 执行时间减少约 1.14%–23.36%. 由第 5.4.4节表 9也可看出, 相较于其他测试方法, 本
文方法在多路径覆盖测试用例生成方面有所改进, 其中在覆盖率上可提高约 10%, 最多可达 25%. 表 10也清晰地

表明, 相较于其他方法采用的模型, 本文构建的模型在时间复杂度上占优. 由此可见, 结合 K-means与 SVR模型可

有效提高测试用例生成效率.

 6   总结与下一步工作

本文提出一种结合 K-means聚类与 SVR模型的测试用例约简与生成策略, 提高测试效率, 主要贡献如下.
1) 利用 K-means生成测试用例约简集的方法可减少冗余数据的适应度计算次数. 通过 K-means方法对初始

测试用例集聚类, 根据个体潜能以及目标路径覆盖难易程度获取约简集, 并以此作为遗传进化的初始种群. 该方法

可减少相似测试用例, 提高初始种群质量, 让优秀个体尽早地参与进化生成, 提高测试效率.
2) 通过 SVR模型预测个体适应度的方法可有效减少测试执行时间. 训练可预测个体适应度的 SVR模型, 并

根据其预测结果的准确性更新模型. 利用该模型评估遗传进化中种群个体的适应度, 并对部分个体进行插桩验证.
该模型在保证预测结果相对准确的前提下, 尽可能减少执行插桩程序的次数, 这可节约较多测试时间.

3) 结合 K-means 聚类与 SVR 模型可从覆盖率、进化代数、执行时间等方面共同提高用例生成效率. 基于

K-means约简方法在覆盖率、进化代数方面效果较好, 在执行时间方面略微耗时; 而 SVR多路径个体适应度预测

模型可明显缩减测试时间, 这恰好弥补了前期构建约简集带来的部分时间消耗. 两种方法相辅相成, 共同提高测试

效率. 所提方法能有效地适用于程序规模较大、目标路径较难覆盖, 以及路径数量较多的工业程序测试场景. 在测

试资源受限的环境中 (如信息验证与管理系统), 或安全需求较高而对测试时间限制不太严格的系统 (如航海系

统)等, 结合 K-means约简集与 SVR适应度预测模型能够在较少的进化代数与合理的执行时间内, 提升测试效率.
下一步工作中, 拟构建测试用例与目标路径关系的聚类模型, 并在种群进化中自适应调整聚类簇, 提高用例约

简集的质量以及优秀个体在演化中的优先选择概率. 此外, 考虑将自适应策略与具备动态调整机制的强化学习模

型相结合, 学习测试用例与其适应度间的关系, 以适应动态变化的测试环境, 进一步拓宽约简集与适应度预测模型

的测试应用场景.
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