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A S bfe, X —S R A — R 5| MM R RSt A Gb, Ao KBS AR 4idsze Ll b,
NRBT ENGREL 84 L LA NN L RGO T Bk, BitfTERAERL, 2ANETELZARK
ok, RIE. FFRILKREMEFA. e, NERBETRAN T KAEZ R4 A AEIE IR, FRZT H
KR KA R
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Survey on Key Technologies for Large Language Model Pre-training Systems

GAO Yan-Jie', CHEN Yue-Guo>

'(School of Information, Renmin University of China, Beijing 100872, China)
*(Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), Beijing 100872, China)

Abstract: In the era of artificial intelligence, efficiently completing the pre-training of large language models to meet requirements for
scalability, performance, and stability presents a critical challenge. These systems leverage accelerators and high-speed network interfaces
to execute parallel tensor computations and communications, significantly enhancing training efficiency. However, these advancements
bring a series of unresolved system design challenges. Based on an analysis of the pre-training process, this study first outlines the training
procedures and workload characteristics of large language models. It then reviews system technologies from the perspectives of scalability,
performance, and reliability, covering their classifications, underlying principles, current research progress, and key challenges. Finally, this
study provides an in-depth analysis of the broader challenges facing large language model pre-training systems and discusses potential
directions for future development.

Key words: artificial intelligence; large language model (LLM); large language model pre-training system

BE & KBS A (large language model, LLM) AR 2R, B AU H 12 (10B) 43 K EIT12 (100B)
G, IXEERRTYBENS SCRF 2 LS5, WIS RE  FEAE . HLASRI AR /7 45 . OpenAl ChatGPT. Google
Bard, HEX O FHMARX —WIRKKIE S EARH, HH P 8 e R g <. SR, B B HUSA H 4
FIPREE K, B BIZR R bR RE . R AR e P25 DT T (R [ 2800 (2. OR1E S B s Sk 1

« FERIH: E XK EHIRBARE S (62272466, U24A20233); H E RS H 506 BRHHE M TE R F &
SRR T 2024-03-04; A& LT [H]: 2024-08-02; SR A I []: 2025-03-25; jos 7Lk Hi AR [1]: 2025-10-15
CNKI 4% 8 & 5} f): 2025-10-16
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KIS HART =80T H R K, 5SS GPU BURNLEZ GPU N O RITHEE A Z A B RF 8. X551
G SRR AN R G v M LA 2 S T RS B A SR I 7 R . EAR Y 45 77 T, KGR ALZ T LA Trans-
former 'A% Co4ER. 0, GPTAT BERTU S A iof 3 B %2 2 Transformer #%, HE5h RS AE AL BT S 30520
Ak 3+ Transformer 4544 S F -1 1) S 3r . FEVR AR AN S2 s B 3 5 T, IR ) MBS e R A T W24k, i
25, IR PRI AR T B S LA 2% S R 2 I 28 QU4 R, IR R 2SS M 5 4 M E. s, x—
e g LI 1) LI FH () K08 5 MR TN R G5 M A O, FLAS RUELEE: 1) Henighan 26 A WG H, BUAL S5 Ml R, 8
SHUFN SRR 5 S PRI FR; 2) B 2R /i TR (BOR 23R, BIRHFEE K (R EE . 3
+, BE& _LJi1 GPU); 3) FE SR R, & TGS AFR H . PATH R, DUR IS R (R SRS A1 g o 25 1] 7.

H a0, 72 K15 5 M KRG A 2 R ME LR, ASCBIEN @R KE SR R S A
FEmiy 02, B DUIR B A SR A, 0t AR Sk R R EAT R B2 & S A R AN A0 IR B B ) B A S5 I 2R
& HOON KB SR TN GEAR K RFEEAT 7528, AR TR RS, FRDHEY B MR RIS RS
Bt ) R B OBEER TT 5 AR RIE SR R G RARR K R AT R E.

1 KESHEENERITE

1.1 KIESHEAEN

KENE FRHRTE 2 /MU R I T BRI 7, U RAEE T2 S Tl il R R I 6, Ree AT S 22 1)
R4, AT EIE. iR RoRMEE B, 75 K0E 5 B 2 3R, Bl ChatGPT. Bard FISC.0
— IR T R H AR S, SEIL T 5 E ARSI, RE R 10 R e B RIS RIE B AL AL
PERETR 25 T HAL O Y —IE T E B VA 1 22 2 i B Transformer. 1B R 1 S5 78 KM SC AT R EJEAT I Z5, B
Ja R ST, A NG, A N iy, RE NG BRI LEEREAEM, (5l TS5
TR, %o 873 AN HE A5 it P 2 SR Al s, TR H BT 30 m MR LG B % N R R e BN 2R ). AR
Ai IR E S A (0 BLOOMP!, LLaMA"“AI Llama 2 #EPERE B 5 GPT-3 &5 PR AU IR, (H X Lo i A
H R LU AR IR 7= i 20K E S AR AL, 540 ChatGPT. Bard 1300 — 5 48, X A 5L ORIE S AL
TR A TR AR, J7 R I 1A A, AT B35 58 7 T HomT P 22 4 k.

R 1 Fios, TATRGE TR EA RFYERE S AL, HIBR T 5T A R MRAR. it 5t T AU
EHCE, AN B (10 12), TRINZREEE A (W9 22 LAFRIE A AL, A8 B ATERE A B, I ZRAE L AR I 25 [a).

F 1 BAREMERKE SR AL

et WEHE (B) TR EHE R AR YERTEESs VERETENCS)
GPT-3™ 175 300B frid — -
BLOOM"™! 176 366B Frid 384 A100-80G 105
LLaMA™M 65 14T F3ic 2048 A100-80G 21
Llama 21" 70 2T #rid A100-80G 35.8
GPT-NeoX-20B™ 20 825 GB iE K} 96 A100-40G -
orT? 175 180B fxic 992 A100-80G -
GLM-130B!"" 130 400B frid 786 A100-40G 60
Gopher''! 280 300B #rid - -
LaMDA!M 137 768B Frid 1024 TPU-v3 57.7
GLaM!™! 1200 280B Fric 1024 TPU-v4 23.9
PaLM™ 540 780B Fric 6144 TPU-v4 -
PaLM 21" - 3.6T Frid TPU-v4 -
PanGu-o "% 13 1.1 TB &8 2048 Ascend 910 —
WeLM! 10 300B Frid 128 A100-40G 24
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R BARRENESHEERL (5

A WEHE (B) TR R A RS I GRAEA AR YIGRATA] ()
Flan-PaLM"® 540 - 512 TPU-v4 1.5
MPT-7BM"! 7 1T Frid - —

T — ORI A R E R

MFE T A, KBS SHEMN 10 CHBITLEAE, IAEIREHBES T GB & TB Z[8); JIZaE
5 AR B0 N BCA B b TG HOIE S5 AN, I ZR [R] )25 B2 LR 2 TUAN A . ke JE R AR RIS . B304l R B8
R, NRIE SR RGBT R T E AP, Ma 28 N\ PO R B 7 s v RETH ML s A 25 T AL
ZHINGRERIA 5, RASWT T =BT RS . BARAF0E 7 58 SRS B B AT I i Bk sk, JE42 7 AH B
IR T5 0. AR SO HE— 0 00 W KB S AR B I SRR AR, JF B SaT IR KO8 S BT R G MY . MEReAn T
SN RIS,

12 KESEEIGERE

KB FHB R T R TR L: TR 2 S iR S B 4R v, BARSR B, ISR EE 3 By NI BR S
#EH (masked language model, MLM) A1 H [A] 415 5 #i% (autoregressive language model, ALM) B3, FRAIKIES
R 2 R H B BB AT I 2k,

MLM 7t BERT R 5 S AR AY I ) vz A . 3 202 BE AL i N5 51 R i — 38 o0 1ai0, i B e
FERR A IMASK] b, B D) 75 38 3k b T 32 L At 3] Y10 R JO00 G A A S8 i P P9 2%, X L) . 2 BT Sl
273X, 115 BERT REf8 F i BRI 5 B R SCZ AR &

GPT RFIBLAR A B B E T E# AT ISR, & TN 51 o 5 — AN AL 04 4105510 o B S A A
g, A RO T —ANAVE BT, GPT A& —Fhd A ZE 305 5T A il I R 2, Ao B P R VA ARt FE 2 ) |
TAFR. XM JEVAMING TR, 15 GPT MUBE MG A U AR, 162 & 50K I RE 7), i 2 AT
25 Ak A B 1A S0 o) R A 2.

B GPT-3 % H [BIVARE A HAS Sl Mtk e, AT KIS S8R 2 R A B |7 T U 4. X — Il 25
T FE AT R N TEF AN SR b, Gl e M T — AR bR 1 1 TR ZE R A Y. ARz FR v, IR B
NP FUANAR B FR 2R () BRI ZRAR, SR8 RN N — AT TR AR ), BRI I 2 ) e A T2 I B 58 &,
AN AL T e

KB 5 B B I 25 B AR AT ARG T A — N2 A ) JE, 45 58 — AN SUAFR A = [, T (TR TA
FRiC (token)), [ [F1 U= 15 35 A5 280 38 3 TR0 5 47 P 0N 78 LR SO SR T IR . BB TE I 2o AR podid 2 >
fA145 TR AE O BN SCERAE T IIRREE 700, TS TR0 T — AN B HERA 2. P,y (o)) R0 A ) 2%
(41 RNN 8Y, Transformer) £ s HI 1 F SCRIR, 1 e (x) T x FIHR.

r Lo exp(he(Xi) e(x)
1 = 1 t1X<t) = 1 :
m(.;:lX 0gp, (x) ; og Py (x,x,) ; 0g Zexp(l’le(xl:r—l)re(x’))

7

B REHRE ROR T KIE S A A I Zhid A2 75 45 e VI SR B R AU (15 0, IR I8 B Sl sk BHE 1k AT 43 1]
(tokenize), ZRJ5 3T IX HEFRICHEAT R (embedding) AL B IR AT, Be, 1B 5 AT a1 45, AL 75 AR SR
2 WA, DUIZ D AT 2% bR . 1A I FE BT TR BN TR GPU B8 FE R T8 84 R SRR B . eI
GIERUG, TEAERS HNZRRNASHE EX R HEAT VPG PP A 2 i SRR (perplexity). 7RI
BLEU %548 4%, JEVPABEAYLE 22 otk . AR VE S5 00 W57 R, _ER BN v ARy — I 2R s i, B, Jd
TG BT PRI R R B ) R, B TN OB S RO B A S e BRI OB TR IS IV AL R A SRS AT
etk HIFUE N —50 I ZR et Wb IE R, BB ZE VT Aok B FUH AR, BN R T R RPaR R B H , IR 2
Z A IR AR R
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3

B KRS BRI 2R

0B 1 PR, INERRURE R BT A2 9 AR LA B 8 5, AR A B A7 2 B A SRE OB E A 205K, N — Nt
#LIX. Bilhn, GPT-3 175B /] 17— M 3.2M MRic it . 58, X A Bl dE A7 AL B RN AR B, Ky
ANk BAOR. RE, KRN th 2 2 Transformer #4 B AR RY b A7 1152 76 58 RS b % 2 R 0 1m0 11550
AR % bR BOHEAT S ) A 5, TH 558 AN BLEARN T 40 R (OB L. fi ), 3 o S B of JEE R A PR A I, S8 Bl — DB
St ZRIEAUG, B BRPEREIL B HUY, I 2R R I 58 AR

K 2 fos 17— AT RE, I TE 3 2 GPT BRSO RE. B P 1Y s Transformer JZ, NI
N2 A HROR B . 5, PR K T HE R RV B8 0 )2 Transformer 2 4% B o b FX) 9 5 A1 87 Sk i £ FROIUFP A I
AT, M se A R

FEAE— YCGEARHIHT ) A% 520 R eh, 2B Bt AR e S B B, 452k s O SRR 22 ), L S [ A #8 T SRRh
FE, I me A EHIE 24 B [ A R s A Al AT B ) B 2 S . SN T B R B P e SR
BRI, WAT BLR S AT A A A AR, — ORI, R RS AT — i e SO — N R 3 BoRBR T, A
HRREHE 3 ML EE 1SS (OB 1) FIUITA B ASRIC (‘GPT A27), FFH R —Maid (B E). SR
e IF RTINS 1), 75 B dme /MU R R K, IR B B L A S0 S A L A A

)
I N | 1

GPT f& GPT B E GPT 215 & i
LA k2 L3
[ LayerNorm ] LayerNorm
. J
T ]
LN
2 KBS —AME R AT R R B 3 Transformer #7445 44

3 KT S AR 45118 B %) Transformer 2 HES 11 i, FOAZ O B F 550 MEIRVE A R M AR 3. 7E40
ITIEAR R, KR S B S NIRRT KR RHERE IS 5, 190, 38 R R aei s 4

JR UG ) Transformer #5834 FH T 4 i 25 A1 AT 2% HE S 10 K Transformer J2, 10 GPT 14244 W g — A~ —
HIfFRIS 28 ZHEAR k. B 3 fBoR 748 GPT Hfii ) — > Transformer JZ. 7£ 41 % Transformer JZ 194 Wi#AE i3
77 (attention) JZ /& [X ) Transformer 5 HARAR T E M (1) B8R 4. W ERKRE, R HEEEE T EE L
[RIASER, 37 5 R RN A2 B 8 D& B A AR L. VEE I B O A R h:

S = QK", P = Softmax(§) e RV, 0 = PV e R™,
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B b N Tk e I A SR R TR Y 3 AN, BRI M & Q (query). #EE K (key) FIEME V
(value). FoH1 O, K,V e RM, N T HIK L, d 211 7L M4EfE. @i XN, tHE Al 0 e R IHHEE
WS ITE B SR, B8 S = 0K e RV SRGXT S B Sofimax #:4F, 153 P = Softmax(S) e RV, & Ja i P 5
VAT AR, AR O = PV e RY. B TR IESN, 22044 (multilayer perceptron, MLP) /& 5 — AN E B
gER, o, 2R )2 (linear) JEE BUEEHRE W XTI N TR & T TR, P fiH O:

O=1W.

HAH)Z, a1)ZV3—14k (layer normalization). ¥7G A%l GELU. 5% %1% #% (residual connection, FH 4 Add) %%,
SGERRTEZE . 7E568 3.3.1 A AR Z e, B NRE Y — S B 12, I e s vy
A FgiAb UL ST BRSOk, 55— 340410 MLP JZ2, B8 £ 5 K R4 (MoE) 557 Wik T AL,

2 KIESHRERGRAMRIESR

KA F BTN GRAE L (1 58 B A i F o) LS I ZRRE I F k. P BRS8N 25,
AR 5 RBULA PR, B KT, R — MEAE RS . AR SIS R AN A2 R B, TP B T RE itk — A
PRI RGIR, BRI A SR B T 7 ZEHEAT K SR R RN, VIR R 2 i oo B o AR A3, Wil —2P
W UL BB BRI B, Bn e, m Rk R edk. BOEESER. RN, Oy T IR R R
T E RIS R E R, ARG E MM TR E R 0. AR BN B, 0 ETE 2 Rt 1) Bk 5
ik, DI RGO RIE SR ISR K. Bildn, ERERd N Be, 75 B0 e R ARl 70 5 2K, JF pkE e B2 AT
PRI HEAT 0 (B 9047 BERIFRAT KRB IFATSR). AT L4815 S Ial AL R BL, T B & R0 R A7 n ik 2%
PIA%, JR PG B Bdim SR A SR ARG P TH AL, DABRTHF SR, ah, fE IRt RE b, et T R i dal o3 9 231 2
ZA> GPU L, 7 ELE L@ E LA 58 AR RE . B BE sk B R 5 3R G, DR AR R A5 7 SOk T B A
PERE.

SR, K A I 2RI A DR AR o, B BB M RISAT B BCEAT IR AT A S TS0, MR
TE G — R GERALTT 5. 3T AT SO0 R F A AL SR R AE R G0 SCHE 7 T 5 SR 3 A, A SR 1 In & 4 Pios
R TEREZE, FBloe iR S B R R G etk YERE S Eadk, REUMEL 1T FCDUIR . il Ok e B AR 82
iR TT .

TR R 5
I I
B

PN
T2 R4

|
I I ] I I I ]

bRy Jﬁ;&b

YH 2 M- 4 He 4 A»'fjt EI=N =
po || B ] s | o || (| e e | e 06 |1 ] | 00
2z ||z || iz %;%é M| | i || BE P e | | i e
5 2|1
it 2| |r
= ||
| b

K4 RAE SRR TOIZR R G0 T 5 772K
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o
N

3 NG FRGMHRRBEXEAR

B2, AT R A AR K S BRI R, X 4 K ARG (GBS HALRGE. I 47 Ho 1%
RO REITEMINARG . BT RIIL RN ARG HAT AT, S BN, bR, A1
VRN R 2B T 2 R GCTES PR AR AT S Iy T 0 . O T 3T RGEROY TR, 480 O 92 77 1)
ARG R EILGIRRER, DUBRA L SMAL, AT, SAER . RIS, &
AR AT 0 A0 R AT 2 BRI 5 b 77 o TS S BB S T B % T T4y T, Tl SR
SR B TSP BT R B 5 3 1

KT B R TR I SRS . AT 0P AR . PO FE S AR ST, O 6
SRR AT B AT SRR R 25 . ARTT, OV 2 B I SRR T I 25 2 APk 5%k, 7T 1 2 ik
5 (GPU) A4 1 0 5285085, 1| R R i R 5 5 LR 125 7 2l £ 0, DS 26 90 11 P 77 0
(out of memory, OOM). FL ¥, LE Zeid B il 75 35 2 Vs (R (LML AR s IS 7 S A5 AIA7 K
5 A 1O TSRO AR, [N, B SR MUBLAO K, 2R 2% I A MR AR 2 0 o5 PRI A2 SR, SRR il S0k et
BORRER I H R 5 5 56 L, B B WU R A R RS R 6 LA, o7 DAt — 25 4R T B i 5 A
LR SR, 1T SR B L SERE e (T O R 3 5% LM, R0 T 5 e K R 1 4%
B, DURKE R G0 AT AP A4 S 2 U I 25 A %, % SUAED TP PR R AT 4 Py T O 5 47
W8 5 R 4.

31 KIESHEATIA R

Kt 2 B R G R TR T MM 4 NS BL 5 1 B BLLL TransformersC AR, FFA5 SR A 25 UM BB A
X ZEBCANI I, O T SCRF SR, R HIRERG — 2 3 G e 2 VR PR JRFE 2 STAE A2 Py Torch™, B 25 B ML
BUR RN K, 7658 2 BRI T SRR R RAT SME OME A2, 401 Horovod™ . GPipe™, PyTorch DDPI%%, &
(1SRRI AT UK B AT, BB AU R, S AT oM TR R, TN T 28 3 WL, 1)
Wi IR 4 I 47 S5, 263K — W EL H4BL T BA Megatron-LMES DeepSpeed™ R HIHERE, &N 125 aEH T % H
AT 7 ZE, b PR A R KV 25 B A AT T TR FEORAL. SR A IRAT 07 S TR B OBk B o, e et
FEN G132 R 0T 5 H FORE P31 MR, 75 58 R G5 T AL BB 0L, St itk — S A T X 1 0 IR AT oM R 1 5
K. 5 4 BB LA Alpa™ o3 (0 1 34T o 0 2 1 45 R GE 10 th 0. S 2 T R 5 RS T R R 46 b
RV 08 B L 9 A3 S0, FEIGURISE e 2. [0 5 R T FFUBKC T 2 B I 26 R GE ROt A e .
EJFUE, R AT AL GitHub 55 1 4 Commit IS 1 Jgife, K TRV At S arXiv 85 1 HRAS ) At

BEERII%A RS

Transformers LightSeq MindNLP
N ~ L Horovod FairScale Composer PyTorch FSDP
ST AR | S B
TR S PyTorch DDP Angel-PTM
TRAIAT SRR 2 R 45 Megatron-LM DeepSpeed  Colossal-Al MegaScale

Megatron-LLaMA  paqdleNLP

H AT R R I 25 R G Alpa MaxText nnScaler

2017 2018 2019 2020 2021 2022 2023 2024
K5 DRI 5 R T 2k A G 1) il P

BT, KZEIFATH R VA APT BHESE AT 2 M T 7E LRV 2 ST HESE PyTorch A1 TensorFlow™ 2 1. i
TR P 2 S HE SRR PR R A PR AT 5 A AN T AL B R SR PR, RIS X 1 R rhR S5 A 1 AT S A
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FHIE BRI A2 SCRFA D, S A9 T 38 s AT FH VR B2 2 ST ME R B4 55 v R I 4R A8 7, B 22 1 T ) DR AT
SHEMPHESA KRG R kA, 2, Bl PyTorch A5 i AHEZE S 32, 10, DeepSpeed,
Megatron-LM 2£ &4, Google 1 ITU5 T #1& T TensorFlow 2 b MaxText"". 48 0K K5 5 458 R SRR LT e
JEIRAIS R FRAT SRS AR 550 A LR 4 2K,

D iESHEA RS XERGH T B A2 0 GPT. BERT £ 50 G S RIS 1), 72 RS04k 5T, X ik
HE 22368 5 SCRF = RO THE A AZ S, HORZ 0 B s R R 2 25, B 3 SRR 4 B RGOS R IIRAT
.

Transformers [ H Hugging Face FFRH2 4t 7 H0T TS5 IE 5 A, 52 R AN RIS IUAE 55, A3 SOAR
P FNE A, Transformers $2 4t APL AU N HRE A X S Tyl R 8, HAE B ORISR £ Hd 7ROl 85 ER
BP0 Sk XL, [, 400 F &8 USRI 28 ) Python HEBLEL R 58 &7 1, 1E A T & B 2T 78 5246
Transformers 1243 &FATHI 3 MEE ST PE JAXPY. PyTorch Fl TensorFlow) 3457 4%, AT SEI T4 4E . B4
Z AV B TRAE R . 7E— /N E RGBS, AT AR AATE 53— A v Ik AT HE b

LightSeq"”” /& — /3T CUDA SZHLIHI ik R 5 A1 A 3845 A O I 4R 8 . &% 90 BERT GPT. Transformer
S RE S B B SO B R, SCRRLAR R B . SO U A T FUAE SR 5. iR EFI T CUDA B 77
cuBLAS %2 b, 345G 1 %115 Transformer BAY R F BT FERAL I B € LKL BREL. B T2 141, LightSeq
R T HARE B DI RE.

MindNLPP & 4 M 4 [ 3% T MindSpore HOFF I 5 B8 1%, 404 2 F 8 WLI¥) NLP L5, 41 LLaMA. GLM.
RWKV 25, B0 5 & 3 58 I8 47 s st ) e AN 1 2558 78 . MindNLP 42 254 Transformers #4511,
F32 5 MindSpore 53 SCARFFFEAY. TR SR AT L B A 4F, M1 5w SO R, {874 5 F I 451 2 itk T 2
HI R AE, 37 FF Trainer A1 Evaluator % [, J7 (AT I 25 5 14 .

2) B—IAT RIS IR R G XK RGN SRF— PR B 1 947 0%, 4141 Horovod. PyTorch DDP {32 #7 4 4f
FHAT, GPipe I L R /K L IHAT, PyTorch FSDPPYIIAY 2 KF FSDP Hei. i Fhsiz il 7 2 A 7E ML _E x4 e 347 5%
BEFEAT PR AL, 1 FE SR HAT T SEIUR M RE I B i oA R D E L S8 E N S

PyTorch DDP 7EfSRE T LI T 2 HEFE S 2 MR H47. 1E401T DDP AR T I, 2 B3 2 MR, oS
ASREFE B — N Hl ) DDP 52491, DDP | torch.distributed {3 A i 854 15 K 7] 5 B B A2 X . BT &,
DDP > model.parameters() H1 &S HEAEM — A B 3158050 T (autograd hook, Al T [ & #%). 24 THEBA LR,
TR, TS B E AR B BE B [P ERAE.

Horovod f&—/N S H¥ TensorFlow. PyTorch Z5HE 48 (40 A5 sUEHE FAT VI GRAEZSR, H i AHEZE L 5% (agnostic),
BIORGR5E BARKELR, H 9 #Fi8 1T RingAll-Reduce. 3K f il 438 15 &5 07 2inid )| 2o 7%

PyTorch FSDP 7 PyTorch 1.11 H & A, HI I3 T 7341 3R H4T (distributed data parallel, DDP) V|
i, AR A BB — AR, 1 RN A7 TTAR IR 2, FLAR B AL AR08 N B2 GPU, 1X 0 ik ST B K AU AR
TYI1Z5. FSDP J& — A R4 AR 8 34T, @ id 72 DDP MR 2 M4y F BRI S 40, PRAGEIRASFIRR B R S23, A
R BB R AR, 75240 F I $ 35 MATE T sl b AR $% DL B4 th. £ H FSDP @47 VI 4RI, 5 7E DDP W il T4E
AT ISR L, GPU A 5 F B /). T A5 A5 3d ik o Vi B 0K AR 2R B4t o R /N 9 1 4%, 7T DL SR BoRt — el g
DRARAY () I 2. R 0 B 5 8 3845 A, HLadad N BB AR Ak, B8 B e (S AT 5, A B T Ao 39 00 )38
{EFF4H.

Angel-PTMP & fy B S TT % 1 S0 #8354LL ZeRO . FSDP 32 P 7 (I BRI ZRAE 28 . 223 5 T 4h1 5 Sl
SR A B, PR RSB AEE A — R k. B SRR I A SSD A7 it HEAT Mk ) A Y
PR, HTITCBTE B LR R SSD /O s % 3.

FairScale®/2 i Meta JF & [— AN & 1%, B3 T m P A KA 25, BA PyTorch i3 R NS BI. 1% 1E I
W BT 3 AN AR E I PR BRI RE. 5L, B APLSRIA 5 THEMEAE A, T H P Ress R it 5
% FairScale fIfE. FIR, FairScale VB YL, STIFE M P BIUIZRIEH h Jo 48Rl & £ 1 FairScale AP, T4
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o
N\

Rt )5, FairScale 31 FSDP /E ¥ B KB M 4 I hB (B I B ik 5 ik, [FIn, ek B 7E RIS IR R 5t
FREHAT N GR IO BE T e, EAE SCRROE R . R A B D B RN SR I X L 1)) B8, FairScale Sy A P # it
7 REKIN R IE I TR, DOs A R 5 0 /K.

Composer” & i Mosaic MLP ¥ it 19— AN EE, T2 5 A T %% Mosaic ML [#¥] MPT 7B 1 MPT 30B #7%.
ZJFE LA PyTorch 2 b, 2 4E 7 — R AU J5 1%, F AT DLK B G B H AR ZRAE S, 8035 5 Composer Y1l %5
#%— [R187 FH LASRAS B A0 5T R4 5% Composer SCRE FSDP LASIZII i 38 (1) HAT 14, 30 S 457 0L s 2 o5 DA S TR A £t
BT B PE VIS, Ak, Composer $E4E T AU 4R I I SEE, So e P AE IR 1R BB N = A7 4t b R 3 45

3) MAFAT RSN RG. KR RALS T 2P 47 7 E. 511, Megatron-LM, DeepSpeed 7E K 5 B8 1|
G ZEE R TIREIAT ROKLIFATIIEIE FEAT 7T &, H HAE NVIDIA BN F1 S8 400 EPAT T 73R
FEARAL.

DeepSpeed & HH Microsoft & 1 —AN4E AESL, FI T IR AR 2 K08 S AL ZAESE e Zh F Il 25 KA
B, 41 Megatron-Turing NLG 530B'f1 BLOOM. DeepSpeed HIiHEER T ZeROM™, 3745 FSDP #2145, [FII,
ZeRO-Offload "' M4k 338 454E CPU Al GPU L HEAT I Z5AR 15 W B HE, A5 A28 B (I BR 1. h41, DeepSpeed it
Wil T ¥ R DeepSpeed-Chat, PAIE IR AT 5 1 3 HF, % L@ L 5 DeepSpeed RGBSk LK H A K
A5 E: 2] (RLHF) B,

Megatron-LM 52 H NVIDIA F R FIIZRHESE, B 753 GPT S5 K08 S A I ZRHESL. S HE S04 & Fh 4[]
&%} NVIDIA GPU ) T B A4k, Megatron-LM A% Co i3 i1 AR SRR Y 5K S AR HEAT o0 R, IR A e 2 A4
GPU &, DLARAL AR 3E BE AT A AA R FH 3 HSCREEAR AT SRS AT K IFATSE 2 Fh IR A7 SRR

Megatron-LLaMA™ i B EL R YR KA. N T J7 (85T LLaMA FIRERI ISR, F BRARKE: %208 o5 B AT 2Rk
A, B R E kA T A N AL E Megatron-LLaMA Y ZRHESE ) X HELL LT Megatron-LM #4#. Megatron-
LLaMA #24t 7 LLaMA BAR#ESEIL . = HsE S5t EIFAT R, R ZASCH TR, @ a) /- A& A1
TRAESIRE, H T INE I ZRRAE; b) (FHER) FHii, H T8 E 5 HuggingFace 4% 2 [A] ) F54; ) SCHF Hugging-
Face Transformers £ 1] Tokenizers B3,

Colossal-AT" M — AN Sy W 6 KA 43 A ) 5Pk A 1 B0+ MO HESE. ‘& 30 FF LLaMA . GPT-3. BERT,
PalLM %52 i Y (1) S I, iZAE 23R T — AL &, A BT R A AL )8, BRI R 1 R0R,
[ S RF 2 Fh AT SR M, R IHAT . TREIFAT . VUOKIATRFFIIRAT SR, X PR T i T e A AU 5 v
HEAT KRB GRIIR TR, BhAh, ZAESLIR R B T 5k B R, IRAHEEZ DRI EOR.

MegaScale! ™ & F 7 T Bk Eh T & 10 K18 5 BRI 25 R 4%, Aeism by JE 1) 1 738 Lk GPU #HT 4. i% &
SRR JRAT SR EIFAT  WAKIEAT RN B IR AT SRR, IE T ISR R 5 RS E P I BRI AT TN AT
MegaScale K4 7%, BB S RAZE. HESEENES. EF0MN. BORRKE R M2k 6
VRS TF B, SEEL T HE S RGN R W, Ak, MegaScale i & T2 TH, F- a4 w43 dr 5. 42T
fEIE 5y 2 T AEMBR IR 512 5 s 4E 4 5.

PaddleNLP™ 2 B BEWF 2 (1 35T WK FE 5 SIME 4L (I HE & BERU T R B4, SCRFEZ FBELE (0 NVIDIA
GPU. B XPU. 5Jls NPU. KEJE GCU it DCU 48) b ibAT m RUR R ALY SR, SR 2 MOFAT 50 . i
TeHUELE UL S s P RE AR, CL3CRF I RIE S R 746 LLaMA #R7%. Baichuan &%, Bloom %%, ChatGLM
#7. Gemma &%, Mistral &%, OPT &% Qwen F&74.

4) HENFHAT R RINA R G, KR ARG IFLFIAT I &, R A RIEM G N — Ml in &, 5et% 330
SRARTEE I TR e B AR R SRS B S5 A4 1 77 .

Alpa TR —ANFH T I Z5 R0 B K A 4o 26 1 242 (1) )22, th & — AN Python Fl JAX 45 [ K 25 BERUHE SR,
F X FFLE Google Cloud TPUs Eigfy. i@ &5 T, MaxText AEHS LI 55%-60% A% FLOPs FI 1=, 0] M
AN ENY B E ISR, BN, REEFH TAX I XLA i 2ei58 KThAg, Seil 7 A sh ik,

MaxText K15 5 B MHELLH Python 1 JAX 485, J£ 3 FF7E Google Cloud TPUs _EIgAT. #1519 T, MaxText
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Re i SEIUE = 1) GPU R H 28, I HREOS A ERAS LY R BIHEH RIUARE. RN, FIAH JAX A1 XLA S B 158K
Thee, SEOLA Bk,

nnScaler™ 2 BB T IHRIF 7 e T8 B9 52 55 B 30 HEATA0 K8 SRR OAE LS, Ol i ¥t L 48 JFAE (] 10: op-trans.
op-assign Al op-order), 1L &3 TR TG € X IFAT HBEIL FR 28], I 385 B ShIFAT SRS FIILAL. Dyl St 2R 23 (A1)
I BRI, nnScaler 78R4 25 [A] B 7017 X3 4 Ji 3 it N £ 3.

BN Bk 4 BRI BHESS, IRAER 2 AL T ENRRE. AEFEAT .

2 REFBHNGRGA L

NG RGN o TR R
oy PR & (U, RGN L HH T IR A2, & BB BOL. e g e
HEBRSE L prigit 5 PRMBCRAONIRE 5 SRR R S

o ” e EATAMINAI R BT
MR DU AR TR0 iy, 48 % o — s

- I RPERITERE D2 RIS L F K
BT AN T DA B 2 R P 1 TR PE A BB L B BB MR A, F B oA W BT
WERG  TRALE MR AT AL T TR SR R R

AR, GRS AR IR G R TE A SRR E I A AL, B

PEAEME RIS A, AN LR B R AR g7 | f S RETHY A SR FLEL

3947 5 . d
sl b, Ll o 5 HOR AT 4 017 00

WRINGRR

32 REM

WA RAE 5 AR B U 38 K, B TR BRI ARG 5 B AN LR SUE B SR, IX AT SR T R B R
SRR m i R (0 7 SR, DAE A A5 I R 5 2B I e KRR AR Y i (B AR A, Bl IR AT I 4R Tk B EA
53, k2 THRIREGSE, #ERH MO A WG sR 1Y R .
321 HAT I

BT, KBS TGRR 12 XRZFOMT AR, 5 LRI TR B B EEE 1T &R
WIEAT. KRBT, BKEIHFATULRIFHIFAT. 3R 3 o, BATHRE MM KB 588 RS0 AT 5mE S Fpilt AT
TN, IR SR, BRI, — Sl R 2 FIAT 5 R, FERE E Sk B I AT 50K, Bl Alpa. SR 11,
— LG T ) SR L, 7E S IR B AT REAN SRR 43 HAT AL SR EE, 5140 GPipe. 1E3% 3 1, AL T 26 3.1 1l
R RGP SCREI LAY SR S FE R AT ).

#3  JHERIE SRR BN R EE ) IHAT RIS

Wl &5 B Ity AU B AT kI WKL IEAT 75 34T ZIFTAZIER
Transformers N v N N x x
LightSeq N v x x \ x
MindNLP v V v V x x
PyTorch DDP N x x x x x
Horovod v X X X X X
PyTorch FSDP V 3 x x x x
Angel-PTM V v X x x x
FairScale N v v v X X
Composer N v N v X X
DeepSpeed N v N v R X
Megatron-LM \/ X v v v X
Megatron-LLaMA \/ \ v v v X
Colossal-Al N \ N v R v
MegaScale \ v N v R X
PaddleNLP V 3 \/ \/ \/ x
Alpa N v N v X v
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R3OJFEKE S HA BN R GRS AT SO L (48)

Wl &5 Bl AT 2 ) BEIEAT KEIAT WK IAT J7 5 AT ZIAT BN R
MaxText B N N % J .
nnScaler v N v R \ v

Wk 6 o, A FIFAT 2007 SN & 2R, KA K 3o GPU 0 E#E a5k, A& GPU 1 L
F SRR, AFRIATIIX 3R A R AT I 7, 6 SRR BRI, H R R Ros R A AR 5, X AR AL
B, WARREUE. & 6(a)~(d) 70 RIFR BT, 2 KEEEIFT . TREIFATARUREIFAT IR K8l 7 X7 .

W w
w W
! ! | !
X FE R HERE R % HE TR i e afe
(a) IR IHAT (b) A= 53 XHHE AT
W

I [A]=0 i [E]=1 ] =2
w X

L1
l [ | [eeer |%E|$}T§T|%EB$%T
R L-

X HE R
(c) HKEIHAT (d) MAKLLIHAT

I:I GPUO I:I GPUI 1758 IX H1153 X

Bl6 AT B

32,11 BHREIHAT

FERBE 2 SR ghh, BB AT 2 — R WM 2 GPU B Rl 2577 30, W& o, Bodi 3R 17 A 28
WMRIE AT B, BMNSGRE T 2817 2 M NGRA R R, 4RI AT DUTRAE: (a) SE0E I — 34
(b) ¥ Fom LAY BT 4% 4% (o) THEBLRYTE B (B EE); (d) FE 2RI B[R P IBEEE; (o) BERTBLEY, AW E S
CL D BR. BR AT A TR S L, 3872 B T AR, ani s B il 2. BT i 5 3 2R
Sy FEFH RS B A, B8 AT SRS AE TR S A SR s vz VR A B AT R SE s S A B AT A — Rl
HELE T I H7 2, AT S 2 FHESE (40 PyTorch. TensorFlow); 3 —RlR HELLEMAE T 05 3, x4 i HE 2R A8 is AT I
I M T EAET, DLSeEE GPU sk EIEE 5 R A

HESETE )7 X: Horovod K U AT SR B 24T I 25, E IR All-Reduce DA/ IEAE IS 2, JHR I HE T
JEZEREAFRIEE . A N AT R, S H A SN ST 2 x (W - 1) OEAE. FEEEI TR, A
RIS E G G2 b X ) Hm B, AETT N = 1 OGEH, BRI E R I BT S v X i E b R T ORI N - 1
YEEAC R, BRI AR B B A B b X AP (4l Patarasuk 25 A U788 20, WRE M X 2K, PR All-Reduce
SR TR .

HEZE 3 W48 T 77 3X: PyTorch DDP i 75 & L i I FE v X #1845 51T 5, b — B3 mthae. eodid ke ah = ok
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O, FE AR AL B Ty SO AT B B AT, (R VI I I AR . B R kv A S AT AR AN B AR e, AT S
I ) A% RRR B (S I S, i — D3R A RE.

FERE AT B R @A P, 0 SR FAE 225 AT 0 i s B0 7 3, 0] 5 4% 1) S T SR B 408843 0L LA B 1 22 485
Horovod 2 H 3 B AR X, dl i 8 26 ot Ak B HE SRS, DL B ohl P T A 4. HE 2R 707 S — MOE A R A
FH—MAESE 5o, BB T RER 9 KR SR IE T PyTorch A J i, BT A B BTV 2 KAE 5 AR 2 22 (1 3038 A7 3R
W J 3t BRI K Py Torch DDP HI%E 347 77 %8, 411 Transformers, FairSeq ™ /#l TorchScale”4%.

3212 SKEIFAT

PE TR SN R BRI B o S PR T B, H R RSt B AN IS A P9 A R B, 5 B R R R
FE LSRR Y (I 2. AEHOE IFAT h, RO B MR Z AL A GPU b, AR R ok SEal. A NRix —
Poll, —He RGfg TR RIAT T R, @I AT U, BRIRRAE A, DUE I ZREE R, B AT T R A
FEIK B IHAT KL IEAT, sk EIATHRZ ATV 5, MK & IFATEZ A #EA7 Y157 Megatron-LM {8 T 1
B RN 2 AR AT, AR E TR 2 IRAT ik, HSRI 7 U 7 B 3 B U S, ALK IFAT T R IEASA
M. TR E AT IE A PR 5 SR Y 318 FH A P afe b BB AE R, A E MLP S, 28 1 J2 il F 4 R Il 2 5 ik
BT GELU B HUE 5, Y = GELU (XA).

F70045 75 AP — R BRI AT U AR AR FE A, CAR A NAE R X AT DD B E A RE A RN X =

A
[XI,XZJ,A=[ p

X,A,) # GELU (X,A,) + GELU(X,A,), B Z3XFh 5 X B —ANE GELU WS RE I [F2D AL

)5 J7 P B —For REAEF_EVIHERE A = [A,,A,), KR TT AL GELU Jhar st T840 4 1
i AERE L (1), Y,] = [GELU(XA,),GELU(XA,)].

WM REGNS. AT RNRIE G RFEETE K GELU WG R AL, W EAL % GELU i NGk &2 |l %
HEAT All-Reduce 1815, J-G 5 FEafevH =42 05K &, 30 17 50 O BRI v 52 2 D) 5 58 T A 1 7 b 7 P 4 e o o
BT All-Reduce 76 15 SEBUE EAE, (AT HE S Bk EM TG 83%4E, WFFELEH AllGather A HH 45
Rk EY] . Megatron-LM AR ¥ Transformer fIT154F i, 1 MLP 28 1 214738 A 48 B 3 {8 A 2 VIR S BE
X, 5 2 B AT VIR E RERE T7 20, #ET R RR AR AT 2 Nl AR PRSI 4 1 BS GPU BT — IR & Mt T
Megatron-LM K #§i7E & Python FIL AL IF ) CUDA W% 77 3, MaxText F| | TensorFlow. JAX Fl XLA FER
o PF, BE 1% 238 1 4 Python ARSI A Z0AEA0 I AX, et STReEE 9047, V) 3 8l 047, 741 947 ik
HIFAT.

3213 WKIFAT

TR AT 7 R R N E S BTEIN, ME DL RS B HARAE 5. O T SEI R A B S A 45 TE Ok AR R AT,
Google $& 1 T — MK IHFATE GPipe, VY AT H] LAFRIE 9 )2 45 1) RSB 3diad 78 S iy ik 2% ik 84k
ANEBIEFF, GPipe $eHt T 48 ORI ) 25 Fh A [5] X 2% 285 460 i RS 1, K X 464 Fe 381 B RO A AT g AR 1 5
o NI AR R AR U R 1 A i B TR R AR R R A A AN IR EEE AT R F,. R (E
T NAF R BEIC N O(N+ % X %) H N 2RSS, K 2V XEcE, L2 ER, MRt s, %
R R, % REANVAHER. SRR NATROWN X L) M, XHE T EARBISTKENA. BT
KR T RAKIAT, REAINIE 88 277 4k — 2SR R, FRVESHL (bubble) B [A]. A S ey 18] &5 Lh i B 24 A
O(%), AT TR AT DL S o B RSE MO BT A, B2 Rk RSE, A0 & BRI, GPipe KLY
M > 4x K W%, SO FFES LT 77 A28, 5 BRI TE J J) A% 398 s A (1) 8 55 m) DASE B kA7 R B2 AT, AATTTIR 78 I8
IR TP B T SRR, 9 T BRI K IR AT TR I AR T4, Narayanan 25 A OB T — ST 1AL 3% B RS — R R A
F£4% (one forward pass followed by one backward pass, 1F1B)”, BARIX H %A BRI E 4%, H i TR I

XA TR EARAN Y = GELUX A, + XA,). BT GELU =& — MR EE, GELUX, A, +
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T ¥ P B A B, 13 L A o A B AR K 26 7 ik — 2B BRAR. 9 T BRI 5 B, Narayanan %5 A\ PUSEH
TR EE I 7 (interleaved schedule) , 53 K FRAT AR bL, RS R H B8 /0 BLIE S AL B TH S Bk AT 1 E 5
T A2 8 R B2 5 3T DA P P AN LA ASSE S R B BEEAT B 1 R0 S I AR 3 15, 30— 20 I3 o B i 25 N
T AERK LT A Chimera, 335 BRI, EnvPipe™! &5 3 F £ 33047 KB S B 0035 5, FIHHKIE
AT NG TE 3 B o (R A AT 2 3 (00, e M PR GPU W 2 AL BRS8N TTT PR AE#E. PipeFisher™ 154
IO B A 23 PN I ) AT SRR 2E AR K-FAC Ak vkt 3, I B DR L 28 VR B A4 1 R i s,

32.1.4 &Y BEHAT

BE HATIE T EAEAS B0k LRI R AT, HENAFBCERRK, AL T, R HAT BB AR, (Bt
FFEE BRI BRI 2. Bk, S0 47 i i 52 1) B AR BDIRZS SR S I, T 5 BUT AR 1 N A7V FE, AR 2 5
AT W X RS R 2 PASR R A 20, (Rl & S 808 T 4000 19 F B0R B3 58 I 3E 15, T BRI R 2R ik
Ab, BT X L5 B AN S50 FE R B S M4 BT A A BUIRAS, RIS FE Y 2R B A J AR 44 W BT A AR ADIRES . T
X LW EE DeepSpeed HEH T ZeRO SRZE AR HUHE HAT H BB E BOHE TUAR i) L, i — D38 s WARAE FHRICR, 37 R Il 25
TR B A, HoAZ 0 SBARR TR 1B 5 F AR R B J AT 7 &, (BAE SEFR B, B4 GPU [GRE A Y Fr. 4
A GPU T EHEZ Y A i, © 2 HMNEH ZY A B GPU BA7 58, MW ER T2 GPU Z IR HI%L
PEICR.

ZeRO AN [F] U1 FIEH 2 5K, PO AT T FEBRAE, BT il Pk & B0 d Fbk oK. DL Adam AL AR VR G R
Y AEI, 755 Floatl6 ST ERBEE, KN 2y, Koy WSHE. HIMNEE Ky MELETREL, A1 Float32
FIALERIA 4y, iR 4y RG24y, BAIK =12, X 4 BN S R ATEFA B0 T.

(1) 2L (R ZeROY: WAFIFAI N 2+ 2+ K) xy, Jeh ¢ =7.5B (REHAME S E, K = 12 R FM1b3:
RIS A7 IR, N, =64 AREREHE TR

) B AR ERRES S X B P, WAE TR 20 + 20 +
PEHAT I —EL

(3) BB 2 UMBIEAEC ™ p,.., AT 20 0 S G P T, ST MR
—F.

(4) WrEE3 WIS K O P, W IFREH
A GPU, JUARXS T-IEZRAR R 21548 64 1 N AF.

ZeRO AMUTEHHE AT AT AT NG h i B 7 WAZTU A, Ik ¥ 5 B 3R & 5 40N Reduce-Scatter #24E, Jf:
LA AR AR D A KB, PR AR, [FIB B 2 i EANEAE, 4 AR AR 4R W & SR L LUl 3 R KN,
HARFFRFEE 2L, PyTorch Al FairScale %5 &4t 1 (14 1) i 848 31T (fully sharded data parallel, FSDP) H-47 5 B,
FairScale #RILEM T ZeRO BB 3 /7%, M AT Llama 2 #4714k, 12505 BIRR A 225 PyTorch # At 25 4445
5. FSDP AR sl 43 ff N S /N BTG, SR 5 JB P IR E BN SR N T S50 o S 3 75 B AL, IRTE
PRSI ESE. FARTH T DU ISR, RE M7 7 ROHRE, (7RG N GR 5 RZ W PR AR, B2k,
Fovp — L6773 5 R e B 5 1) B AR i (19 AN 5k IR T), KBRS e AT i F I SRR R R il o TT &R K
R, o rp — o R S N7 R R TR IR PN S D 2 1, R ML AR 2 ST HESL 25 5 52 BIHE QL sk () 2 . ATk,
FSDP Finfafi H =ik, BA SHEZZ O IIREIRARIBE . ok, SR AT 204 F0mT a2 il (6 77 s0A B X AR IR A o 77 %,
P4 X AT
3.2.1.5 JPHIFRAT

B T R4 EEROCIE S B Y) 7 FFEAT AL, B AN SRR KO8 B AT B WS K 4 A1, 71 T LightSeq.
Colossal-Al &7 HAT . HTHEINUE, BT IREHATIY) A7 NS FRAT AN B 7 = 713k, i RBCR i
EHER AT, HARMEY &R0 2 ) 3k 8 i HAT B, A RS Hoaft— P R M. LightSeq MIZE /7 51 48 5 13t

K x

Nf, G T AN 4 fi 7 TN, (5 TR b8

Q+2+K)xy

N, BT A AT R R, WERA 64
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TR, BRI e R G AN AT A1, P DO R B 7 Sk M 450 (N2 k. 280, 2 HARS) BLEIFHAT.
FEHNIEAT 7 T B A R B TN A Re ik BIRLF P e,
32.1.6 HBIHAT

H 1 IR B AT U ZR RGAEAE PR AR O AT AT TR vk — R A P FahilE ST R %85 =2
I B BB AT E B AT AT R B B AR AT A TR SR, I o5 R 2 Tk S 1) A W 38 K DL iR 2
FERR M PR, AL G TR A A R R R K AE B A RS RE. N TR X — A
Alpa™ R H T —Fh LT FlexFlow™ ) H 3h 3475 %.

Alpa ¥ IEAT I GNP Z K BAERFIA] CRIT K IFAT) FEIRIERF N LT3R EIFHAT) BIFAT I, IRAE
BEHERS A T 4 2 A R ), SN R IR IR IERE. 2%, Alpa Ref B ZhHE S H s R0 A7 HAT 11,
I IZ AT (runtime) SR A TR BIHAT.

Alpa $5 AT LI BN RO L RO DL 1528 G = (V,E) FUESAT AR T A T 5 ve V LRI RGBS
A, LR AL e e E LB R0 A AR LSRN 250 N Tk B AN 2 B HAT BE I 43 Ak ), e AT b o
o, FRONE 0 Fr, IR T e 75 BE 1S & 05 . VB AR fe /M 1] G A0 9 B0 2R A B K (integer linear programming,
ILP) FA5 FH BRI SR AR B AT e SRR ST TR A v, ATRERIIMT EIEHER L, BT RE N KE N,
MIBAE AR & ¢, Hob e, e RE LRI, F5 50 v H—MTHERARE d, e Ré TR A v, 8 XX — MR
s, € {0, 1}, RN E R EE ST 5 v A 5w Z IR EE 2 AR, 8 SC—ANEH O v AR R, € RV
i) B Ak A SR P

m}n Z sh(c,+d,)+ Z STR,S, (1)

veV (vu)eE

Hr, 5 1 DU AL v BTHEREAS BUA, 55 2 DU (v, u) BT AR, T RoREE.

RAERT DM A PERE 73 T RIKIL ¢« d, F1 R, PR RUAS, (HOA T AGAL 3, VR 2 R F DA T il 3577 1% o T35
A d, FR,,, 8T AL ) F T HOR R DA AT S AR B SA. X TR A ¢, (EE R H BN 0, X — (ks
TRURHEE: (1) X Tanf PSS 2 BN RS BT, AR &6t &, Brf -7 BRI T E e 4 e )
Fi g, BIMHE AR R EAE; 2) W TiHEER/NSES, B e R ERE, BARTFEHIVHE, BHEIE A
Al WA AT R EE R T E RIS RS (B T REE . HEMAASE) &2 HARELSD, X
R R bk /> T B AT SR, AT/ T ILP ) R R, Alpa Sl BEAR S48 R0 B A1 IR B, 1%
FoA FF PSR M BRI b, R 200 i B R SR 7 2% 5 BRR A nnScaler™ AN BN A 4% 22 2 /], T & S VF
A ST 3 Fh R G FE AR JF R (op-trans. op-assign Al op-order) H € SIH 2R %3], X L JFE T ik A Y
B [ S P AT AT R BRI 2 R BE R Dk S48 R A T T FEREIIK, nnScaler 7£ 44 F 2 [A] B S 4000 J5 18 Tt i £
. 4 VYIRS T SR IR AT SRS I T S IR B R A S (R R R B, R A TARER T EA MM B AL DL MLP i— 2
IV Z A, Dy MNFHEYERE . Doy M HRHELERE, N AFEARSL, PO IRES S IR E AT A B TIRANT
fEARERR AT SRS FERT € 50 T R I, I BaE H TR E A5 SRS AT SRS 4R AL 258

F 4 IHTHRAFEXT L
FAT N RREHHNIERE  SRESHENE W=t A
ST AE, 0 T SR A HEAT B S BRI, S8 1S T A

Hel O(YXPuxDon)  opyxppxp SRS AT KTIE, R SIE A 5
Ity P in X Do gm0 AR TR FORORES 10 B I B, LA % A

R L T L
O(XXL0XDow) i, Fe R A AR, T g R 5B
i P TR 1| 559 . 2% 505 W% T T S TR 25 il L, 3 AT RE 4 3 B0m
Mol SycTime FRFBHIL NE  ODpx Do) oy WAL, PR PR RN 3 TN LA

St SyncTime 7N FIAVH 81, I8 9 e T e Ak
Joir BRI E, KT BORABCR LA RITH SARAE, %W T R 2 B
S 05 PRI A Ve AR R 2R e T I
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o
N

F 4 IHTRALKEEXTEL (27)
WA HAX BRKITHENEERE SHEFERE e 5 Ny
ZRME G T ORBRR AL, WA L :
ik P ODnxDo) ot WIRWRIS TR OPU L e i it 7 )
4T CommTime FrmiBAS 8], Bk AT 75 3R, AT NG T iH 5 . LD
TR SRR 777 K 2. 1Z 07 B 5 HARY) 5 Jr A i F.%D%LH‘JL%U AR
A EAMGE WU AMm T
AT R R IREE . 7
S I L 5 5
ot g - . 5. T G BRI BT S5 K, AFE
; BT IR TN SR L, 0 s s e
WAL pipoCommTime £FHABM  ODx Do) HIBL T 35515 WD, 37 20 S HFIKBIFA7 HE 0635

H

N X Dj, X D
O(M) + CommTime

N X Dip X D,
(6] (w ) + PipeCommTime

BT pim B A RIB B ot B IR L T e R A KA <
F, ﬁ%w%%{gm&mﬁ OSEM TR
58, WA W TR i 7

AR

V7 TG T AP B RO B, A L e
pes O x Duyxp PRI g, 4 0 LI
JF47  SeqCommTime Tt TSGRy " " FOVTE agump T gbm KFRIN A AEIE P

l]\J|ETJ, H}({}%ﬂiﬁﬁu th”%ﬁﬁ jj Xﬂ‘ﬁﬂ%*@%#ﬁ'%%* *J‘L%U'fﬁﬁﬁ, j‘ﬁbﬂk%‘?Eﬂ‘ l‘iﬁb

N X Di, X D
O(+°m) +SeqCommTime

322 FkEEHSHE

K5 25 (checkpoint) & F FEYIZRR B &0 5 IR G Tk B 00— TR, — MM &, A A a5l 20 w2 58 1 28H
TRAGRAFE A, IR OROE 1K B AL 7R EE N BT, AR IS R A AT (activation checkpointing). 2 2 28
FH AR A E 2k, S F T & O AR R TR A A

BEXTES 1 2R BOR A 78 A5, Beaumont 25 A PO HY 1 — RS 7 v, 54 32 S B A B A P9 A P e ke
R, FRTE T B % T AR AR M B 5K B 125 YRR A 1A R I BOR BT K, R T B L DL S R
AR, Korthikanti 5 N CPRIRF AR B, K 2 OS2 2 AR S A2 b i 0 A2 S5 (R R i 2 1T LGRS G 1, ] DASE
AT A RT SR T A 808> N AE T FE. ABATTIR T P AT BV AR R B A HR T A IR AT RS R ik
PR EE AL XS 55K S IEAT ARG &, T LTI bR T R ke i E R T S .

TR i N AT ENEOR — R AR GPU RAFFH S 7 7%, AU T R G A7 S H R 3 TP 5 B8 B0
[7, 33K b 7 10 s w5 5 8 B A7 Bk NV Me 170, AT FRAR 247 3 T, 724 PR IRAC 1 N vl )11 5 58 KA
f{IHE 7. ZeRO-Infinity” il i R FIF CPU EAEF NVMe 17 4#% SK ) 2 B FNS0E sk &, 256 PRI GPU RAE U5
RFR BT 4, ZeRO-Infinity 35| N T LAPIAFE N O AR L E G PR AR, BB SRR AR R AR B
JEHIBAT, [ A At .

Yuan 5 A PRI T —Fhgi &2 e Tk R A AE EV AR AR 7 0 AN R R R RO AT SRS R A, X Tk R
WAEENER, 1% 77 738 5T — Fh B IR /K 2R 4T BN B8 71 1 0 28 50022, R /b 0 28 5 = ML B8 41 o I s . [ I
PSP AFP S R s BB, TR SR 5 A o - TR AT A SRR DRI 3, AT DA A £ A SR
323 BALFEA

it 5 K A B A 7 RV 5 B A 2 A AR SR SR R HE I ATy B R, JRA & F B (mixture of
experts, MoE)*") [KI 1 J2 VR B 4 1 A S B8 0 45 WA BE T 16, BRI R 2 B AR R i 24 g R 1 ey 28 SBE AR 45 44y
2. MoE REME LR FE ] & (TR, K15 & AL S By R 21405 1.

MoE ZH—%H n MERXKMNL"E,,...,E, M— T 1ML G Ak, 1134 1% A2 — AR n 45 &,
XU R G R A %, AN B OIS RN SO0 S R 4R B RN, I 2E RO [R] 48 B (¥
W G (x) FlE, (x) 53 AT 1S RIS § A KN Z8 045 @ i\ x B H . MoE B B4 y T AR R

y= D GOE ().
i=1
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W14 (gating) 4 Softmax [ 11 FIMEFE Top-K [ 1455, Sofimax [ 145 /& —F &l S HERG R [ 145 077, H R

FUR KN S AT R0 B R W, AT, 355 Softmax RELLAIRAS 148050
G, (x) = Softmax(x - Wy).

MoE MIHATIEFRRAI ] 7 FivR. S 245N — AR (91 ane0R), 383 bR ic 1 Hh g 24 A, 4R U5 e 8640 B A i
TRAPEE X255 5% (FFN) JEAT 81 ) 45 36 R [0 A% 35 X R AR 20 0, 3 2 AN 6 K AU B R, (BB IR AN B ATLIE 4 —
AL GGAT U, AT RIR FEAR T TR B & X m DU — R R 2 R W AR B B8, 540 [0 o &= 1) 4% AR AR A L
MoE S5 FI BB FE Y ZhpiiAs b I 25 BRAR. SR, B T35 5 BB P RSB i %, DA R LR IR B A 45 44y, o Sz B
PLIH ) MoE BRI A28 2 — K.

® &®
e BE P
P=0.6 Em BN P=0.7
Router Router
Token 1 Token 1
Ly &

7 IRAEE R

2347 3 MoE Y ZR 1% 3= Z SR A 1 S ch 245 1 AUIToAIl 85 BT S B BEAL T . Tutel® 32 1, MoE 52
P R BT B AR T, # AR IR R N B IC A RE IEH M R A M N B AL BUE R4 h TR A
FrAPAT TR, P AT FRUK R SEOT B AR T, JoVEIE Bl A TAE 3, i =28t ge i k. Tutel 1t
TR B A B SN AT R K R S RE O T, BENS LR IS AT IR BT R Bh K, ERSETB K
L IR, 27V IR S BT e R A AP 1 R D D, TR T P RE. Lina'® 431 T ANITo Al S FF484 10 3
SE A, A TR B X, K AlToAll R AT 8 All-Reduce AT HUT. S5, BB R R E AL Kk,
[ YR DL F 4 ANToAIl 1% % (KR RHE (S B A5 5. SmartMoE ™ 42 1t i1 T 241 MoE #5784 $edf Sk, AN R 10
HdE 2 5 80145 W Bh A RN B KA UCEL, AT 51 R AT BV S 4. A& 48 A R 2508 5 R A T
TUTE 5 AT TS, HLARAL SRS 4 2R 0 BRI vE T A A Rtk 7 RS, XA R n
R TIRKIRAR. B2, MEF B T — DB BOT 2, 185 2508 U= PE R T ASE 0 8 2 ) 4 S M ith, R 00l i 4
REVEAE L B P (0 B AR AT S A T
33 M B

KB AT DR A A0 R RIS ASE 2 48 g g S B AT I 45, TS 5 B EE 230 H A B s I 5. LN g5 P
K& GPU BHE A =, BRI ER FH N 2Rk R K IR PRI SR AR, FFEE A 73, H o, T At AN s i e
ER AN IBARE NG, BB ARFE S AL ST B, fE A BT I 2k R G v g
3301 mEREE N

o R TSI LR 192 e U5 32 R KBS S A B SR U A7 R (M — Rl ik, @5 51 NS E AR, nvifr ik
o FRBIER S REER 5, XL B 85 75 CRRR AL BE 11 [ I BRI T B AR . 3 o v R A A R BE &
T it % B8 b A P K SCAS R B, IS I ZR A0 HE R AR, A ARIE A FRAT A5 A O B3 (KM R R T, A SO R RGE
B ACLR U Ui, BRSO R S B4k, RSOl g — 2R T A 4.
33.1.1 Uifithtk

Andrei 25 N\ "%, Transformer (255 — Wi+ 5 B IAES:, SRITILA FISEBLAR B8 E 2R H GPU, KN
KRR 3 oA ISR 00 S BRI, BE3E TS BE AR T PO A R AN 4 e B R T, IR RE LR B £ 2 3
DIV 1) B BR ). TE AN P 8 BT 7R, R AU TE 3 B ALE 5 R A B DU N AE 2 R 2244 GPU o 1) SRAM,
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o
N

GPU W s 96 A7 (HBM) DAL E A7, BURLE H A7 A2 HBM T, % B2 SUREAE R RN 1) SRAM, F ik
— AR BT AF SO AR N 2 AL B A P AT IS S Horh, GPU B BUR AT A THELRE D), U5 A TE A S PR
i Roofline! ™R tof WS A S (191 4 368 FH R [ 916 GEMIMY) 149 40 A7 22 B, P 17U Il A A e A Mk R, 25k 3
— Mg, AR EIPEREDL AL H R L R AT REJED 0 HBM 75 ), JF i KA SRAM 227741 F .

GPU }
SrAM | SRAM: 19.0 TB/s (20 MB)
’ GPU HBM HBM: 1.5 TB/s (40 GB)
CPU DRAM DRAM: 12.8 GB/s (>512 GB)

K8 WAEZg™

BT E R I B R A R A7 24 S 7 50K BE 1)°F 7 G IE L, Transformer fEACEEK 7 AN 2172518, H R E
K= T7. FlashAttention'*™*" $8 Hi, 4 1if P9I (1 — M 7R TR 8 S = 10 BuIfE /), Rk 75 % & GPU
KRN RS T8, Rk, fEE SR T —Fh VO BRAINER I EE, @il 5| NEL Softmax HIEF N Z A
AR, W/ o R 25 51 HBM 1325 0H (R B SR FH ST B S, JFAE R n) 4% 3R B B 5 vF Bt — 2D BRI O R4, It
Hb NEF IR EEY B TR = ST

EEIHRIHBANKR Q. K. VeRY BAEMELE HBM o, WAL QKV BEAT I J1iH 8, W& 1% H
0 e R™ #'5 X\ HBM. FlashAttention PEREMLAL I T H AR /> HBM U5 18] AR (FERBNRT N 1 =k 512
FE), H @ 3 (tiling), 752k Softmax AT A TF EYMLHEGF 2 RE R E N OV R4 5 ok
R, B AR S MR R RV AF. (B R 7 AR ST R B E ORI N IR B AR R
HBM Vil Fa. R EEARRMA Q. K. V 2 #Ipi, MEE M HBM gk B POE R SRAM FLZ N AE, SR 5%
Fax e R R B TR AN B R B e IR A 13— A R T 4R RO AR N, RS B ERIEE R A TIE
P HA R B ), X Softmax AERACAE IR, Softmax ¥ K FVREA1E—, BRIHAE 2 1 46 5080 77300 K R
Softmax AT oM. S FARMERTE R IR, AN O, K,V e RV, N FFIKEE, d ik Sk ge s, imit
LA I AR 0 e RV 10

S = QK", P = Softmax(S) e R™Y, 0 = PV e RV,
XTI x € RE MR ITELL Softmax 540 T %
f(x)

m(x) :=maxx;, f(x):= [ex"’”“) . ..ex“’”’(”], I(x) = Zf(x),-, Softmax (x) == m

XEF X0, 1 e RE, W] LURSER G I A x = [xVx@]" e R?® 1) Sofimax 53 #H:
m(x) = m([x“)xm]) = max (m (x(”),m(x(z))) ()= [e’"(’m)’”’“) f (x“))e(’"(*‘m))”"(“) f (x(2>)],
n.@ m(x0) =m0 7 (1 m(x®)-mx) 7 2 X
l(x)= l([x( ) x¢ )]) = gm(x")-m )l(x( ))+e (x®)-m )l(x( )), Softmax (x) = %
PRUERIVER I SEBU AR S A P SEBIALE] s 58 A A7 (HBM), IX 7 22 O(V?) FIAAE. B IHIL T, N> d (Bl
an, % GPT-2, N =1024 H d = 64). T8Ok 2 B AR 24 T W A7 (B0 Softmax), K& 1 4775 ) T BUR
@I G . BRI, A SRIB R — SN G TS B (m(x), 1(x)), BT LA B35 19 Softmax THE 7%, FTLA—IK
— Y5 Softmax. L, FORAIA O K. V 23 EISER, tHE Softmax (VA KESMISETHE R, R JE & RS R
XPEE I Ay B, %R S5 g, BT DU A RELE R EAE GPU S5 4 17 58 B4 ¥ (M HE B 3FE, Softmax, i %2, Dropout
AR et 55, BEM > 7 A ) HBM B35, [RI 9 1/ S A P A5 () 25 5% 5E A A7, [R) ISP S m e ik
)45 R HTE I LRI AN TR =, 53— P IE 1 Softmax /2 K F B AR, SBIE7ELRA TR 847 O (V?)

F o 1)
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33.1.2 LSRR

B T M\ Softmax JZ T BEARIE R ML — k07 B 23 18] S B2, S i A A A JBABLEEAT B TR SCA A ALt R il
N AR RE S, TR AL R TSR (0] S FE A2 O (N?) 4, N ARZRZH A PRI OB, 0 okl
KIE AARIC AL B R K. W& B SO SR AR e 7= AR AT SR A AE IR Q, K W B, 38 Ik A7 i 44 1) JE AR g
irite.

Longformer! "3 o [ 12 A< A5 28, AN H 55 AR SR AR ICAT I3 3 3 40 B, DA/ v 5 BRG] 4 TR 1) 2%
FFR. AT RXTIE B, BN T — MR R, I 2 = B R 0 MR SRR R, 1808 T HORTE
BALEXN. 5 EEREAIAR, Prigh )EE R EMA TS RN R R, AR BAK P I By
Y. X — 7151415 Longformer REWEAE B AU 7 21 b 3EAT A 2UA0IE B JI1H 5. Longformer UL JUMER
L) W E AR B RAM B SR B, W B A PR S [ E R & PR, T B
PR . LRSS 58 T E & HR/N w IS BT, BAFRIE R SRR F P i %w ANbrid. XA TR R R
O(nxw), HHn AN FHIKEE, BLEMKR. 2) §K (dilated) HBIE H: N T EAEINTH SRR N BE— P87
RZHY, BT ik E W 2% 1) BAE, W) DL 3 B D T35k, Hdh & Do R 2 (8 B KN d TR B,
B TR E, d Fl w2 [l 52 1, BN Ixdxw, BEXN TEUNMY a8, ©r] PUR S80I MRC. 3) RRER
J3: B A R R SRR & A ST B A 0 TR R Y, U AR bR SOR TR R A BRI, T
T4 AT 55 W 75 B P B HEAT TR, BT M 08 3 & R 5K 3 8 0O T S TH 10 BARAT 45 R A R
W, BESIN T A RER ). R ARG A RVER ), TR X A A bR L #AT IS 5. B, R4
FE45h, A R I R T [CLS] ARid. BT X bric A LB AR 7 B K FE AR 8 /N, BT AR ZR BEATS N O (n). AR,
FEMRAN 53 B 4 R bm i B T BAR A 55
3313 4¢ fil

5 — M5 SR I R UK RIS A (LSH) B #eyd 2 L B AE K ke, 1 2 1 O(n xn) 1K 2] O (nlogn).
Reformer™ £ H 7 LSH VEEINLEIHEAT . WTEIR A [batch_size,length,doqe] H 5k & 0,K v IR, FER
W RN EHR T, RE TR, R pnk, TS T M KT, HIIRN [batch_size, length,
length). SEBr L, FATH 0 Softmax (QKT) . fEFRHERT Attention THE Y, AR N Artention (Q,K, V) = Softmax( Q\/I;_T ) v,

k

HepdN Q. K YN d, v FI4EFE N d,, T Softmax £ B2 5 Kot R MR, M TR g, AT F X
WY g BT BO LA Bln, R K BB 64k, X TR g, FATA #7532 2 64 M,
T S 25 B e v B0 SR, ] 1 B e bR £ 38 e 4, 8 e 4 23 ) o, 35X — il iU AT A3 i LSH SR figé k. LSH
A% 0 FE AR, S I A5 R SCRE B A 1) 5 o RS 38— NS A5 (L A (), (645 RH 3 P ) DA v MR SRATHH [ e 7 £, T
2 5 1 1) 2 U] AR R SRAG AR (RIS A (8. AE AT 30, AR 38 B SROR &8 1) £ DA vt 2 IS S K8 7] i 7 A, JFORA0E
A AR/ R B 1207 ikl R I BENLIE S O 1 3R05 b NS A E, E R E — DRI A [dk, g] IR ATLHE R
R, #RJ5 3E X h(x) = argmax ([xR; —xR 1) FL A, [usv] FoR YA ) 5 AQRERE. KRR 5 32002 — i CAT (1)) UG 4 7
%, BB 5 1528, SCE R T [ S At A BRAE 55
3.3.1.4 ARBRIMR S FELE

LA 7 iR AT ik 4 A G2 D 1 D D R B SRR TH ST A S R PR R 2 70k T TR WL A Ot S e
O o v, R AP T LS ek 4 o A AR ARG P A R S AR . Linformer!” 38k % A5 2 45 B AT A5 e, AR T K FI Y
FE R 4R E, TR 25 02D 1 T () 2525 QK = PR R 4R BEMI N A 5 Y. B REREAE 15 PP H1 K FEAH SR IR Ze Ak Ak ) T Py
FEZRIER, T B R SCBUE P vWY . 8 BvE R AL 1 2 B AR RAE T 5 K A0V R, SINPIASEAEHE
HFEE. F,, KM E,. FeR™. B4, KIEMH nxd) 4 NEAEZ KWK 1 vwy 374852, B3 (kx d) 451
BOUHEAVE 2. AR5, B s B R I — A (nx k) 4BV 10 bR SO ERE P S A S T R Y,
Hrr, PeR™, FVWY e R,
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o
N

OWC(EKWEK)'
Vd,

R P-(F,VWY) NS i AR B SO, 7 B2, FIRIRIEAT 22 O (nk) PR TR 2 8] 52 2% % .
Rk, G SR IRATRERS IR — NEUN I YEE &, 15 ki/NT n, BRAESS 538> WAZ T TH AE.

NS BRI ARA R X T QK FBEREATIE A5, N 75 %5 58 SR ¥ U0 2 MRk A0 15 e 44 I ok o 4
SN e R 4 R AR R I 4ERE . S AN, — S8 A, 41U Long-short Transformer”", SR 7 ik 3 FhJy ik (IR A48
T HEmE. 32 5 % ESCA AR 4 KSR INHEATR G, 200 T AR AN RAERS S

RS RSP
(SRS =PAE i P A B
ettt %E‘fﬁfﬁi’%ﬁ%@&? e R e st ot
A& &8 HAS T ’
T E G Rk AEH

VS, e s S R 4 U B SR R . PR T
EOSRE RS FEE N REEBOV BN R, o)

MR 325 0 S DL EECRE A P ) B

overlinehead; = Attentian(QWl.Q,E,-KWf, F,-VW,.V) =P-FVW' = Soflmax( ] FVW/.

e s ey POTETCER T BRI M
MR R es 2 S BIRRWBONEUS. YOI ) g e sy o

RSN 51 AT SR
BRI Rt JERBIUR MRGARCRERE (8 A USRS B

332 RAEMHEIZ

TERBUE TR IR, BAEFIIE AR AL O 2 BRI BEUR. (58 P ARORS B 45d 25 24 ] DL 38 BRI SR N A7
TRAY. IR AR UIZRTI N T 05 B % 55 50 (911 Float16. BFloatl6 4%) Kl 25 KiE SR, L souE S, R
REAR RIS FE IS LR, 2TV ME RERI R, B0, #4 Float32 Bl Float16 Hii 2R A, X £K A M 5K &
PIAF 5 SRy8F, 75 HAE NVIDIA GPU S5 5GH 4844 b, mT LRI A ok B A% O SR RE IR T SRS oa it — A T B3

IR RS BE ISR, 38 18 RS BE A U B B i . W sk AR R Sk . R, PR T i bk X R S 7
PL SRR B A5, T e T 85005 I 5 AR R S B L R T AP IX A il R, Micikevicius 25 N VPR T 3 Fh ik o5k
EEERIEAR. Bk, B — B0 ERCE R ERA, SR DRSS B 0B (TE AT AR 5]
R, SRR Y & FNERE FE). Lok, (o PR e 4 UOR B3 850/ B2 R BE AL S, A R P AS BE R B3¢
BN BURS PR, TEAPA6 B A7 2 BB LRG0y 0 . 1K e R 1 4546 B T 30 IRV A RS FE I irb T B8 HE 3L
(A O BB A2 512 0 7 R B A0, WA RS I 2R 7 vtz R K28 5 B 1)1 5, B G0 Llama 2 [F1f
W, PR AT DUEBR A RS FE I &

WK 9 B, TR GRS ISR, FERRRE & e iy 16 LLREY Half 287, SR 5 5 Floatl6 (FP16) 54!
(RS — R AT BT A 1, A2 BRSO . 78 S R AR 3B 58 T SR o B B ) Float 16 21828 (1% AN AS 8 R A
FE, R R 16 LR IOBam 6 B T SA SRS FE I 75 22 16 LUAR I BUE AN A FE, 115 16 LU A B, AT
FAR TR SXFE, B % 0o BT BAF T FEIOR I TR 2 R R R AERS B2, AT I I R 15 8 A7

_FPI6

oYy oot R

FP16 FP16 R

J= [ FP16 s yra
fiE-hE [ f@ig*’ﬁg

W (FP32) Y B

9 RAKEIZY

eyl
e
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333 EAEAIIIZ

A5 B A A2 FE R A Y A (1) R PURR R 28 T B 0 I LR R 28 2 S (o S A 8 B 1 i 2D A T B2 52 Y
W BT R E SR AT R A, T DARR B AT AR SR, B E S R T R, IR EIN A 2R
Ja Ak, HAR 5N I 1= A EIINGEOR. SRR o AR R I 2R B R By BR F i — o i, el
ik FEh, EAL AL B R A BB Y Zirh, DL AL RS k. 9140, LLM-QAT™ 2% 18 B %fi: LA SR B L 0%
BN E, R TN SRR 8 A i, P8 i iR 280l — 2D B AL E . BAE DL K KVCache. RIS TE = T &
IS A A 5. PeQA VAT QLORAYE T 5 S il (parameter-efficient fine-tuning, PEFT) f 3t 4.
PEQA 73 AF/MNHTEL, 88 1 AN BO AN 2 32 2 B AR MR A AR BB B R s ) i 26 2 MR, TEAR &
&= EXTREAN TS 3T 0H. QLORA i 4 LhAr 20K T i B & ] ££ 3% 2] LoRA (low-rank adaption) 15
RIgER. kit T 4 LR Normal Float 257 (NF4), FHEH ARG X ES AN ERRE. Bl a2 HEF
BB, AT IR0 S350 P A7 6, e 2 80 FH P9 A7 T TR AL SR B PN 77 VH €.

334 EfFEMRAL

B 5 RIS R R ST RS IIE K, v T M7 I, R a4 Rl 07 X R0 G 50T, MR8 SHR
o HAth B 2 10345, BRI, Sl O A R a2 38 43 T4 385001 RO R T R Gt B 1 54 T- B Wang %5 A 1% Meta
o) SERE TR TR 22 S ERGEAT T i, RIIBEE S GPU -REFIE I (B4 8 RIginE) 128 k), @15 %A
YAV A BT 7 B DA S LT AT A2 AR BT T3] 40%—60%. N 7 MXT X — ) @, stk . Jbd s, @
Z 50 Sk DL R SN B AE SRS B 5 2 SUREAR S BN R WL R T B, X S S A BT, AT 4 A N, St
[R 9800 d (5 - IR T+ R gt e,
3.3.4.1 BN

B 5 KBS R O HAT BUR E AT BERIR A, 38R 2 H All-Reduce @13 itk i#id K H RingAll-
Reduce, i BLH 1 GPU Rkt Atk s s ey 20D K Raefa GpU it ot
i, N AR SR, X ES R KA T GPU M3, Rtk B B At ge Ay e ik, 1% 07 sl R 54058
=, HE A YRR R R A 1 F AT B, 51 307E NVIDIA GPU 7 55 N3t NVLink HE4T w8 HER. B 7
TR SRR ()38 22, R BRI 11 23 A7 307 AR 19 B R v, DRIk B 3h & Bl (5 7 ARS8 U N B 2L RN AN 44k
WS HIEA A2 — AN EEPAL T .

T BB VR B 2 ST N SRR B I Fh PR 5 1 S s Y NV Link B¢ PCle TLEE, 17 5B InfiniBand B
DAK X ECIBG. 7 et ) 4 e 2, 385 K FH B (fat tree) 2904, 1 1A) Y S 3 5 AH [F). EVLEFECE 1 BRELZ MR, 1
R EHZEET GPU =, GPU &3S WK%, /1 GPU W &6 ML 1 & E AN %5 BT 2480 5 77 L il
WitH GPU Z [T R 228, GPU Z [ HFRIMBE — e FE 5 L mPERE. Bk, 25T S arin b it g
B =T RCEAS TR S 08, XA I SRR EE 4 R AR A .

Cowan 25 A\ Vit 7 AT 9w FE A 15 R 48 MSCCLang, $2 i 7 FH T 4% 5 313 50k 0 A0 4y 2 38 5 f— AN T
B X B S FE ¥ N R EARHE AR A 125 8. TERRE P IG5 A IR AL AR All-Reduce F1 AlIToAll AH LEJE2E
A 1.3-1.9 i, LAE A — 28 T AR IR MBI F BN T 0 idm 5, 49140, BlueConnect!*'E 7= 3 sk iedfs 0o
2R AR T, #5A All-Reduce BEAE 7B KBTI AT HIIT 4 (reduce scatter) FIAYEE (AllGather)
A, T 2 3R 0 5 2 18] FRIRUAE, LT 87 &% X 4% i B . PLink U A BE I 28 3 0 55, R B 3R 4 o (0 JR 30, & %
FIPAT 5> 2R A, RIS AT AV AL ST T 1 DA S AR I W 25 2 2. 3 — S TAEK I8 A5 5 T @A e 4k 1) B 40 TR
T A2 0 A, SE I [ B A GRS S, BLnk VR S AE R, T Cai 25 A YR FH 2 R R A R 2 i BT
Bk
3342 RBIE

I A s T AE T AEAE P E & B A R AT R ORI SR B, 75 EE AT
FEIBIE FIBR BE, NP, BE B R E S THE R P 317, 7€ PyTorch DDP H, i@ ¥4 5K & i 20 & s — At
UOHAT A $EFH % R FH AL, 78 PyTorch DDP PR FHAT S2 I, R R BE 52 ST SRk, SR — HEBREE 5K
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o
N

A 5 AR P HAT All-Reduce, 15 FTA 1A R G 5 UG, FREEATBUE (K86 BE R B4 537, Zhuang S5 A SHEH T
— S A MRRI I 2R 07 52, A FH B IR B BEORIT R IX L6 [R) 20 . RE IR BB A2 431 il 22 AR, 5 F AN [R] o gt A2 ST
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