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Survey on Graph Contrastive Learning Methods

LIU Zi-Yang', WANG Chao-Kun', ZHANG Heng’

'(School of Software, Tsinghua University, Beijing 100084, China)
*(Zhejiang Laboratory, Hangzhou 311121, China)

Abstract: Contrastive learning is a self-supervised learning technique widely used in various fields such as computer vision and natural
language processing. Graph contrastive learning (GCL) refers to methods that apply contrastive learning techniques to graph data. A review
is presented on the basic concepts, methods, and applications of graph contrastive learning. First, the background and significance of GCL,
as well as its basic concepts on graph data, are introduced. Then, the mainstream GCL methods are elaborated in detail, including methods
with different graph data augmentation strategies, methods with different graph neural network (GNN) encoder structures, and methods
with different contrastive loss objectives. Finally, three research ideas for GCL are proposed. Research findings demonstrate that graph
contrastive learning is an effective approach for addressing various downstream tasks, including node classification and graph classification.

Key words: graph contrastive learning (GCL); self-supervised learning; graph classification; node classification; graph neural network (GNN)
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PR 2% v, FRATTRT DA B R N T 200 2 = 715 mURAE, ANTTEAT 15 000 38 4L DOR IAEAT: 555 FE AT U, FRATTAT A
{5 R 22 P 48 SR A S A IR B A B 56 () R, AT DAl T R0 R 22 e AR it S, PRI, EEIBIR I L
B Z MRS SMERR R, AU AT Re . REAE. HEHE RA . L8 W SR 1M 3.

To B A SR A B ) RNLAR 2 S AU AN B U vE. O B ) R R B, AR RORAE
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AT, A as % 5 B AR, Jo B ST 6 H bR R BN ThR2E, 12 56 T 50808 o A
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PRI P20 AT [ B 2 ) S MR SR 4 TR A5 28 0 e 7 Y B T2 A 45 v, DA B 2R ) R BRI EZ AL R 7).
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2w Uk P2 R0 R A MRS AR 4R 52, R A 0 R THT DA SE e X R B AL 5 A 2 3 IO si i R xf [ 2% 3
PRI, 7557 5 R 2 T U3 oL 7 A B R AR 4 R 0 B 2 MR P SR R R 2 9 UAE R
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HA EEA% G ] 5 P ot 1 o, T2 > PR Bt 1 o LA SR G 1k, B T8ORR 17 R b 27 20 o B i 494 55
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F /MBS B 2 18] ) BAZ B 7R 58 2 Bt AD-GCL 04k B A i AL P AS B 2 18] 1) A5 8. X Fhst
PLillgs B AR RoR T
minmax I (GNNy, w, (Aug(G.8)), GNNy, w, (Aug(G.))) (6)

0.0 Wi,W,

Hr, 1(,) BARFEMNRAREZ 8 EAF S, AD-GCL 3 Z T B 00 1 T UL 55, R AE B BOHE 16 58 7 6 1 i
¥ L, AD-GCL R T IUMIBRR — 5%, 0. 0RFK T &AL S 1 E £ /O MERAD M.

£ LP-InfoMin 1 LP-InfoBN J5i%H, 78 e AL BEIRL A BR N R AE— Bk i, AT 1830 P A~ B AR ) BLAS B i

/M. R, LP-InfoMin F1 LP-InfoBN A DA s HERN Az sl DUOAS [8] 19 5 30 AR, @k i NRAE R BLYHRfal. |

WRE, BAZ B H/ MU LUEgmID LS E 7 2 ARG B (BTN ), URERITE N T4 L eea iz
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2 =7+A,Z =7+, 2=Ac(AXW,)W,, Z = Ac(AXW,)W, ©)

Hod, AL A ARERBEALEE RS X EEA S (8) AT (9), AT BLR BLUEATTAS B #8245 i N RAE MR I BE LI 75 . AN [R] 1 42,
A3 (8) dad A1 7 AR g 75 T A 20 (9) T B RHR N RAE S I s

AFGRL & — M HRFE T SRR A A B B0 438 5 1 P i b >0 By, Bl U, B et 77 AR RR 1) PR 4o 48 P 285 G
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1
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exp (Sim (Z, Z,-) /'r) + Z exp (Sim (Z,-, Z,-) /T) +exp (Sim (Z,-, Zf) /T)
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P, R IEAE AR A AL T b AR AN K A AL T vt — /N . = eI 45 Rk s B T Xk e S

V| V|
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o, m>0 RRDGRERE. REm WAETEF I T IEFEAXS A GURE AT AR LE 2 B AF 7 — AN BIE N E 5.
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ANFER.
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Ny C
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Z IRV RE B, B IE A AR AR AL

LG B AE AR E,

B = e L ER B} 51 ft 4 B 75 0 A2 44

A LA SRE A AT IE A A 22 3]

R HESREA KA g SHERERZ R
\ ST A I F B L ZN ..
R e A DR AR BP0 o g om0, OO 00 B B
S oy ARSI S e P AR
AT e RS AR R IR M, I T UIZRAL R, 7 BORE gy
Apr G IBYOURI ok it T 2 i) A, BOMNeS e 1 e o IR OO A
AR PLARLE FRE L -
T LA SR B AL 5 9Bk 2 R 45— ks % b g DEOST AR,
=N ERvE e ] o I
KR iHI5 AR A 4, iR i
PR 62 51 BRI G RAT A A5 JE UK, 76 7 528 1 AL S B BODE N 7 B 75 % A2 2% EitEA
i (RSP 171 MR L 2%, B A
e AL ML B R AF AR, o O A T BT
PR AR ORI e i s, s A L i o o OCPERTE SRR Sy pom g
PRI etk SR HURIRRI AL ) o

FLC, RT3 A 28 100 2% 2 i 8 7 RS D PR b 2 S B3k, ol PR GS ok i %) o5 140 SREE MR P A0 ki i 8 O 55
IEAFAEAN R 55 9. i PO G B o BETH 45 K ] 5, W) DAELBRME I 28 St DAk B ik, B R BRI B, (EL
BTGV SRR G B K0 1 558 1) PGS B2 3T SR GO 0 1 & R 21T ) RAE S 17 L) J 4 BE S SO 2 PR 1 ]
Hodfs 18 58 SR O ELRAT R A AT R, (B S o et B, IIZRTTAH B,

B J5, TR T T EEB R H ARG IR L2 ST 5, 8 R AN RN Le i R B ARG & B IS5 L
A A AR AEA IR R A SO I R R S It LA iz, (R T R KB AR A 152, S EURE R R =,
RS RBUZ VRIS RAF BRSSO, (B E AT — REERA R R E RN S, [ =ud
JAGAGR A RENS I IE TR AT I X 20 TR, (B3 5% R i X 5 BRME A DL 5 B UG E, JF HL22 ST T R
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AE TGV 30 0E 3 /2 3 ST AR AR OG5 PR RN 5 VA 36 0F A PRGOS LU SR AIE 06 2 B 7R K T 1 ); A B2 i 2 A 4 2k () B
R TATEAFEAN EAxTt, B B GRS 2 E R, tybE B R R mT AR P, SRR SRR Tk 36t
P R B E, tAETE— 8 R PR M.
3.5 ExttEFEIAEREITHER

S 45 L PR L2 ) 0, JRATTAT LA BTt s FELHCR R [ 28 9 8 S X LR 5 U1 5 B0 L
VAR 3 NSRRI L. AR 2 TAR#IRTIX 3 AP BOHAT TIRAIRE, IR 7 & NS BT 22 ) &
5. 8RT, BATRITEIX 3 BB — 2 = B B A B it 7 BB AR R ZR . X BIRA X ik I
X bl ) R HEAT TR B R A 4.
3.5.1 T e B O 5 A 8 e ) R b 2 3] U9

51 BT BN A 20 SR A B T S 3R ) PR e a5, o A ) [T B A 3 SRR B B B G A S
BF, AR R UG N ¢ HEAT RS 58, X BIRATIR o JF G B ¢ B RIRLEE R AR R L AT RO . By e
B L BIEE i AT I SO B8 i AN sUE PR AR PR B I, 0 AR 0 AR U i SR AR. A EE T AR IRHE M A, R R AR
B L B BB S 2 A 4 ISR L RN TR, BBt R o R O L 32T G 5 T LA o PR A 4 R Y 22
FEME. Z BRI O B R R T

L = Aug(L.6). L = Aug(L.0) (22)

3.5.2  SRAIAN) B e 42 P 5 A HL s R T T I BRI Bl 2 ) v
T LG 2] BELE G AR B B AR SR T AR RN B A I g AR, L an GON A8 T Jn iy T B2 30 1 7
FE, SRiD 35 B B an GE X SR B H RN RAEBOR 2 70, WISE InE AL TR, JRATVIR 25 55 A8 2045 P AN Il 18 b (1 4mig
FULUE AN [F] ) B A 2 W 28 B gl iy bt 56 1 AMIBTESR A GON BEAY, 58 2 AMBTER A GAT B8 KA ER
WF pros:
Z=GCN(AX), Z = GAT(A,X) (23)
TER FHAS [F) P ph 22 P 28 s bl g M 11 v, S0 TR I 503 2% P R v 1 R A0 R PR A L 1) R, FRATT3E4T 1 BA
AN 1) WNGRIT A BERT RGN 55 P AN [5) F Bl 4o 240 X g AR Ry S 2 SR N I R PR 52 2% B, DR 75 BN S S A
Y. SR, eI SEEGFRATT A I, AX Fh B NP 5T 2 B AE AT 52 VS T Y, JCHREIAREELE (W0 GPU) SCHET, Xt it
I AT IER). R BB CPU K2 3R 8E, FATIE v] LU i A7 :IF 47 B 7 vkt — S ARtk IR 2. 41,
T 2 RFEEARFN AT VH B, 7] LA SO0 AN R I85E L gm i a8 ST 55 2 BLBIA R CPU A% O b, A2
T ANAR Y IR B[] 2) AR Y SR B e SR AN () 1) L 28 X g A B 5 4 i v B Tl B 8 1 22 R MR R = o
P, ANEE L E T AR R IR, X ] DUSE A [ Hh 2 ) B 2545 5. 3) R0 bh: SR A [A] B 4 48 I 2 A B )
AR YIRS ) R85 A B3 in, (B2 Ve RE A BT 82 . SR A (5] [ ot 28 D) 5 A i 6 A s v 1 BRI K b 2% 30 5 VR AE S B
N FH HR ) e R B R, AR X — T VR R AR B R AN L.
3.53 R E RBCT IR BN b5 ) T vk
B R BT FR A IR B A8 SIS 45 0 4y T8 B LR A, 3% — R BOPT DA B 0] T B HE PR SR A AR AL 1R AT 7%
45, 5T SO AR RIS, A PR SR A v IR P82 58 S 437 S 17 PR %oy b 2% = By e A P i AN PRI RS 3R, X
P B 77 SR HI 55 T SR 0 R G . DRk, BAT T3 55 SR BmT I S i) B x bl 22 S 53k, BIALIR B R 405 5
LU 2 ST BRI SR 72, 7RI ZRHe A W40 B8, 2 B0E B S F R a0 R B
W, W, — (0.6.0w,w.£) (24)

T « optimize (@, 0, 6T£) (25)

4 N M
P bl 2 2] SR & SR EZ IR 55 H A B T 2 BN 3K BLIRAT T 41 B0 b 2 2 SRR ) — Lo BN, A4

© TEBREEEEIEDT  htp/ www. jos. org. cn



194 HAFFIR 2026 F5F 37 AF 1 &

2 NERRAES (TSRS TN 2R 55) T2 AN LSRR S (7 A7 AR 55 A 53 3 A A 45).
4.1 FEFHES

AT AT N 2% 3 AT AL 2 20 b 1 — TR AT 55, 0 R 7E BRI AU, B0 R AR P 265 w4 R J P R
KE N A S BOARSE. 5 A S ARG V2 B, B 4 T RS B2 AR VER T 45
T A5 A T bR AR AR P AN T A5 0 R R R 288 5 R SR TR BB AT AR o T R A — 40
I — AR, BRE T DASE PR R (512, S 3 A w3 ) Bl 22 0 (9, LRI R AR ).

W AL [k B PR R . ST, HEIER . F1 30 AUC-ROC S5 F ARt AT 1A, X Bk T
W] R AP (R R ) B 22 2 ) AR R L 2, T R 2R T R 88 27 S0 R 1 — TR AT 5, e R Y
AT R O 4% 5 R DA R AT TN, Y2 R T DA B AR AR s B 5 ATk, — T DA R R ST
SN B2 S B3 GRACEM !, GCAY?., MVGRLUAI CCAMI&:,
42 EHHES

P90 S0 — TR RIS 2 ST 55, ¥ BRI A S5 . @ PR B 2 v L o e b2 a2 1. SR U 4532 b
FHTF &AM, ARG AR 2 R 5, b i 25dis B AR s R R B 5 . B0 2 1 3 2 i T 0 e A
P 43 Shm 8. 44 B A 43 B J LA T SO0 R 1) — A AR AT LR R SRR, a0 7 7288, 58 At IX
E=EN

P40 2 e 0 RS 1 AR VB 2 AR R AT VA, AR . RS . BRI F1 230 AUC-ROC, X H
YT )RR (PP IS 1 B 2 2R i) LA R 0 2 UL 25 o0 b 1 — TG 45, Je HORTERIUE B AR
RN, T REE I E A IS AEIR AT B 31528, IE NS5 R BB A28 9 48 43 A1 55 45 F S &
FEICHRE . — e n] DA R 120 FAT 45 1A PGS L 2 ) S04 InfoGraph™, GraphCL™, AD-GCL™#1 SInGRACE"™4%.
43 BREEES

A A HEFE R R G ) — T AT 45, B EARE P R AT v e 2 00 LB 1] FH P B AN M A
ZATET ZHTHETE. WA TEMEFELRS, U B P RIS E SN 25, /R HEE 3 2 H b
) P HEREARATT AT RESE A9 B . M sl FH IR S 2128 XUy ] LS H AL S0, . B4k, T8
ST A FoAt 2R AL P R B 55 B SR HEREAT S5 0 2@ RS B . BIRIER . F1 8. “PIRSHE A1 AUC-
ROC S5 F ARt AT VPl 7 bRt 103 BB T4 2R G0 1) L Ak AR R . — ST DU R b AT 55 1 B 6t L
) BEAFE RGCLY™, AdaGCL™, KGCLP 1 HGCL®1%%,
44 RERNES

SEHR I, PR A S (AN, v T U A A AN B TIUAAT 9 1 2 LA S A s ). S (EE AR
REHRZHHE B EARFEREIE A, EOT DR R . VRS A BRI F . IR 3228 3 A2 G sh#k
FIHHE A P (25 R0 0 B A e, X R AR IR R R BB RS i — R AE R R R H
A 25 PR AR T DAVPAG S 5 AR L F) A 50k, RS e . A EE.. F1 04 AUC-ROC F1 AUC-PR. F&#5 1)
I B M T LA 1) 8 D K% A B e AR 9 P 2 ) (S . — e m DR R S AR AT 45 1 P L 2 ) B A
GCCAD'™., SL-GAD™ I ANEMONE" 2%,

5 BEEFRE

AR BT B2 S T3 AT T REL ST S, BB T B B ST SRR RO S 3G U, X
A [ DG bl 27 5] S A IR A FIB B BETHEAT 1 VR0 2K, G5 25 T AN IR) BB 3 s w7 R Sk, 2T A
(7 ] £ ) 2 i 5 253 8 0 7 RO B35 LS T AN TR B AR R B bR 20 SR B0 35, B 17 3 Ao RO IR L2 2]
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PR Y — L8 T RE AR O S, 5 J e AR R TT 1) A B
5.1 EXEEF I EEIRRI PR FIARR R

FET5 3.4 5 pouf B B ) 7 A Bk RO VAN R, BATIA N B R ns b2 ST i Fe 0 R il LT P

(1) PR b2 ) SEAE S 2% BE B AN/ RIS b2 S) SR03ek (Bt {6 P b e Pl P2 5 SR8 K 19 S i A A
AR E ARBUEIR R EE) KA T KREFFEAXT AT B, X S ECT R EE R 2T, Rl J LR (1
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IR TT SR EBM R 1 SRR A s b, B T DA RS (0 52 2% B2 Bt 2 51 AOHT R Bl R, 94 3o M Tl
FH gnibas Bt TAEREE. I, R0 A B b ST A Rk — b Bt

(2) PEIX b2 2] S AR AL T AR L (P A8 T ST IE U, o8 5 P I 5 PR AR 6 A2 P 4500 L RAE
S22 EAT PR P A~ 6 B . AR, A8 PGS B2 ST R, R AT R FE N B30T PR P ARAE ) o0 B2 Ja8 1k B R A R A AT IR A
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52 R 2
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TR A BRI 59 AR BS BT b2 ST 78 I B 22 1= R 7 i 15 RE BRIk e AN s SR AL 5 P ARV
RN PR A ORI 5E. U4, XT3 5T 18T I e P LA R KRS P B0 L ) SRS AR X . JE R B RIS
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LR ST ST, A BT P B H o S SR R AR R

References

[1] Chitra U, Musco C. Analyzing the impact of filter bubbles on social network polarization. In: Proc. of the 13th Int’l Conf. on Web Search
and Data Mining. Houston: ACM, 2020. 115-123. [doi: 10.1145/3336191.3371825]

[2] Jiang HL, Yu JG, Cheng XZ, Zhang C, Gong B, Yu HT. Structure-attribute-based social network deanonymization with spectral graph
partitioning. IEEE Trans. on Computational Social Systems, 2022, 9(3): 902-913. [doi: 10.1109/TCSS.2021.3082901]

[3] Ahmed W, Vidal-Alaball J, Downing J, Segui FL. COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data.
Journal of Medical Internet Research, 2020, 22(5): €19458. [doi: 10.2196/19458]

[4] Venkatesan M, Prabhavathy P. Graph based unsupervised learning methods for edge and node anomaly detection in social network. In:
Proc. of the Ist IEEE Int’l Conf. on Energy, Systems and Information Processing (ICESIP). Chennai: IEEE, 2019. 1-5. [doi: 10.1109/
ICESIP46348.2019.8938364]

[5] Guo K, Hu YL, Sun YF, Qian SA, Gao JB, Yin BC. Hierarchical graph convolution network for traffic forecasting. In: Proc. of the 35th
AAAI Conf. on Artificial Intelligence. AAAI 2021. 151-159. [doi: 10.1609/aaai.v35i1.16088]

[6] Zhang Q, Chang JL, Meng GF, Xiang SM, Pan CH. Spatio-temporal graph structure learning for traffic forecasting. In: Proc. of the 34th
AAAI Conf. on Artificial Intelligence. New York: AAAI 2020. 1177-1185. [doi: 10.1609/aaai.v34i01.5470]

[7] Lv MQ, Hong ZX, Chen L, Chen TM, Zhu TT, Ji SL. Temporal multi-graph convolutional network for traffic flow prediction. IEEE
Trans. on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. [doi: 10.1109/TITS.2020.2983763]

[8] Guo K, Hu YL, Qian Z, Sun YF, Gao JB, Yin BC. Dynamic graph convolution network for traffic forecasting based on latent network of

© TEBREEEEIEDT  htp/ www. jos. org. cn


https://doi.org/10.1145/3336191.3371825
https://doi.org/10.1109/TCSS.2021.3082901
https://doi.org/10.2196/19458
https://doi.org/10.1109/ICESIP46348.2019.8938364
https://doi.org/10.1109/ICESIP46348.2019.8938364
https://doi.org/10.1609/aaai.v35i1.16088
https://doi.org/10.1609/aaai.v34i01.5470
https://doi.org/10.1109/TITS.2020.2983763

196 HAFFIR 2026 F5F 37 AF 1 &

Laplace matrix estimation. IEEE Trans. on Intelligent Transportation Systems, 2022, 23(2): 1009-1018. [doi: 10.1109/TITS.2020.
3019497]

[9] Ti SX, Pan SR, Cambria E, Marttinen P, Yu PS. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE
Trans. on neural networks and learning systems, 2022, 33(2): 494-514. [doi: 10.1109/TNNLS.2021.3070843]

[10] Yasunaga M, Bosselut A, Ren HY, Zhang XK, Manning CD, Liang P, Leskovec J. Deep bidirectional language-knowledge graph
pretraining. In: Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022.
37309-37323.

[11] Chandak P, Huang KX, Zitnik M. Building a knowledge graph to enable precision medicine. Scientific Data, 2023, 10(1): 67. [doi: 10.
1038/s41597-023-01960-3]

[12] Santos A, Colago AR, Nielsen AB, Niu LL, Strauss M, Geyer PE, Coscia F, Albrechtsen NJW, Mundt F, Jensen LJ, Mann M. A
knowledge graph to interpret clinical proteomics data. Nature Biotechnology, 2022, 40(5): 692-702. [doi: 10.1038/s41587-021-01145-6]

[13] Li MM, Huang KX, Zitnik M. Graph representation learning in biomedicine and healthcare. Nature Biomedical Engineering, 2022, 6(12):
1353-1369. [doi: 10.1038/s41551-022-00942-x]

[14] Ding KZ, Xu Z, Tong HH, Liu H. Data augmentation for deep graph learning: A survey. ACM SIGKDD Explorations Newsletter, 2022,
24(2): 61-77. [doi: 10.1145/3575637.3575646]

[15] Wu LF, Cui P, Pei J, Zhao L, Guo XJ. Graph neural networks: Foundation, frontiers and applications. In: Proc. of the 28th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2022. 4840-4841. [doi: 10.1145/3534678.3542609]

[16] Ahmed M, Seraj R, Islam SMS. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 2020, 9(8):
1295. [doi: 10.3390/electronics9081295]

[17] Sinaga KP, Yang MS. Unsupervised k-means clustering algorithm. IEEE Access, 2020, 8: 80716-80727. [doi: 10.1109/ACCESS.2020.
2988796]

[18] Samek W, Montavon G, Lapuschkin S, Anders CJ, Miiller KR. Explaining deep neural networks and beyond: A review of methods and
applications. Proc. of the IEEE, 2021, 109(3): 247-278. [doi: 10.1109/JPROC.2021.3060483]

[19] Liou CY, Cheng WC, Liou JW, Liou DR. Autoencoder for words. Neurocomputing, 2014, 139: 84-96. [doi: 10.1016/j.neucom.2013.09.
055]

[20] Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional Transformers for language understanding. In: Proc.
of'the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1
(Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019. 4171-4186. [doi: 10.18653/v1/N19-1423]

[21] Brown T, Mann B, Ryder N, ef al. In: Proc. of the 34th Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran
Associates Inc., 2020. 1877-1901.

[22] Goldblum M, Souri H, Ni RK, Shu ML, Prabhu V, Somepalli G, Chattopadhyay P, Ibrahim M, Bardes A, Hoffman J, Chellappa R,
Wilson AG, Goldstein T. Battle of the backbones: A large-scale comparison of pretrained models across computer vision tasks. In: Proc.
of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 29343-29371.

[23] Bai YT, Geng XY, Mangalam K, Bar A, Yuille AL, Darrell T, Malik J, Efros AA. Sequential modeling enables scalable learning for large
vision models. In: Proc. of the 2024 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024. 22861-22872.
[doi: 10.1109/CVPR52733.2024.02157]

[24] Cao YX, Xu JR, Yang C, Wang JA, Zhang YC, Wang CP, Chen L, Yang Y. When to pre-train graph neural networks? From data
generation perspective! In: Proc. of the 29th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023.
142-153. [doi: 10.1145/3580305.3599548]

[25] YinlJ, Li CZ, Yan H, Lian JX, Wang SZ. Train once and explain everywhere: Pre-training interpretable graph neural networks. In: Proc.
of the 37th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023. 35277-35299.

[26] Islam A, Chen CF, Panda R, Karlinsky L, Feris R, Radke RJ. Dynamic distillation network for cross-domain few-shot recognition with
unlabeled data. In: Proc. of the 35th Int’] Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 3584-3595.

[27] Arjannikov T, Tzanetakis G. Cold-start hospital length of stay prediction using positive-unlabeled learning. In: Proc. of the 2021 IEEE
EMBS Int’l Conf. on Biomedical and Health Informatics (BHI). Athens: IEEE, 2021. 1-4. [doi: 10.1109/BHI50953.2021.9508596]

[28] LiuY, Zhu L, Pei SD, Fu HZ, Qin J, Zhang Q, Wan L, Feng W. From synthetic to real: Image dehazing collaborating with unlabeled real
data. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. ACM, 2021. 50-58. [doi: 10.1145/3474085.3475331]

[29] Ahmad W, Ali H, Shah Z, Azmat S. A new generative adversarial network for medical images super resolution. Scientific Reports, 2022,
12(1): 9533. [doi: 10.1038/s41598-022-13658-4]

[30] Zhu JC, Gao LL, Song JK, Li YF, Zheng F, Li XL, Shen HT. Label-guided generative adversarial network for realistic image synthesis.

© TEBREEEEIEDT  htp/ www. jos. org. cn


https://doi.org/10.1109/TITS.2020.3019497
https://doi.org/10.1109/TITS.2020.3019497
https://doi.org/10.1109/TNNLS.2021.3070843
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41597-023-01960-3
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41587-021-01145-6
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1038/s41551-022-00942-x
https://doi.org/10.1145/3575637.3575646
https://doi.org/10.1145/3534678.3542609
https://doi.org/10.3390/electronics9081295
https://doi.org/10.1109/ACCESS.2020.2988796
https://doi.org/10.1109/ACCESS.2020.2988796
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.1016/j.neucom.2013.09.055
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR52733.2024.02157
https://doi.org/10.1145/3580305.3599548
https://doi.org/10.1109/BHI50953.2021.9508596
https://doi.org/10.1145/3474085.3475331
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4
https://doi.org/10.1038/s41598-022-13658-4

X F45 F: Bab e 3 Fik ik o7

IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3311-3328. [doi: 10.1109/TPAMI.2022.3186752]

[31] Zheng ZQ, Bin Y, Lii XO, Wu Y, Yang Y, Shen HT. Asynchronous generative adversarial network for asymmetric unpaired image-to-
image translation. IEEE Trans. on Multimedia, 2023, 25: 2474-2487. [doi: 10.1109/TMM.2022.3147425]

[32] Rao DY, Xu TY, Wu XJ. TGFuse: An infrared and visible image fusion approach based on Transformer and generative adversarial
network. arXiv:2201.10147, 2022.

[33] Hong FT, Zhang LH, Shen L, Xu D. Depth-aware generative adversarial network for talking head video generation. In: Proc. of the 2022
IEEE/CVF Conf. on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022. 3387-3396. [doi: 10.1109/CVPR52688.2022.
00339]

[34] Jia WQ, Liu M, Rehg JM. Generative adversarial network for future hand segmentation from egocentric video. In: Proc. of the 17th
European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 639-656. [doi: 10.1007/978-3-031-19778-9_37]

[35] Zhao YZ, Po LM, Yu WY, Rehman YAU, Liu MY, Zhang YJ, Ou WF. VCGAN: Video colorization with hybrid generative adversarial
network. IEEE Trans. on Multimedia, 2023, 25: 3017-3032. [doi: 10.1109/TMM.2022.3154600]

[36] Karuna EN, Sokolov PV, Gavrilic DA. Generative adversarial approach in natural language processing. In: Proc. of the XXV Int’l Conf.
on Soft Computing and Measurements (SCM). Saint Petersburg: IEEE, 2022. 111-114. [doi: 10.1109/SCM55405.2022.9794898]

[37] Lai CT, Hong YT, Chen HY, Lu CJ, Lin SD. Multiple text style transfer by using word-level conditional generative adversarial network
with two-phase training. In: Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf.
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 3579-3584. [doi: 10.
18653/v1/D19-1366]

[38] Guarino G, Samet A, Nafi A, Cavallucci D. PAGAN: Generative adversarial network for patent understanding. In: Proc. of the 2021 IEEE
Int’l Conf. on Data Mining. Auckland: IEEE, 2021. 1084—1089. [doi: 10.1109/ICDM51629.2021.00126]

[39] Veli¢kovi¢ P, Fedus W, Hamilton WL, Lio P, Bengio Y, Hjelm RD. Deep graph infomax. arXiv:1809.10341, 2018.

[40] You YN, Chen TL, Sui YD, Chen T, Wang ZY, Shen Y. Graph contrastive learning with augmentations. In: Proc. of the 34th Int’l Conf.
on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 5812-5823.

[41] ZhuYQ,Xu YC, YuF, Liu Q, Wu S, Wang L. Deep graph contrastive representation learning. arXiv:2006.04131, 2020.

[42] Sun FY, Hoffmann J, Verma V, Tang J. InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv:1908.01000, 2020.

[43] Suresh S, Li P, Hao C, Neville J. Adversarial graph augmentation to improve graph contrastive learning. In: Proc. of the 35th Int’l Conf.
on Neural Information Processing Systems. Curran Associates Inc., 2021. 15920-15933.

[44] You YN, Chen TL, Wang ZY, Shen Y. Bringing your own view: Graph contrastive learning without prefabricated data augmentations. In:
Proc. of the 15th ACM Int’l Conf. on Web Search and Data Mining. ACM, 2022. 1300-1309. [doi: 10.1145/3488560.3498416]

[45] XiaJ, Wu LR, Chen JT, Hu BZ, Li SZ. SimGRACE: A simple framework for graph contrastive learning without data augmentation. In:
Proc. of the 2022 ACM Web Conf. ACM, 2022. 1070-1079. [doi: 10.1145/3485447.3512156]

[46] Yu JL, Yin HZ, Xia X, Chen T, Cui LZ, Nguyen QVH. Are graph augmentations necessary? Simple graph contrastive learning for
recommendation. In: Proc. of the 45th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Madrid: ACM,
2022. 1294-1303. [doi: 10.1145/3477495.3531937]

[47] Lee N, Lee J, Park C. Augmentation-free self-supervised learning on graphs. In: Proc. of the 2022 AAAI Conf. on Artificial Intelligence.
AAALI, 2022. 7372-7380. [doi: 10.1609/aaai.v36i7.20700]

[48] LiSH, Wang X, Zhang A, Wu YX, He XN, Chua TS. Let invariant rationale discovery inspire graph contrastive learning. In: Proc. of the
39th Int’l Conf. on Machine Learning. 2022. 13052—13065.

[49] Jiang YQ, Huang C, Huang LH. Adaptive graph contrastive learning for recommendation. In: Proc. of the 29th ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining. Long Beach: ACM, 2023. 4252-4261. [doi: 10.1145/3580305.3599768]

[50] Yang YH, Huang C, Xia LH, Li CL. Knowledge graph contrastive learning for recommendation. In: Proc. of the 45th Int’l ACM SIGIR
Conf. on Research and Development in Information Retrieval. Madrid: ACM, 2022. 1434-1443. [doi: 10.1145/3477495.3532009]

[51] YuanY, Lin L. Self-supervised pretraining of Transformers for satellite image time series classification. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 2021, 14: 474-487. [doi: 10.1109/JSTARS.2020.3036602]

[52] Zhang X, Zhao ZY, Tsiligkaridis T, Zitnik M. Self-supervised contrastive pre-training for time series via time-frequency consistency. In:
Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022. 3988-4003.

[53] Deldari S, Smith DV, Xue H, Salim FD. Time series change point detection with self-supervised contrastive predictive coding. In: Proc.
of the 2021 Web Conf. Ljubljana: ACM, 2021. 3124-3135. [doi: 10.1145/3442381.3449903]

[54] Tipirneni S, Reddy CK. Self-supervised Transformer for sparse and irregularly sampled multivariate clinical time-series. ACM Trans. on

© TEBREEEEIEDT  htp/ www. jos. org. cn


https://doi.org/10.1109/TPAMI.2022.3186752
https://doi.org/10.1109/TMM.2022.3147425
https://doi.org/10.1109/CVPR52688.2022.00339
https://doi.org/10.1109/CVPR52688.2022.00339
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1007/978-3-031-19778-9_37
https://doi.org/10.1109/TMM.2022.3154600
https://doi.org/10.1109/SCM55405.2022.9794898
https://doi.org/10.18653/v1/D19-1366
https://doi.org/10.18653/v1/D19-1366
https://doi.org/10.18653/v1/D19-1366
https://doi.org/10.18653/v1/D19-1366
https://doi.org/10.1109/ICDM51629.2021.00126
https://doi.org/10.1145/3488560.3498416
https://doi.org/10.1145/3485447.3512156
https://doi.org/10.1145/3477495.3531937
https://doi.org/10.1609/aaai.v36i7.20700
https://doi.org/10.1145/3580305.3599768
https://doi.org/10.1145/3477495.3532009
https://doi.org/10.1109/JSTARS.2020.3036602
https://doi.org/10.1145/3442381.3449903

198 HAFFIR 2026 F5F 37 AF 1 &

Knowledge Discovery from Data, 2022, 16(6): 105. [doi: 10.1145/3516367]

[55] Yao X, Gao JY, Xu CS. Self-supervised graph contrastive learning for video question answering. Ruan Jian Xue Bao/Journal of Software,
2023, 34(5): 2083-2100 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6775.htm [doi: 10.13328/j.cnki.jos.006775]

[56] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2017.

[57] Veli¢kovi¢ P, Cucurull G, Casanova A, Romero A, Lid P, Bengio Y. Graph attention networks. arXiv:1710.10903, 2018.

[58] Xie YC, Xu Z, Zhang JT, Wang ZY, Ji SW. Self-supervised learning of graph neural networks: A unified review. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 2023, 45(2): 2412-2429. [doi: 10.1109/TPAMI.2022.3170559]

[59] Liu YX, Jin M, Pan SR, Zhou C, Zheng Y, Xia F, Yu P. Graph self-supervised learning: A survey. IEEE Trans. on Knowledge and Data
Engineering, 2023, 35(6): 5879-5900. [doi: 10.1109/TKDE.2022.3172903]

[60] XuKYL, Hu WH, Leskovec J, Jegelka S. How powerful are graph neural networks? arXiv:1810.00826, 2019.

[61] Chen MR, Huang C, Xia LH, Wei W, Xu Y, Luo RH. Heterogeneous graph contrastive learning for recommendation. In: Proc. of the
16th ACM Int’l Conf. on Web Search and Data Mining. Singapore: ACM, 2023. 544-552. [doi: 10.1145/3539597.3570484]

[62] Chen B, Zhang J, Zhang XK, Dong YX, Song J, Zhang P, Xu KB, Kharlamov E, Tang J. GCCAD: Graph contrastive coding for anomaly
detection. IEEE Trans. on Knowledge and Data Engineering, 2023, 35(8): 8037-8051. [doi: 10.1109/TKDE.2022.3200459]

[63] Zheng Y, Jin M, Liu YX, Chi LH, Phan KT, Chen YPP. Generative and contrastive self-supervised learning for graph anomaly detection.
IEEE Trans. on Knowledge and Data Engineering, 2023, 35(12): 12220-12233. [doi: 10.1109/TKDE.2021.3119326]

[64] Jin M, Liu YX, Zheng Y, Chi LH, Li YF, Pan SR. ANEMONE: Graph anomaly detection with multi-scale contrastive learning. In: Proc.
of the 30th ACM Int’l Conf. on Information & Knowledge Management. ACM, 2021. 3122-3126. [doi: 10.1145/3459637.3482057]

[65] Chopra S, Hadsell R, LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In: Proc. of the 2005
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 539-546. [doi: 10.1109/CVPR.2005.
202]

[66] Kiros R, Zhu YK, Salakhutdinov RR, Zemel RS, Torralba A, Urtasun R, Fidler S. Skip-thought vectors. In: Proc. of the 29th Int’1 Conf.
on Neural Information Processing Systems. Montreal: MIT Press, 2015. 3294-3302.

[67] Le Q, Mikolov T. Distributed representations of sentences and documents. In: Proc. of the 31st Int’l Conf. on Machine Learning. 2014.
1I-1188-11-1196.

[68] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. In: Proc. of the 37th
Int’l Conf. on Machine Learning. 2020. 1597-1607.

[69] Tian YL, Sun C, Poole B, Krishnan D, Schmid C, Isola P. What makes for good views for contrastive learning? In: Proc. of the 34th Int’l
Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020. 6827-6839.

[70] LiHY, Wang X, Zhang ZW, Yuan ZH, Li H, Zhu WW. Disentangled contrastive learning on graphs. In: Proc. of the 35th Int’l Conf. on
Neural Information Processing Systems. Curran Associates Inc., 2021. 21872-21884.

[71] Hassani K, Khasahmadi AH. Contrastive multi-view representation learning on graphs. In: Proc. of the 37th Int’l Conf. on Machine
Learning. 2020. 4116-4126.

[72] Zhu YQ, Xu YC, YuF, Liu Q, Wu S, Wang L. Graph contrastive learning with adaptive augmentation. In: Proc. of the 2021 Web Conf.
Ljubljana: ACM, 2021. 2069-2080. [doi: 10.1145/3442381.3449802]

[73] Thakoor S, Tallec C, Azar MG, Azabou M, Dyer EL, Munos R, Veli¢kovi¢ P, Valko M. Large-scale representation learning on graphs via
bootstrapping. arXiv:2102.06514, 2023.

[74] QiuJZ, Chen QB, Dong YX, Zhang J, Yang HX, Ding M, Wang KS, Tang J. GCC: Graph contrastive coding for graph neural network
pre-training. In: Proc. of the 26th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. ACM, 2020. 1150-1160. [doi:
10.1145/3394486.3403168]

[75] You YN, Chen TL, Shen Y, Wang ZY. Graph contrastive learning automated. arXiv:2106.07594, 2021.

[76] Xu DK, Cheng W, Luo DS, Chen HF, Zhang X. InfoGCL: Information-aware graph contrastive learning. In: Proc. of the 35th Int’l Conf.
on Neural Information Processing Systems. Curran Associates Inc., 2021. 30414-30425.

[77] Peng Z, Huang WB, Luo MN, Zheng QH, Rong Y, Xu TY, Huang JZ. Graph representation learning via graphical mutual information
maximization. In: Proc. of the 2020 Web Conf. Taipei: ACM, 2020. 259-270. [doi: 10.1145/3366423.3380112]

[78] Sun QY, Li JX, Peng H, Wu J, Ning YX, Yu PS, He LF. SUGAR: Subgraph neural network with reinforcement pooling and self-
supervised mutual information mechanism. In: Proc. of the 2021 Web Conf. Ljubljana: ACM, 2021. 2081-2091. [doi: 10.1145/3442381.
3449822]

[791 Mo YJ, Peng L, Xu J, Shi XS, Zhu XF. Simple unsupervised graph representation learning. In: Proc. of the 36th AAAI Conf. on Artificial
Intelligence. AAAI, 2022. 7797-7805. [doi: 10.1609/aaai.v36i7.20748]

© TEBREEEEIEDT  htp/ www. jos. org. cn


https://doi.org/10.1145/3516367
http://www.jos.org.cn/1000-9825/6775.htm
http://www.jos.org.cn/1000-9825/6775.htm
http://www.jos.org.cn/1000-9825/6775.htm
https://doi.org/10.13328/j.cnki.jos.006775
https://doi.org/10.1109/TPAMI.2022.3170559
https://doi.org/10.1109/TKDE.2022.3172903
https://doi.org/10.1145/3539597.3570484
https://doi.org/10.1109/TKDE.2022.3200459
https://doi.org/10.1109/TKDE.2021.3119326
https://doi.org/10.1145/3459637.3482057
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1109/CVPR.2005.202
https://doi.org/10.1145/3442381.3449802
https://doi.org/10.1145/3394486.3403168
https://doi.org/10.1145/3366423.3380112
https://doi.org/10.1145/3442381.3449822
https://doi.org/10.1145/3442381.3449822
https://doi.org/10.1609/aaai.v36i7.20748

X F45 F: Bt 3 Fik ik 100

[80] Jiao YZ, Xiong Y, Zhang JW, Zhang Y, Zhang TQ, Zhu YY. Sub-graph contrast for scalable self-supervised graph representation
learning. In: Proc. of the 2020 IEEE Int’l Conf. on Data Mining. Sorrento: IEEE, 2020. 222-231. [doi: 10.1109/ICDM50108.2020.00031]

[81] Bielak P, Kajdanowicz T, Chawla NV. Graph Barlow twins: A self-supervised representation learning framework for graphs. Knowledge-
based Systems, 2022, 256: 109631. [doi: 10.1016/j.knosys.2022.109631]

[82] LilJC, Lu GQ, Li JC. A self-supervised graph autoencoder with Barlow twins. In: Proc. of the 19th Pacific Rim Int’l Conf. on Artificial
Intelligence. Shanghai: Springer, 2022. 501-512. [doi: 10.1007/978-3-031-20865-2_37]

[83] Jin M, Zheng YZ, Li YF, Gong C, Zhou C, Pan SR. Multi-scale contrastive siamese networks for self-supervised graph representation
learning. In: Proc. of the 13th Int’l Joint Conf. on Artificial Intelligence. 2021. 1477-1483. [doi: 10.24963/ijcai.2021/204]

[84] Zheng YZ, Pan SR, Lee VCS, Zheng Y, Yu PS. Rethinking and scaling up graph contrastive learning: An extremely efficient approach
with group discrimination. In: Proc. of the 36th Int’l Conf. on Neural Information Processing Systems. New Orleans: Curran Associates
Inc., 2022. 10809-10820.

[85] Chen D, Zhao X, Wang W, Tan Z, Xiao WD. Graph self-supervised learning with augmentation-aware contrastive learning. In: Proc. of
the 2023 ACM Web Conf. Austin: ACM, 2023. 154-164. [doi: 10.1145/3543507.3583246]

[86] Zhang HR, Wu QT, Yan JC, Wipf D, Yu PS. From canonical correlation analysis to self-supervised graph neural networks. In: Proc. of
the 35th Int’l Conf. on Neural Information Processing Systems. Curran Associates Inc., 2021. 76-89.

R Fh 32528 3k
[55] Whhe, @ a2, A . SE T B R B b 2 ST RO RAT e 285 5 v SR 23R, 2023, 34(5): 2083-2100. http://www.jos.org.cn/1000-
9825/6775.htm [doi: 10.13328/j.cnki.jos.006775]

EEEN

XF45, [, BRI LA T, R S

&R, WL, BIEEE, R, CCF Mt by, BRI ARSI AR it 5 R4, bl 5T
1, W4, B, CCF £lker i, FEWF O RIRTT L, N TE RERERNEL S, SRR

© TEBREEEEIEDT  htp/ www. jos. org. cn


https://doi.org/10.1109/ICDM50108.2020.00031
https://doi.org/10.1016/j.knosys.2022.109631
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.1007/978-3-031-20865-2_37
https://doi.org/10.24963/ijcai.2021/204
https://doi.org/10.1145/3543507.3583246
http://www.jos.org.cn/1000-9825/6775.htm
http://www.jos.org.cn/1000-9825/6775.htm
http://www.jos.org.cn/1000-9825/6775.htm
https://doi.org/10.13328/j.cnki.jos.006775

	1 背景知识
	2 图对比学习相关概念及定义
	2.1 图数据增强阶段
	2.2 图神经网络(GNN)编码阶段
	2.3 对比损失训练阶段

	3 图对比学习方法
	3.1 基于不同图数据增强策略的图对比学习方法
	3.1.1 基于固定式图数据增强策略的图对比学习方法
	3.1.2 基于可学习式图数据增强策略的图对比学习方法
	3.1.3 无图数据增强的图对比学习方法

	3.2 基于不同图神经网络编码器结构的图对比学习方法
	3.2.1 基于对称图神经网络编码器的图对比学习方法
	3.2.2 基于非对称图神经网络编码器的图对比学习方法

	3.3 基于不同对比损失目标的图对比学习方法
	3.3.1 基于标准化温度交叉熵损失的图对比学习方法
	3.3.2 基于杰森香农散度损失的图对比学习方法
	3.3.3 基于三元组边缘损失的图对比学习方法
	3.3.4 基于巴洛孪生损失的图对比学习方法
	3.3.5 基于BYOL损失的图对比学习方法
	3.3.6 基于二元交叉熵损失的图对比学习方法
	3.3.7 基于元学习损失的图对比学习方法
	3.3.8 基于典型相关分析损失的图对比学习方法

	3.4 图对比学习方法分类比较
	3.5 图对比学习方法设计的新思考
	3.5.1 基于拉普拉斯矩阵完成数据增强的图对比学习方法
	3.5.2 采用不同图神经网络模块结构设计的图对比学习方法
	3.5.3 温度系数可训练的图对比学习方法


	4 应　用
	4.1 节点分类任务
	4.2 图分类任务
	4.3 商品推荐任务
	4.4 异常检测任务

	5 总结和展望
	5.1 图对比学习方法面临的挑战和解决思路
	5.2 展　望

	参考文献

