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摘　要: 对比学习是一种在计算机视觉和自然语言处理等领域广泛应用的自监督学习技术. 图对比学习指的是在

图数据上应用对比学习技术的一类方法. 给出图对比学习的基本概念、算法和应用的一个综述. 首先介绍图对比

学习的背景和意义及其在图数据上的基本概念; 然后详细阐述图对比学习的主流方法, 包括基于不同图数据增强

策略的方法分类、基于不同图神经网络编码器结构的方法分类以及基于不同对比损失目标的方法分类等; 最后提

出了 3个图对比学习的研究思路. 研究结果表明, 图对比学习是一项有效的技术, 可以用来解决图数据上节点分类、

图分类等一系列下游任务.
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Abstract:  Contrastive  learning  is  a  self-supervised  learning  technique  widely  used  in  various  fields  such  as  computer  vision  and  natural
language  processing.  Graph  contrastive  learning  (GCL)  refers  to  methods  that  apply  contrastive  learning  techniques  to  graph  data.  A  review
is  presented  on  the  basic  concepts,  methods,  and  applications  of  graph  contrastive  learning.  First,  the  background  and  significance  of  GCL,
as  well  as  its  basic  concepts  on  graph  data,  are  introduced.  Then,  the  mainstream  GCL  methods  are  elaborated  in  detail,  including  methods
with  different  graph  data  augmentation  strategies,  methods  with  different  graph  neural  network  (GNN)  encoder  structures,  and  methods
with  different  contrastive  loss  objectives.  Finally,  three  research  ideas  for  GCL  are  proposed.  Research  findings  demonstrate  that  graph
contrastive learning is an effective approach for addressing various downstream tasks, including node classification and graph classification.
Key words:  graph contrastive learning (GCL); self-supervised learning; graph classification; node classification; graph neural network (GNN)

图是一种抽象的数据结构, 在真实世界中具有广泛的应用, 如社交网络 [1−4]、交通系统 [5−8]、知识图谱 [9−12]等.
图中的节点可以表示各种实体, 如人、物、地点、基因等, 而边则可以表示这些实体之间的关系, 如人与人之间的

社交关系、物品之间的相似性关系、地点之间的距离关系、基因之间的相互作用关系等. 因此, 图数据可以用来

表示各种不同类型的关系网络, 善于捕捉复杂关系和模式, 从而帮助我们更好地理解事物之间的联系和相互作用.
随着人工智能、深度学习和神经网络的崛起, 图数据越来越受到关注 [13−15]. 例如, 在推荐系统中, 我们可以使用图
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神经网络 (graph neural network, GNN)来捕捉用户和物品之间的复杂关系, 从而生成更加精准的推荐结果; 在社交

网络中, 我们可以使用图嵌入方法来学习节点表征, 从而进行节点分类、社区发现等任务; 在交通领域, 我们可以

使用图神经网络来分析交通流量、交通拥堵等问题, 从而为城市规划和交通管理提供支持. 因此, 图数据的研究具

有广泛的应用背景和实际意义, 可以为人工智能、大数据、推荐系统、社交网络等领域提供有力的支持.
无监督学习和自监督学习是机器学习领域中两种重要的方法. 无监督学习主要通过聚类、降维、生成模型等

技术, 从无标签的数据中发现隐藏的模式或数据分组. 典型的无监督学习方法包括: k-means聚类 [16,17]、神经化的

核密度估计 [18]、自编码器 [19]等. 与有监督学习不同, 无监督学习的目标函数不依赖人工标签, 而是基于数据分布

或结构设计, 因此其结果可能对初始化或数据采样更敏感. 自监督学习是一种从无标签数据中学习出有用的表征,
然后将表征应用于下游任务中有标签数据上的机器学习方法. 目前, 自监督学习方法主要可以分为以下 5类.

● 基于预训练模型的方法: 这类方法利用在大规模数据上预训练的模型 (如语言模型 [20,21]、视觉模型 [22,23]和

图模型 [24,25])进行自监督学习, 通过模型微调将预训练模型的知识应用到特定任务中, 以提高模型的表现和泛化能力.
● 基于预测的方法: 这类方法利用无标签数据来预测某个随机变量或一组随机变量的值, 例如预测下一个单

词、下一个字符、下一个帧等. 然后, 利用预测结果来学习数据的特征表示, 并在有标签的数据上进行微调 [26−28].
● 基于对抗生成网络的方法: 这类方法通过训练一个生成网络和一个判别网络, 使它们互相竞争, 从而学习数

据的特征表示. 生成网络的目标是生成能够欺骗判别网络的数据, 而判别网络的目标是正确分类生成网络生成的

数据. 这种方法在图像 [29−32]、音频 [33−35]和自然语言处理 [36−38]领域有着广泛的应用.
● 基于对比学习的方法: 这类方法通过比较两个或多个数据样本, 学习数据的特征表示. 具体来说, 这种方法

通过将一组数据样本与另一组经过修改的数据样本进行比较, 来学习两组数据之间的相似性和差异性. 然后使用

学到的特征表示来进行分类等任务 [39−50].
● 基于时间序列的方法: 这类方法主要应用于时间序列数据的自监督学习. 由于时间序列数据具有连续性和

顺序性, 因此可以设计一些代理任务来学习时间序列数据的特征表示, 例如预测下一个时间点的值、预测时间序

列的未来趋势等 [51−54].
以上列举的这 5类方法并不是完全独立的, 它们可以互相借鉴和融合, 以实现更好的自监督学习效果. 在图数

据挖掘中, 早期的研究主要集中在无监督学习上, 例如通过聚类、降维等技术对图数据进行处理和分析. 然而, 由
于无监督学习无法充分利用有标签的数据, 其效果受到了很大的限制. 随着自监督学习的兴起, 越来越多的研究者

开始探索如何利用自监督学习来改善图数据的处理效果.
图对比学习 (graph contrastive learning, GCL)是图自监督学习中一项非常重要的技术 [1,43−48,55]. 一个典型的图

对比学习框架首先对输入图添加随机噪声来构造多个图视角, 然后通过对比正样本和负样本来学习节点嵌入表

征. 一般情况下, 对于每个锚节点, 它在不同视图中的不同表征被选作正样本, 而在同一视图或不同视图中的不同

节点表征被选作负样本. 图对比学习成为近几年图自监督学习的研究热点, 并在多项下游任务中取得了很好的预

测效果, 甚至超出了经典的图神经网络方法, 比如: 图卷积网络 GCN[56]、图注意力网络 GAT[57]等. 尽管不同的图

对比学习方法的总体设计结构很相似, 但从技术细节上看, 它们又各有特点. 因此, 这就需要我们对图对比学习的

不同组成部分有更深入的了解. 这样的了解对于分析不同图对比学习算法的适用场景以及启发设计新的图对比学

习算法都具有重要意义.
图 1给出了图对比学习算法的分类框架. 总的来说, 图对比学习算法可分为 3个大类: 基于不同图数据增强策

略分类的算法、基于不同图神经网络编码器结构分类的算法和基于不同对比损失目标的算法. 在基于不同图数据

增强策略分类的算法中, 根据图数据增强策略的类型, 可分为使用固定式图数据增强的算法、使用可学习图数据

增强的算法和无图数据增强的算法. 在基于不同图神经网络编码器结构分类的算法中, 根据编码器结构的对称性,
可分为使用对称编码器结构的算法和使用非对称编码器结构的算法. 在基于不同对比损失目标的算法中, 根据损

失函数的类型, 可分为使用标准化温度交叉熵损失的算法、使用杰森香农散度 (Jensen-Shannon divergence)损失

的算法、使用三元组边缘损失的算法、使用巴洛孪生 (Barlow twins)损失的算法、使用 BYOL损失的算法、使

用二元交叉熵损失的算法、使用元学习损失的算法和使用典型相关分析损失的算法.
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图 1　图对比学习算法分类

 
本文在对近年来自监督图数据挖掘的研究进程进行跟踪分析的基础上, 对图对比学习这类工作进行了深入的

分析、总结和归纳. 近期相关综述文献 [58,59]与本文在组织逻辑上存在本质区别: 文献 [58]对图神经网络的自监

督学习方法进行了分类综述, 提出了基于生成、辅助属性、对比和混合方法的细分分类体系; 文献 [59]也对图神

经网络的自监督学习方法进行了较为全面的回顾, 然而在图对比学习部分, 仅通过互信息这一个视角概括图对比

学习方法. 与上述综述不同, 本文聚焦于图对比学习方法的全面综述和细致分类. 在分类上, 本文从 3个不同的角

度将图对比学习方法分成不同的类型.

1) 图数据增强策略: 包括使用固定式图数据增强的算法、使用可学习图数据增强的算法和无图数据增强的

算法.

2) 图神经网络编码器: 包括使用对称编码器结构的算法和使用非对称编码器结构的算法.

3) 对比损失目标: 包括使用标准化温度交叉熵损失的算法、使用杰森香农散度损失的算法、使用三元组边缘

损失的算法、使用巴洛孪生损失的算法、使用 BYOL损失的算法、使用二元交叉熵损失的算法、使用元学习损

失的算法和使用典型相关分析损失的算法.

尤其是, 我们还基于上述 3个不同的角度分别提出了如下设计: 基于拉普拉斯矩阵完成数据增强的图对比学

习方法, 采用不同图神经网络模块结构设计的图对比学习方法和温度系数可训练的图对比学习方法, 这些设计对

未来图对比学习算法的构建具有一定的指导作用. 本文的优点在于: 独特地从多角度分类和统一现有的图对比学

习方法, 提供了一个综合框架, 使研究者能够系统地理解和比较不同的图对比学习算法. 我们提出的分类方法有助

于揭示现有图对比学习研究中的潜在联系和差异, 为未来的研究提供了新的思路和方向.

本文第 1节介绍图对比学习的相关方法和研究现状. 第 2节介绍本文所需的基础知识, 包括图数据增强、图

神经网络编码器和对比损失目标. 第 3节介绍一些主流的图对比学习方法并分析它们的技术特点, 并基于部分方

法提出一些技术改进. 第 4 节介绍图对比学习方法适用的 4 种任务. 最后总结全文, 讨论图对比学习中面临的挑

战, 并展望未来的研究方向.

 1   背景知识

图对比学习是一种不需要依赖监督信息即可学习到节点嵌入表征的方法. 在过去的 5年时间内, 图对比学习
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已被证明能够训练出有效的节点嵌入表征, 该表征可用于包括节点分类、图分类、链接预测等一系列下游任务.
从理论上来看, 图对比学习中使用的图神经网络已被证明可以和Weisfeiler-Lehman图同构测试同样有效 [60]; 从实

用性角度来看, 图对比学习不仅在通用的图挖掘任务上奏效, 在推荐系统、异常检测等任务上也有不错的应用效

果 [49,50,61−64]. 因此, 针对某一具体任务如何设计图对比学习算法, 就变得十分迫切且有意义.
对比学习这一思想最早在 2014年被大家所研究. 当时 Chopra等人 [65]首次提出了孪生结构, 在这一结构中, 模

型从数据本身学习出相似性度量, 并且模型学习使用的编码函数同时处理由原始数据生成的两组数据. 之后, 众多

不同的对比学习工作被相继提出. 比较典型的对比学习算法包括: (1) Skip-thought vectors[66]: 一种基于循环神经网

络的对比学习方法, 通过将一组连续的句子视为一个整体来学习其语义表示. 该方法通过将前文和后文的句子进

行比较来学习语义信息, 从而在无标签数据集上进行训练. (2) Paragraph2Vec[67]: 一种基于神经网络的对比学习方

法, 用于学习文本段落的向量表示. 该方法通过将不同的段落进行比较来学习其语义信息, 从而能够捕捉到文本中

的复杂模式. (3) SimCLR[68]: 一种轻量级的对比学习方法, 用于学习图像的向量表示. 该方法通过将不同的图像进

行比较来学习其视觉信息, 从而能够捕捉到图像中的细微差别. (4) InfoMin[69]: 一种基于信息论的对比学习方法,
旨在最大化不同视图之间的信息量. 该方法通过使用随机游走或扩散过程来生成多个视图, 并使用神经网络来学

习视图之间的相似性. (5) Disentanglement[70]: 一种基于分解的对比学习方法, 旨在将数据中的不同因素或模式进

行解耦, 从而更好地学习数据的特性. 该方法使用随机游走或扩散过程来生成多个视图, 并使用神经网络来学习视

图之间的相似性.
图对比学习研究早在 2019年就已被众多学者所关注. 作为早期的图对比学习算法之一, 2019年, Veličković等

人 [39]提出了 DGI算法, 这一算法基于信息论中的互信息概念构建了自监督图学习的优化目标, 并适用于截断式学

习和直推式学习两种图学习模式. 在此之后, 不少图对比学习算法被相继提出. 比如, (1) GraphCL[40]: 一种针对图

数据的对比学习方法, 通过使用负采样技术来采样无标签的图数据. 该方法通过将同一个图的不同视图进行比较

来学习其相似性, 并将不同图的视图进行比较来学习其差异性. GraphCL 可以用于多图分类、推荐系统等任务.
(2) GRACE[41]: 一种基于 InfoNCE损失函数的图对比学习方法. 基于原始输入图, GRACE通过添加随机扰动生成

两个图视角, 并在两个图视角之间最大化同一节点的表征相似性以及最小化不同节点的表征相似性.
随着时间的推移, 图对比学习的研究方向逐渐偏向学习结构的设计以及在不同任务中如何有效地融入图对比

学习. 前者侧重于分析并重新设计图对比学习中不同阶段的模型结构, 后者则侧重于将图对比学习作为主要或辅

助技术应用于实际问题, 以期最大程度地发挥图对比学习在解决实际问题时的效益. 图对比学习方法种类繁多, 它
们往往会在每个阶段采用不同的方案设计. 以图数据增强阶段为例, InfoGraph[42]和 GraphCL[40]等图对比学习算法

采用了固定式的图数据增强设计; AD-GCL[43]、LP-InfoMin[44]和 LP-InfoBN[44]等图对比学习算法采用了可学习的

图数据增强设计; 最近两年, 研究人员开始关注无增强的图对比学习算法的设计, 这类算法往往不需要对输入的图

数据进行增强, 可直接应用于原图进行对比学习, 其中代表性的工作包括 SimGRACE[45]、SimGCL[46]和 AFGRL[47].
此外, 针对不同的应用任务, 图对比学习的设计也会相应地有所不同. 例如: RGCL[48]、AdaGCL[49]、KGCL[50]、HGCL[61]

等是针对推荐系统任务特殊设计的图对比学习算法; GCCAD[62]、SL-GAD[63]、ANEMONE[64]等则是针对异常检

测任务特殊设计的图对比学习算法.

 2   图对比学习相关概念及定义

G Ĝ、Ǧ
Ĝ、Ǧ Ẑ、Ž

Ẑ、Ž

本节就图对比学习算法的相关概念和基本知识予以介绍. 图对比学习的基本流程如图 2所示. 图对比学习算

法一般包括: 图数据增强、图神经网络编码和对比训练这 3个阶段. 在第 1个阶段中, 图数据增强的主要目的是基

于输入的原始图数据  , 生成两个新的图视角  ; 在第 2个阶段中, 图神经网络编码的主要目的是接收图视角

, 进而提取出两个图视角上的节点嵌入表征  ; 在第 3个阶段中, 对比训练的主要目的是基于节点嵌入表

征  , 设计一个图对比学习优化目标 (例如 InfoNCE 损失函数), 同时使得同一节点的表征相似度最大化且不

同节点的表征相似度最小化. 以下是 3个阶段在常规情况下的具体介绍与形式化表示.

刘子扬 等: 图对比学习方法综述 183



 

编码器

参数共享

图数据增强 图神经网络编码 对比训练

Xi

Xi

对比损
失函数

原始图

图视角 ˆ

ˆ Ziˆ

Xi

ˆ

Zi

ˆ

图视角

ˆ

编码器

图 2　图对比学习基本流程示意图
 

 2.1   图数据增强阶段

V E G = (V,E,X) θ̂、θ̌我们使用   表示节点集,   表示边集, X 表示节点属性矩阵. 给定输入图   和超参数  , 图数据

增强阶段可形式化表示为: 

Ĝ = Aug
(
G, θ̂
)
, Ǧ = Aug

(
G, θ̌
)

(1)

Aug(·) θ̂ = 0.3, θ̌ = 0.4

G Ĝ、Ǧ
θ̂ = 0.1, θ̌ = 0.2 G Ĝ、Ǧ

其中,   表示某种图数据增强方法, 例如属性掩码或边删除等. 以属性掩码为例, 若超参数  , 这

代表在图数据增强时, 相比于原始图  , 图视角   中分别有 30%和 40%的属性被掩盖为 0. 再以边删除为例,

若超参数  , 这代表在图数据增强时, 相比于原始图  , 图视角   中分别有 10%和 20%的边被删

除. 图数据增强阶段对于整个图对比学习具有非常重要的作用, 它定义了两个待学习的目标图数据是什么. 此外,
也有一些图对比学习方法生成 3个或以上新的图视角, 然而它们所使用的图数据增强方法和公式 (1)并无明显区

别, 因此这里不过多介绍. 不同的图数据增强策略所导致的图视角之间的差异性也不尽相同, 所以针对不同任务合

理选择有效的图数据增强策略是一个十分关键的问题.

 2.2   图神经网络 (GNN) 编码阶段

Ĝ =
(
V, Ê, X̂

)
, Ǧ =

(
V, Ě, X̌

)
X̂、X̌ Ĝ、Ǧ

Ĝ、Ǧ Â、Ǎ Ĝ、Ǧ
Ânorm、Ǎnorm Â、Ǎ

在获取到图视角   后 (  分别表示   上的节点属性矩阵), 图神经网络编码

阶段就是使用同一个图神经网络模型对它们进行编码, 进而得到   上的节点嵌入表征. 令   分别为   上

的邻接矩阵,   分别为   的标准化矩阵, 以双层的图卷积网络模型GCN为例, 该过程可以形式化表示为: 

Ẑ = Ânormσ
(
ÂnormX̂W1

)
W2, Ž = Ǎnormσ

(
ǍnormX̌W1

)
W2 (2)

W1 W2 σ(·)(
Â, X̂
) (

Ǎ, X̌
)

Ẑ、Ž

其中,  、  表示第 1、2层 GCN的神经网络权重矩阵,   表示激活函数 (例如 Sigmoid函数). 由于两个通道

上使用了同一个 GCN模型, 而输入的图信息  、  并不相同, 因此每一层 GCN的输出结果也不相同, 故

所得到的节点嵌入表征   也必然不同. 与经典的半监督图深度学习模型 GCN不同的是, 这里的 GCN模型仅

仅用来生成节点嵌入表征, 并不会根据图中的半监督信息对未知标签节点进行预测.

 2.3   对比损失训练阶段

Ẑ、Ž   并不相同, 也就意味着两个图视角下的节点表征存在差异, 这为图对比学习的第 3个阶段 (即对比损失

训练阶段) 提供了必要条件. 常用的对比损失目标有很多, 其中最经典的是信息噪声对比估计 (information
noise contrastive estimation, InfoNCE)损失. 对比损失目标旨在最大化不同视角下相同节点的表征相似度, 同时最

小化不同节点的表征相似度. 对比损失目标的形式化表示如下: 

L =
∑
i∈V

−Sim
(
Ẑi, Ži

)
+
∑

i, j∈V,i, j

Sim
(
Ẑi, Ž j

)
+Sim

(
Ẑi, Ẑ j

)
+Sim

(
Ži, Ž j

)
(3)

Sim (·, ·)其中,   表示两个嵌入表征之间的相似度值. 观察公式 (3)可以看到, 同一节点的嵌入表征相似度计算只需计

算 1对表征间的结果, 而不同节点的嵌入表征相似度计算则需要计算 3对表征间的结果. 在某些图对比学习算法

中, 为了降低模型计算的复杂度, 不同节点的嵌入表征之间的相似度计算最终可简化为仅计算 1–2对嵌入之间的

相似度. 也有一些图对比损失函数的设计采用的是最小化不同图视图中同一节点嵌入表征的距离, 并同时最大化
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不同节点嵌入表征的距离. 尽管用的是表征距离而非表征相似度, 但它们的本质思想仍然是拉近同一节点的嵌入

表征同时拉远不同节点的表征, 故它们的形式化和公式 (3)十分相像, 这里就不再赘述.
G L

W1 W2 G
G G

以上 3个图对比学习阶段基于原始图  , 计算出了对比损失函数   的具体值. 基于深度学习中常用的随机梯

度下降方法和 Adam优化器, 不断更新编码器的网络参数  、 . 在模型训练结束之后, 编码器直接对原始图 

进行嵌入表征的映射, 即可得到   上的节点嵌入表征 Z. 作为嵌入表征的初始值, Z 保存了原始图   上的一系列自

监督信号引导下学习到的判别性特征, 可直接用作下游任务的输入矩阵.

 3   图对比学习方法

以上介绍了图对比学习中的 3个基本过程, 下面基于这 3个过程进行图对比学习方法的分类, 分别是: 基于不

同图数据增强策略的图对比学习方法、基于不同图神经网络编码器结构的图对比学习方法、基于不同对比损失

目标的图对比学习方法.

 3.1   基于不同图数据增强策略的图对比学习方法

现有的图数据增强策略包括 3类. 第 1类是固定式图数据增强, 这类策略往往在图对比学习算法训练之前就

确定好了图增强的参数, 该参数在整个对比训练的过程中保持不变. 第 2类是可学习式图数据增强, 这类策略相比

于传统的固定式图数据增强更加灵活, 在对比训练的过程中图增强参数不断更新, 以进一步释放图对比学习的潜

力. 第 3类是无图数据增强的策略, 和前两类策略不同的是, 该策略摒弃了图数据增强环节, 一方面减少了模型结

构的复杂性, 另一方面也降低了使用到不兼容图数据增强策略的风险.
 3.1.1    基于固定式图数据增强策略的图对比学习方法

Ĝ、Ǧ
θ̂、θ̌

固定式图数据增强的示意图如图 3 所示. 该策略具有明显的特点: 在生成图视角   时, 图数据增强参数

 保持不变.
  

编码器
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图 3　固定式图数据增强
 

Ĝ、Ǧ Ĝ、Ǧ
典型的基于固定式图数据增强的图对比学习算法有 GRACE[41]和 GraphCL[40]. GRACE通过带有固定参数的

“边随机删除”和“属性掩码”两个策略得到图视角  . 所生成的   可以用于节点级别的对比学习训练, 生成

的节点嵌入表征可直接用于节点级别的下游任务, 例如节点分类.

G
G

G G

G G
Ĝ G

与 GRACE不同的是, GraphCL旨在改善图级别 (例如图分类)这样的图级别的下游任务. 在图数据增强策略

上, GraphCL精心设计了 4种增强策略, 包括: 节点丢弃、边置换、属性掩码和子图提取. 这 4种策略的信息如表 1
所示. 具体来说, (1) 节点丢弃: 给定图  , 节点丢弃将随机丢弃某些节点及其与之相关的链接信息. 它所强化的基

本先验是, 节点的部分缺失不会影响   的语义.每个节点的丢弃概率服从独立同分布. (2) 边置换: 它通过以一定概

率随机添加或删除   中的边, 对   的连通结构进行扰动. 在图对比学习框架下, 这种操作用于构建正样本对, 要求

模型学习到的表示对边连通模式的变化具有鲁棒性. 具体而言, 每条边的增删通常独立地依据同一分布 (如伯努利

分布)进行采样, 从而保证该过程满足独立同分布假设. (3) 属性掩码: 属性掩码会提示模型使用其上下文信息 (即
剩余属性)恢复被掩盖的节点属性. 其中潜在的基本假设是: 缺少部分节点属性不会对模型预测产生太大影响. (4)
子图提取: 通过使用随机游走从   中采样一个子图, 它假设   的语义可以在其局部结构中得到很大程度的保留.
在具体设计算法时, 以上 4种策略可以通过任意两两组合的形式来得到具体的图数据增强策略, 比如:   通过对 
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Ǧ G使用节点丢弃 (丢弃概率为 0.2) 得到,   通过对   使用属性掩码 (掩码概率为 0.3) 得到. 通过一系列的对比实验,

You等人 [40]发现了使用不同图数据增强方法组合的方式将使得图对比学习获益更大等各种有价值的结论.
 
 

表 1　GraphCL中使用的 4种图数据增强方法概述
 

名称 相关的图信息 解释

节点丢弃 节点、边 随机移除部分节点, 保持对整体语义的不变性

边置换 边 随机增删边, 提升对链接关系变化的鲁棒性

属性掩码 节点 随机掩蔽节点属性, 增强对局部特征缺失的鲁棒性

子图提取 节点、边 从局部子图中恢复全局语义, 鼓励模型捕获结构上下文信息

 

此外, 固定式图数据增强策略还包括个性化页面排名 (personalized PageRank, PPR)、热核扩散和自适应增强

策略等. 例如, MVGRL方法 [71]采用了 PPR和热核扩散策略; GCA方法 [72]采用了自适应增强策略. 具体来说, PPR
和热核扩散都属于图扩散方法, 它们均采用扩散矩阵 S 来代替邻接矩阵来实现图神经网络中的消息传递功能.
PPR中计算矩阵 S 的公式如下: 

S = exp
(
tAD−1− tIN

)
(4)

其中, t 是扩散时间, A 和 D 分别是邻接矩阵和度矩阵. 而热核扩散中计算矩阵 S 的公式如下: 

S = α
(
IN − (1−α)D−1/2AD−1/2

)−1
(5)

IN α其中,   表示 N×N 的单位矩阵 (N 为图中节点数量),   表示随机游动中的隐形传送概率. 在MVGRL中, 对比学习

的两个通道分别使用邻接矩阵 A (表示图结构的局部视图)和扩散矩阵 S (表示图结构的全局视图)进行消息传递,
这样能够最大化从这两个视图学习到的表征之间的一致性, 允许模型同时编码丰富的局部和全局信息. 相比传统

的固定数据增强 (即在训练阶段固定数据增强参数, 且在训练前不对数据集做特定处理), GCA的数据增强策略具

有自适应特点 (即虽然在训练阶段也固定数据增强参数, 但是在训练前会对数据集做自适应处理): 它首先通过网

络中心性度量识别重要的边和特征维度, 然后在拓扑层面以更高的概率随机删除不重要的边以加强模型对网络连

接模式的识别, 在节点属性层面则通过在不重要特征维度上添加更多噪声来突出底层语义信息.
 3.1.2    基于可学习式图数据增强策略的图对比学习方法

相比传统的固定式图数据增强, 可学习式图数据增强具有更大的灵活性, 它放松了图对比学习中图数据增强

参数不能调整更新的约束. 可学习式图数据增强的示意图如图 4所示. 一般来说, 可学习图数据增强采用了两阶段

的学习模式: 在第 1阶段, 算法固定住编码器的网络参数, 同时更新图数据增强参数; 在第 2阶段, 算法固定住图数

据增强参数, 同时更新编码器的网络参数. 从中我们不难发现, 固定式图数据增强策略仅是可学习图数据增强策略

的第 2阶段, 在方法灵活性上大大受限.
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图 4　采用两阶段学习模式的可学习式图数据增强
 

典型的基于可学习式图数据增强的图对比学习算法有 AD-GCL[43]、LP-InfoMin[44]和 LP-InfoBN[44]. AD-GCL
采用对抗学习的思路来同时优化图数据增强参数和编码器网络参数. 具体来说, 在第 1阶段, AD-GCL的优化目标
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是最小化两个图视角之间的互信息; 在第 2阶段, AD-GCL的优化目标是最大化两个图视角之间的互信息. 这种对

抗训练目标的形式化表示如下: 

min
θ̂,θ̌

max
W1 ,W2

I
(
GNNW1 ,W2

(
Aug
(
G, θ̂
))
,GNNW1 ,W2

(
Aug
(
G, θ̌
)))

(6)

I (·, ·)
θ̂、θ̌

其中,   表示两个嵌入表征之间的互信息. AD-GCL 主要侧重图级别的下游任务, 因此在图数据增强方法的选

择上, AD-GCL采用了边删除这一方法,   代表了全部边集合中有多少概率的边被删除.
在 LP-InfoMin和 LP-InfoBN方法中, 在最大化图视角的嵌入表征一致性时, 它们鼓励两个图视角的互信息最

小化. 因此, LP-InfoMin和 LP-InfoBN可以显式地推动生成器以不同的方式工作, 避免嵌入表征出现坍塌危机. 直
观来看, 互信息最小化可以使编码器丢弃更多不相关的信息 (或干扰因素), 以促进模型在下游任务上能够有效泛

化. LP-InfoMin和 LP-InfoBN的训练目标形式化定义如下:  
min

W1 ,W2

I
(
GNNW1 ,W2

(
Aug
(
G, θ̂
))
,GNNW1 ,W2

(
Aug
(
G′, θ̌
)))
− I
(
GNNW1 ,W2

(
Aug
(
G, θ̂
))
,GNNW1 ,W2

(
Aug
(
G, θ̌
)))

θ̂, θ̌ = argminθ̂′ ,θ̌′ R
(
G,G′, θ̂′, θ̌′,W1,W2

) (7)

R(·) G′ G其中,   表示奖励函数,   表示通过负采样得到的除   以外的图.
 3.1.3    无图数据增强的图对比学习方法

最近两年, 无图数据增强的图对比学习方法开始流行起来, 其示意图如图 5所示. 无图数据增强的图对比学习

具有以下优势. (1) 简单性和效率: 无图数据增强的图对比学习在概念上更简单, 计算效率更高. 它不需要生成输入

数据的增强版本, 简化了计算成本高昂的过程. (2) 减少数据预处理: 无图数据增强的图对比学习消除了设计和应

用特定于图数据的增强策略的需要. 这不仅简化了图数据预处理步骤, 同时也降低了引入噪声或偏差的风险.
(3) 稳定性: 无图数据增强的图对比学习算法在训练过程中通常更稳定. 图数据增强会引入随机性, 使训练更难控

制, 从而导致潜在的过拟合或收敛问题. (4) 可解释性: 由于对比学习直接作用于原始图数据, 因此学习的嵌入表征

更具可解释性, 因为它们反映了数据中的固有结构和关系, 而无需外部转换.
 
 

Zi

ˆ

Ziˆ

Xi
对比损
失函数

编码器

编码器

无图数据增强

图 5　无图数据增强的图对比学习流程
 

典型的无图数据增强的图对比学习算法有 SimGRACE[45]、SimGCL[46]和 AFGRL[47]. SimGRACE摒弃了图数

据增强阶段, 并对图神经网络编码器做了修改. 具体来说, SimGRACE 对其中一个图神经网络编码器的每一层网

络参数添加了随机高斯噪声, 其形式化表示如下: 

Ẑ = Âσ
(
ÂX̂W1

)
W2, Ž = Ǎσ

(
ǍX̌W′

1

)
W′

2, W′
1 =W1+η ·∆W1 , W′

2 =W2+η ·∆W2 (8)

∆W1、∆W2
其中,   代表随机高斯噪声, 服从高斯分布. 从公式 (8)我们不难看出: 不同于传统的图对比学习方法使用

参数共享的图神经网络编码器, SimGRACE使得两个通道上的编码器参数存在差异化, 并且这种差异化具有一定

随机性. 这种操作对于无图数据增强的算法是十分必要的, 因为对比学习的两个对象要存在差异性, 否则会陷入嵌

入表征坍塌的问题.
SimGCL方法基于表征分布的均匀性进行设计, 并且方法中的均匀性更加可控. SimGCL摒弃了图数据增强,

取而代之的是将随机均匀噪声添加到原始嵌入表征上, 以进行表征级别的数据扩充. 尽管添加不同随机噪声制造

了差异性, 但是这种差异性是可控的. 与使用图数据增强的方法相比, 在表征上添加随机噪声更容易将表征正则化

为一个均匀分布, 同时效率也得到很大的提升. SimGCL方法中添加随机噪声的形式化定义如下所示: 
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Ẑ′ = Ẑ+∆1, Ž′ = Ž+∆2, Ẑ = Âσ
(
ÂX̂W1

)
W2, Ž = Ǎσ

(
ǍX̌W1

)
W2 (9)

∆1、∆2其中,   代表随机噪声. 对比公式 (8) 和 (9), 可以发现它们本质上都是给嵌入表征添加随机噪声. 不同的是,
公式 (8)通过间接方式添加噪声, 而公式 (9)则直接对嵌入表征添加噪声.

AFGRL是一种摒弃了负样本对和图数据增强的图对比学习算法. 具体来说, 它设计了非对称的图神经网络编

码器 (我们将在第 3.2 节进行具体介绍), 从而使得模型仅需要对比正样本对. 此外, 在构造正样本对时, 它通过邻

接矩阵、k-NN和 k-means方法形成每个节点的正样本节点. 最终, AFGRL的优化目标形式化定义如下所示: 

L = − 1
|V|

|V|∑
i=1

∑
j∈Pi

ZiHT
j

||Zi || · ||H j ||
(10)

Pi Zi、H j其中,   表示由邻接矩阵、k-NN和 k-means这 3种方法得到的节点 i 的正样本节点集,   表示两个非对称编

码器得到的节点嵌入表征.

 3.2   基于不同图神经网络编码器结构的图对比学习方法

当前图对比学习方法中的图神经网络编码器结构主要包括两类: 一类是对称的编码器结构, 另一类是非对称

的编码器结构.
 3.2.1    基于对称图神经网络编码器的图对比学习方法

传统的图对比学习算法采用对称的编码器结构, 在这种结构中, 两个通道上的编码器采用了共享参数的形式,
如图 2所示. 在具有共享编码器参数的图对比学习中, 一个关键思想是使用同一个编码器网络来嵌入正样本对和

负样本对. 该共享编码器负责将节点或子图映射到进行相似性对比的共享潜在空间. 通过共享编码器参数, 模型可

以学习捕捉数据中的常见模式和特征, 使表示更具信息性和可转移性.

G̃ G Ẑ G̃ Ž

Ẑ Ž G Ĝ

DGI[39]是一个典型的基于对称图神经网络编码器的图对比学习方法. 其主要步骤如下: (1) 通过变形函数得到

一个变形图  ; (2) 使用编码器得到输入图   的节点嵌入表征  ; (3) 使用编码器得到变形图   的节点嵌入表征  ; (4) 基
于   和  , 使用 readout函数得到输入图   的图嵌入表征  ; (5) 根据对比损失函数优化更新编码器中的网络参数.
 3.2.2    基于非对称图神经网络编码器的图对比学习方法

出于模型复杂度优化的需要 (一般是为了简化图数据增强阶段或负样本对的对比), 基于非对称图神经网络编

码器的图对比学习方法被设计出来. 它们在编码器结构上设置了不对称的两个图神经网络模型, 其示意图如图 6
所示. 在编码器结构上, 上面通道的编码器 A和编码器 B与下面通道的编码器 A构成了不对称的结构特点.
  

编码器
A
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图 6　基于非对称图神经网络编码器的图对比学习流程
 

BGRL[73]是典型的基于非对称图神经网络编码器的图对比学习方法. BGRL方法设计了两个不同的编码器, 分
别命名为在线编码器和目标编码器. 在更新网络参数时, 两个编码器的更新目标并不相同: 在线编码器的更新目标

是使得两个编码器生成的节点嵌入表征尽可能地接近 (比如使用余弦相似度最大化的方式), 目标编码器的更新目

标是采用了在线编码器参数的指数滑动平均值. 如此设置的原因在于: 在线编码器旨在保持两个编码器的一致性,
目标编码器旨在维持两个编码器的差异性.

 3.3   基于不同对比损失目标的图对比学习方法

在不同图对比学习方法中, 对比损失目标的设计也不尽相同. 当前主流的对比损失目标主要包括 8类, 分别为

标准化温度交叉熵损失、杰森香农散度损失、三元组边缘损失、巴洛孪生损失、BYOL损失、二元交叉熵损失、

188  软件学报  2026年第 37卷第 1期



元学习损失和典型相关分析损失.
 3.3.1    基于标准化温度交叉熵损失的图对比学习方法

标准化温度交叉熵 (normalized temperature-scaled cross entropy)损失的目标是最大化正样本对间的相似度并

最小化负样本对间的相似度. 该损失函数在图对比学习中有着广泛的应用, 其形式化定义如下所示: 

L = − 1
|V|

|V|∑
i=1

log
exp
(
Sim
(
Ẑi, Ži

)
/τ
)

exp
(
Sim
(
Ẑi, Ži

)
/τ
)
+

|V|∑
j=1,i, j

exp
(
Sim
(
Ẑi, Ž j

)
/τ
)
+ exp

(
Sim
(
Ẑi, Ẑ j

)
/τ
) (11)

τ τ其中,   表示温度系数. 公式 (11)中的温度系数   起到对相似度结果进行放缩的作用. GCA[72]、GCC[74]、JOAO[75]、

InfoGCL[76]是典型的基于标准化温度交叉熵损失的图对比学习方法. 它们的优化目标和公式 (11)相同, 这里就不

再赘述.
 3.3.2    基于杰森香农散度损失的图对比学习方法

杰森香农散度损失的目标是最大化同一节点表征的互信息, 同时最小化不同节点表征的互信息. 其形式化定

义如下所示: 

L = − 1
|V|

|V|∑
i=1

MI
(
Ẑi, Ži

)
+

|V|∑
j=1,i, j

MI
(
Ẑi, Ž j

)
(12)

MI (·, ·)其中,   表示两个表征之间的互信息. InfoGraph[42]和 InfoGraph*[42]是两个典型的基于杰森香农散度损失的图

对比学习方法, 它们的优化目标正如公式 (12)所示. InfoGraph和 InfoGraph*最大化了图嵌入表征和不同尺度的子

结构 (例如, 节点、边、三角子图)的嵌入表征之间的互信息. 如此做法可以让图级表示对图数据的各个方面进行

编码. InfoGraph*在 InfoGraph的基础上做了一些改进, 这是 InfoGraph在半监督学习场景中的扩展. InfoGraph*最
大化了 InfoGraph学习的无监督图表征与现有监督方法学习的有监督图表征之间的互信息. InfoGraph*方法体现

了图对比学习不仅可以作为一种预训练嵌入表征的技术, 同时也可以作为一个辅助性技术用于提升半监督图表征

学习方法的效果. 此外, GMI[77]和 SUGAR[78]也是典型的基于杰森香农散度损失的图对比学习方法. GMI通过图互

信息度量输入图和隐层表示之间的相关性, 保留和提取图数据中的丰富信息, 实现无监督学习. SUGAR通过分层

子图级别的选择和嵌入机制, 提取显著子图以重建简化图, 从而揭示子图级别的模式, 实现更具解释性的图分类.
SUGAR采用强化池化机制自适应选择显著子图, 并通过自监督互信息机制, 使子图嵌入关注全局图结构属性, 从
而提高模型的泛化能力和区分能力.
 3.3.3    基于三元组边缘损失的图对比学习方法

和前两种损失目标不同的是, 三元组边缘 (triplet margin)损失考虑了正样本对和负样本对相似度之间的距离

性, 即正样本对相似度要比负样本对相似度要高出一个阈值. 三元组边缘损失函数的形式化定义如下: 

L =
|V|∑
i=1

|V|∑
j=1,i, j

max
(
0,Sim

(
Ẑi, Ž j

)
−Sim

(
Ẑi, Ži

)
+m
)

(13)

m > 0 m其中,   表示边缘阈值系数. 系数   的存在导致了正样本对和负样本对的相似度之间存在一个阈值的差异.
SUGRL[79]和 SUBG-CON[80]是典型的基于三元组边缘损失的图对比学习方法, 其优化目标如公式 (13)所示, 这里

不再赘述.
 3.3.4    基于巴洛孪生损失的图对比学习方法

Ẑ、Ž

巴洛孪生损失背后的核心思想是鼓励同一节点在不同图视图上的表征相似, 同时确保它们也是去相关或正交

的. 在计算巴洛孪生损失时, 需要计算互相关矩阵, 这一矩阵是根据   来计算的. 互相关矩阵捕获了表征中不

同元素之间的成对关系, 目标是鼓励该矩阵接近单位矩阵, 表明表征是去相关的. 巴洛孪生损失的形式化定义如下: 

L =
|V|∑
i=1

(1−Cii)2+λ

|V|∑
i=1

|V|∑
j=1,i, j

Ci j
2 (14)
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C λ其中,   表示互相关矩阵,   表示平衡系数. 使用巴洛孪生损失具有两个优势. (1) 缓解过拟合: 通过促进表征之间的

去相关, 巴洛孪生损失可以帮助减少过拟合. 当模型学习到数据中的噪声或不相关模式时, 就会发生过拟合. 损失

的去相关方面鼓励图对比学习算法只关注捕捉最相关和最有意义的信息. (2) 强可解释性: 学习到的表征经常被解

耦开, 这意味着特征空间的不同维度对应于数据的不同语义意义方面. 这可以使表征更具可解释性, 并有助于理解

图对比学习算法所学到的内容. 典型的基于巴洛孪生损失的图对比学习方法有 G-BT[81]和 CBGAE[82]. 它们的损失

函数如公式 (14)所示, 这里不再赘述.
 3.3.5    基于 BYOL损失的图对比学习方法

BYOL损失通常与非对称的图神经网络编码器结构联合使用. 在图对比学习中使用 BYOL损失时, 方法中通

常包含两个编码器: 在线编码器和目标编码器. 在更新网络参数的过程中, 这两个编码器有不同的更新目标. 在线

编码器的目标是使两个编码器生成的节点嵌入表征尽可能相似 (例如, 通过最大化余弦相似度). 而目标编码器则

采用在线编码器参数的指数滑动平均值进行更新. 这种设计的原因是: 在线编码器旨在确保两个编码器的一致性,
而目标编码器则用于保持两者之间的适度差异. 具体来说, BYOL损失形式化定义如下: 

L
(
θ̂, θ̌
)
= − 1
|V|

|V|∑
i=1

ZiHT
i

||Zi || · ||Hi ||
(15)

Zi Hi θ̂ θ̌其中,   和   表示两个通道上得到的节点 i 的表征. 在线编码器参数   和目标编码器参数   的更新形式化分别如下: 

θ̂← optimize
(
θ̂, θ̌,∂θ̂L

(
θ̂, θ̌
))

(16)
 

θ̌← γθ̌+ (1−γ) θ̂ (17)

γ其中,   表示衰减系数. BGRL[73]和MERIT[83]是典型的采用 BYOL损失的图对比学习方法. 例如, MERIT模型使用

动量驱动的暹罗结构 (包含在线编码器和目标编码器)和多尺度对比学习, 生成局部和全局视角的增强视图, 并通

过跨视图和跨网络对比目标最大化不同视图和网络间的节点表征一致性, 实现无监督节点表征学习.
 3.3.6    基于二元交叉熵损失的图对比学习方法

二元交叉熵损失是一种简易高效的损失函数, 其形式化定义如下: 

L = − 1
2 |V|

2|V|∑
i=1

yilogŷi+ (1− yi) log(1− ŷi) (18)

yi yi = 1 yi = 0 ŷi其中,   表示节点 i 是否发生坍塌 (若坍塌,  ; 否则,  ),   表示对节点 i 是否发生坍塌的预测值. GGD[84]是

典型的基于二元交叉熵损失的图对比学习方法. GGD通过引入群体判别方法, 避免相似度计算. 同时, GGD直接

使用二元交叉熵损失来区分图对比学习中两组节点样本, 大大减少了训练时间和内存消耗, 并在大规模数据集上

以更少的训练轮次达到竞争性能.
 3.3.7    基于元学习损失的图对比学习方法

Lcl Lap元学习损失由两部分损失构成——对比损失   和分类损失  : 

L = βLcl+ (1−β)Lap (19)

β Lcl Lap其中,   是控制两项损失比例的超参数,   为公式 (15)中的 BYOL损失. 分类损失   的形式化定义如下: 

Lap = −
Nb∑
i=1

C∑
j=1

yi, j log ŷi, j (20)

yi, j ŷi, j其中, Nb 表示一个批次内的节点数量, C 表示类别数量,   和   均为非 0 即 1 的值, 分别表示节点 i 是否属于类

别 j 的真实值和预测值. ABGML[85]模型通过构建增强池随机采样数据增强方法, 并结合对比学习和增强感知预测

任务, 提高了数据增强的多样性和表征学习的效果. ABGML采用多任务学习和模型无关元学习, 在子任务中进行

训练, 实现了对新任务的快速适应和更好的泛化能力.
 3.3.8    基于典型相关分析损失的图对比学习方法

CCA方法 [86]中设计了典型相关分析损失, 该损失的形式化表示如下: 
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L = || Ẑ− Ž ||2F +λ
(
|| ẐTŽ− I ||2F + || ŽTẐ− I ||2F

)
(21)

Ẑ Ž λ I其中,   和   表示两个通道上得到的图表征,   表示正则化项对应的平衡系数,   表示单位矩阵. 典型相关分析损失

有两方面的特点: 1)通过正则化鼓励不同特征维度捕捉不同语义, 2)最大化两视图间的相关性.

 3.4   图对比学习方法分类比较

我们首先对本文涉及的所有方法进行系统整理, 并以表格的形式汇总这些方法的关键特征 (如表 2所示), 包

括数据增强方式、图神经网络结构、对比优化目标、下游任务以及时空复杂度等读者可能关注的点. 此表格将有

助于读者更清晰地理解和比较不同方法的特点.
 
 

表 2　不同图对比学习方法技术特点对比
 

方法名 数据增强方式 图神经网络结构 对比优化目标 下游任务 时间复杂度 空间复杂度

DGI[39] 固定式 对称编码器 杰森香农散度 节点分类 N2HO( ) O(E+ND+2NH)
GraphCL[40]

固定式 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
GRACE[41]

固定式 对称编码器 标准化温度交叉熵 节点分类 N2HO( ) O(E+ND+2NH)
InfoGraph[42] 固定式 对称编码器 杰森香农散度 图分类 N2HO( ) O(E+ND+2NH)
InfoGraph*[42] 固定式 对称编码器 杰森香农散度 图分类 N2HO( ) O(E+ND+2NH)
AD-GCL[43]

可学习式 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
LP-InfoMin[44] 可学习式 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
LP-InfoBN[44]

可学习式 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
SimGRACE[45]

无图数据增强 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
SimGCL[46]

无图数据增强 对称编码器 标准化温度交叉熵 商品推荐 O(BH+BNH) O(2BH)
AFGRL[47]

无图数据增强 对称编码器 BYOL 节点分类 NHO( ) O(E+ND+2NH)
MVGRL[71]

固定式 对称编码器 杰森香农散度 节点分类 N2HO( ) O(E+ND+3NH)
GCA[72]

固定式 对称编码器 标准化温度交叉熵 节点分类 N2HO( ) O(E+ND+2NH)
BGRL[73]

固定式 非对称编码器 BYOL 节点分类 NHO( ) O(E+ND+2NH)
GCC[74]

固定式 非对称编码器 标准化温度交叉熵 节点/图分类 N2HO( ) O(E+ND+2NH)
JOAO[75]

可学习式 对称编码器 标准化温度交叉熵 图分类 N2HO( ) O(E+ND+2NH)
InfoGCL[76]

固定式 对称编码器 标准化温度交叉熵 节点/图分类 N2HO( ) O(E+ND+2NH)
GMI[77] 固定式 对称编码器 杰森香农散度 节点分类, 链接预测 N2HO( ) O(E+ND+2NH)

SUGAR[78]
固定式 对称编码器 杰森香农散度 图分类 N2HO( ) O(E+ND+2NH)

SUGRL[79]
无图数据增强 非对称编码器 三元组边缘 节点分类 N2HO( ) O(E+ND+2NH)

SUBG-CON[80]
固定式 对称编码器 三元组边缘 节点分类 N2HO( ) O(E+ND+2NH)

G-BT[81]
固定式 对称编码器 巴洛孪生 节点分类 N2HO( ) O(E+ND+2NH)

CBGAE[82]
固定式 对称编码器 巴洛孪生 节点分类 N2HO( ) O(E+ND+2NH)

MERIT[83]
固定式 非对称编码器 标准化温度交叉熵 节点分类 N2HO( ) O(E+ND+2NH)

GGD[84]
固定式 对称编码器 二元交叉熵 节点分类 ND2O( ) O(E+ND+2NH)

ABGML[85]
可学习式 非对称编码器 元学习损失 节点分类 NHO( ) O(E+ND+2NH)

CCA[86]
固定式 对称编码器 典型相关分析 节点分类 N2HO( ) O(E+ND+2NH)

注: N、E、D表示图中节点数量、边数量、节点属性数量, H表示嵌入表征的维度, B表示批次的大小
 

此外, 为了更加形象、清晰地比较不同的图对比学习方法种类, 我们在表 3中列举了不同图对比学习方法种

类的关注角度、概述、各自的优势和劣势.

首先, 对于基于图数据增强分类的图对比学习算法, 不难发现使用固定式图数据增强的算法往往设计简单、

易于操作, 这种简易性使得该类算法在复杂度上具有明显的优势, 但是缺乏一定的算法灵活性; 使用可学习图数据
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增强的算法设计灵活, 因此能够适应模型训练时编码器网络参数的调整改变, 但是由于图数据增强阶段参与到了

模型训练过程中, 必然会带来额外的复杂度开销; 无图数据增强的算法简化了图对比学习的整体流程, 降低了算法

对图数据增强参数的依赖, 但是这类算法往往需要设计复杂的图神经网络编码器, 因此存在节点表征坍塌的风险.
 
 

表 3　图对比学习方法分类及优劣势
 

关注的角度 方法分类 方法概述 方法优势 方法劣势

图数据增强

使用固定式图数据
增强的算法

在模型训练中的图数据增强阶段, 图
数据增强参数保持不变

图数据增强阶段设计简单、
易于操作, 不会带来额外时空
复杂度开销

整个图数据增强阶段在
模型训练时保持不变 ,
缺乏算法灵活性

使用可学习图数据
增强的算法

图数据增强参数参与模型训练, 随着
图神经网络模型的网络参数一起优
化更新

图数据增强阶段设计灵活, 能
够适应模型训练时编码器网
络参数的调整改变

图数据增强阶段参与训
练 , 给算法带来额外的
时空复杂度开销

无图数据增强的算
法

算法不包含数据增强阶段, 仅包括图
神经网络编码器和对比损失函数

简化了图对比学习训练流程,
复杂度较低, 减少了对人工调
参的依赖

图神经网络编码器设计
复杂, 存在表征坍塌风险

图神经网络
编码器结构

使用对称编码器结
构的算法

两个通道上的图神经网络模型结构
对称, 参数共享

编码器结构设计简单、可以
直接套用经典的优化器算法,
复杂度低

无法支持无图数据增强
的图对比学习算法

使用非对称编码器
结构的算法

设置在线编码器和目标编码器, 前者
的目标是让节点嵌入表征尽可能地
接近, 后者在更新时采用在线编码器
参数的指数滑动平均值

支持多种类型的图对比学习
算法, 可解释性强, 能避免表
征坍塌问题

编码器设计复杂 , 复杂
度高

对比损失
目标

使用标准化温度交
叉熵损失的算法

最大化正样本对间的相似度并最小
化负样本对间的相似度

经典的对比损失函数设计, 适
用性强

涉及负样本对对比 , 复
杂度高

使用杰森香农散度
损失的算法

最大化同一节点表征的互信息, 同时
最小化不同节点表征的互信息

基于互信息理论设计损失函
数, 有良好的理论基础支撑

涉及负样本对对比 , 复
杂度高

使用三元组边缘损
失的算法

考虑了正样本对和负样本对相似度
之间的距离性, 即正样本对相似度要
比负样本对相似度要高出一个阈值

可以把负样本和正样本学习
得更有区分性

边缘阈值不好确定 , 学
习出的表征能否满足均
匀性标准缺乏验证

使用巴洛孪生损失
的算法

鼓励同一节点在不同图视图上的表
征相似, 同时确保它们也是去相关或
正交的

无负样本对对比, 复杂度低,
强可解释性

依赖平衡系数的设定 ,
平衡系数影响模型效果

使用BYOL损失的
算法

一般与非对称编码器结构同时使用,
最大化两个编码器输出表征之间的
余弦相似度

简化了训练过程 , 无需负样
本, 模型训练复杂度与节点数
成正比

模型训练收敛慢 , 迭代
周期长

使用二元交叉熵损
失的算法

最小化预测概率与实际标签之间的
交叉熵来优化模型

在二分类任务中能够快速收
敛, 训练高效

主要适用于二分类任务,
对于多分类任务需要使
用其他损失函数

使用元学习损失的
算法

同时使用对比损失和分类损失, 在子
任务中进行训练

实现了对新任务的快速适应
和更好的泛化能力

需要在多个任务上进行
训练, 训练过程复杂

使用典型相关分析
损失的算法

通过正则化鼓励不同特征维度捕捉
不同语义, 同时最大化两视图间的相
关性

通过提取相关性特征, 增强模
型对数据间关联的捕捉能力

矩阵计算复杂度较高 ,
尤其在处理大规模数据
时计算成本较大

 

其次, 对于基于图神经网络编码器分类的图对比学习算法, 使用对称编码器的算法和使用非对称编码器的算

法存在不同的优劣势. 前者的编码器设计结构简单, 可以直接使用经典的优化器算法, 且具有较低的复杂度, 但是

它无法支持无图数据增强的图对比学习算法 (这种情况下会发生节点表征坍塌问题); 后者能够支持多种类型的图

数据增强策略并且具有良好的可解释性, 但是编码器设计比较复杂, 训练开销较大.
最后, 对于基于对比损失目标分类的图对比学习算法, 8类采用不同对比损失的算法也具有各自的优劣势. 比

如: 使用标准化温度交叉熵损失的算法适用性强、应用广泛, 但由于涉及大量负样本对计算, 导致算法复杂度很高;
使用杰森香农散度损失的算法有着良好的理论支撑, 但它和前一类算法具有同样的高复杂度的劣势; 使用三元组

边缘损失的算法能够把正负样本清晰地区分开来, 但损失函数中的边缘阈值难以合理设定, 并且学习出的节点表
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征无法验证其满足均匀性标准 (对齐性和均匀性被验证是图像对比表征必备的两大属性); 使用巴洛孪生损失的算

法由于不需要负样本对上的对比, 因此具有低复杂度的优势, 此外还具有很强的可解释性, 然而这类算法过于依赖

平衡系数的设定, 也存在一定局限性.

 3.5   图对比学习方法设计的新思考

通过总结以上图对比学习算法, 我们可以分析得出: 图数据增强、图神经网络编码和对比损失训练是图对比

学习流程的 3个关键阶段. 之前很多工作都对这 3个阶段进行了深入的探索, 并设计了各式各样的图对比学习算

法. 然而, 我们发现在这 3个阶段中仍有一些有意思并且符合直觉的研究思路值得去探索. 这里我们对新设计的图

对比学习算法进行简要的思路介绍.
 3.5.1    基于拉普拉斯矩阵完成数据增强的图对比学习方法

G G
第 1类新设计的图对比学习算法侧重于实现新的图数据增强. 过往的图对比学习算法在设计图数据增强环节

时, 往往对原始的输入图   进行增强. 这里我们提出对原始图   上的拉普拉斯矩阵 L 进行数据增强. 拉普拉斯矩

阵 L 的第 i 行的含义是: 第 i 个节点在产生扰动时, 对其他节点产生的收益累积. 相比于邻接矩阵 A, 拉普拉斯矩

阵 L 更直接的贴近后续图神经网络模型的输入. 因此, 直接对拉普拉斯矩阵 L 进行增强可以增加图数据增强的多

样性. 该算法的核心思想形式化表示如下: 

L̂ = Aug
(
L, θ̂
)
, Ľ = Aug

(
L, θ̌
)

(22)

 3.5.2    采用不同图神经网络模块结构设计的图对比学习方法

当前图对比学习算法在编码器阶段基本上采用了相同的图神经网络模块, 比如 GCN模型. 正如前面提到的那

样, 编码器阶段如能对提取出的嵌入表征放大差异性, 则更加有用. 因此, 我们很容易想到针对两个通道上的编码

器设计不同的图神经网络模块结构. 比如: 第 1个通道采用 GCN模型, 第 2个通道采用 GAT模型. 其形式化表示

如下所示: 

Ẑ = GCN
(
Â, X̂
)
, Ž = GAT

(
Ǎ, X̌
)

(23)

在采用不同图神经网络模块结构设计中, 关于模型训练复杂度和提高模型效果的性价比问题, 我们进行了以

下分析. 1) 训练复杂度的增加: 使用不同的图神经网络模块确实会增加训练的复杂度, 因为需要训练两个独立的模

型. 然而, 通过实验我们发现, 这种增加的复杂度在可接受的范围内, 尤其是在现代硬件 (如 GPU)支持下, 这些计

算开销是可控的. 考虑到现代 CPU的多核环境, 我们还可以通过分布式并行的方法来进一步优化训练过程. 例如,
利用多线程技术和并行计算, 可以有效地将不同通道上的编码器的训练任务分配到不同的 CPU核心上, 从而不会

增加模型训练的时间. 2) 模型效果的提升: 采用不同的图神经网络模块结构设计有助于捕捉数据的多样性和异质

性. 每个通道专注于不同的特征表示, 这样可以更全面地学习图结构信息. 3) 性价比: 采用不同图神经网络模块后,
虽然训练时间开销有所增加, 但是性能也有所提升. 采用不同图神经网络模块结构设计的图对比学习方法在实际

应用中的改进效果明显, 使得这一方法在整体上具有较高的性价比.
 3.5.3    温度系数可训练的图对比学习方法

温度系数在标准化温度交叉熵损失中扮演着重要的作用, 这一系数可以直接对计算出的表征相似度进行放

缩, 进而影响损失值大小. 现有的采用标准化温度交叉熵损失的图对比学习算法通常使用固定不变的温度系数, 这
种设置方式大大削弱了算法的灵活性. 因此, 我们提出温度系数可训练的图对比学习算法, 即让温度系数参与图对

比学习算法的训练过程, 在训练中不断优化更新. 该算法的更新规则如下所示: 

W1,W2←
(
θ̂, θ̌,∂W1 ,W2L

)
(24)

 

τ← optimize
(
θ̂, θ̌,∂τL

)
(25)

 4   应　用

图对比学习算法在各类图挖掘任务中有着广泛的应用. 这里我们介绍图对比学习算法的一些主要应用, 包括

刘子扬 等: 图对比学习方法综述 193



2个通用型任务 (节点分类任务和图分类任务)和 2个真实应用任务 (商品推荐任务和异常检测任务).

 4.1   节点分类任务

节点分类是网络分析和机器学习中的一项基本任务, 尤其是在图数据领域. 它涉及根据网络中节点的属性或

关系为图中的节点分配标签. 节点分类在各个领域都有许多应用, 包括社交网络分析、生物信息学和欺诈检测等.

节点分类的主要目标是根据图中每个节点的属性和网络结构来预测其标签. 每个节点都会从预定义的一组类别中

分配一个标签. 标签可以是两种类别 (例如, 垃圾邮件或非垃圾邮件)或多类别 (例如, 电影的类型标签).

节点分类模型的性能通常使用准确率、精确率、召回率、F1分数和 AUC-ROC等指标进行评估, 这取决于

问题的性质 (两种类别或多类别) 和具体应用. 总之, 节点分类是图分析和机器学习中的一项重要任务, 它利用节

点属性和网络结构来进行预测, 广泛应用于以互连节点和边形式表示数据的各类领域. 一些可以解决节点分类任

务的图对比学习算法包括 GRACE[41]、GCA[72]、MVGRL[71]和 CCA[86]等.

 4.2   图分类任务

图分类是一项图机器学习任务, 涉及根据整个图的结构、属性或两者为其分配标签或类别. 这项任务广泛应

用于各个领域, 包括化学、生物学和网络科学等, 其中的数据自然地表示为图数据. 图分类的主要目标是预测整个

图的分类标签. 每个图都被分配几个预定义类别中的一个. 标签可以表示各种概念, 例如分子类型、社交网络社区

或文档主题.

图分类中的性能通常使用标准分类指标进行评估, 如准确率、精确率、召回率、F1分数和 AUC-ROC, 这取

决于问题的性质 (两种类别或多类别)和具体应用. 图分类是图机器学习中的一项关键任务, 尤其是在数据自然表

示为图的领域. 它能够对复杂、互连的结构数据进行自动分类, 并在从药物发现到社交网络分析等各种应用中发

挥关键作用. 一些可以解决图分类任务的图对比学习算法包括 InfoGraph[42]、GraphCL[40]、AD-GCL[43]和 SimGRACE[45]等.

 4.3   商品推荐任务

商品推荐是推荐系统中的一项重要任务, 旨在根据用户的偏好、行为或过去的互动向用户提供个性化建议.

该任务广泛用于电商平台、内容平台和各种在线服务, 以帮助用户发现相关项目或内容. 商品推荐的主要目标是

向用户推荐他们可能觉得有趣、相关或有用的商品列表. 这些商品可以包括日常用品、文章、电影、音乐、广告

或任何其他类型的内容或服务. 商品推荐任务的有效性通常使用精确率、召回率、F1分数、平均精确度和 AUC-

ROC等指标进行评估. 衡量标准的选择取决于推荐系统的具体目标和特点. 一些可以解决商品推荐任务的图对比

学习算法包括 RGCL[48]、AdaGCL[49]、KGCL[50]和 HGCL[61]等.

 4.4   异常检测任务

异常检测, 也称为异常值检测, 专注于识别数据集中不符合预期行为的罕见和异常模式或实例. 异常值通常代

表与大多数数据显著不同的数据点, 它们可以指示错误、欺诈或其他有趣的事件. 异常检测的主要目标是自动找

到数据集中偏离规范的数据点或模式. 这可能包括识别异常值、异常情况或可能需要进一步调查的异常事件. 目

前有各种指标可以评估异常检测模型的有效性, 包括精确率、召回率、F1分数、AUC-ROC和 AUC-PR. 指标的

选择取决于具体问题以及假阳性和假阴性之间的平衡. 一些可以解决异常检测任务的图对比学习算法包括

GCCAD[62]、SL-GAD[63]和 ANEMONE[64]等.

 5   总结和展望

本文对图对比学习方法进行了梳理分析: 首先, 回顾了图对比学习的背景知识、相关概念与定义; 其次, 对现

有的图对比学习算法按照不同阶段的设计进行了详细分类, 包括: 基于不同图数据增强策略分类的算法、基于不

同图神经网络编码器结构分类的算法以及基于不同对比损失目标分类的算法; 接着, 提出了 3种新的图对比学习

算法设计思路; 最后, 介绍了图对比学习算法适用的具体任务. 本节分析当前图对比学习研究面临的挑战, 并尝试
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性地提出一些可能的解决思路, 最后对未来方向加以展望.

 5.1   图对比学习方法面临的挑战和解决思路

基于第 3.4节中对图对比学习方法优缺点的归纳总结, 我们认为图上设计对比学习的研究仍然面临以下挑战.
(1) 图对比学习算法在复杂度上的挑战: 不少图对比学习算法 (比如: 使用标准化温度交叉熵损失的算法和使

用杰森香农散度损失的算法)采用了大量负样本对进行对比, 这导致了极大的算法复杂度开销. 最近几年新提出的

图对比学习算法摒弃了负样本上的对比, 取而代之的是计算互相关矩阵或使用在线编码器-目标编码器模式. 这样

的解决方案直接删除了负样本上的对比, 的确可以降低模型的复杂度. 但也会引发新的问题, 例如: 过于依赖平衡

系数、编码器设计过于复杂等. 因此, 当前的图对比学习算法有待进一步改进.
(2) 图对比学习算法在表征可解释性上的挑战: 在计算机视觉领域中, 对齐性和均匀性被验证是图像对比表征

应当具有的两个必要属性. 然而, 在图对比学习中, 尚未有研究人员对图对比表征的必要属性或可解释性进行深入

的分析与研究. 我们认为, 设计出高精度、高效率的图对比学习算法固然重要, 但有关节点对比表征或图对比表征

的解释性工作也十分有意义. 表征可解释性是当前的图对比学习研究亟需解决的问题. 通过借鉴计算机视觉领域

中的对齐性、均匀性或通过梯度计算分析节点表征的变化因素, 有助于图对比学习解释性工作的发展.
(3) 图对比学习算法在图数据挖掘上的挑战: 尽管许多图对比学习算法被验证是有效的, 但是它们本质上更像

是将计算机视觉中一些成熟的对比学习模型直接迁移应用到图数据上, 并没有充分考虑图数据特性. 我们认为图

数据上的很多特性 (比如: 邻居拓扑关系)对于图对比学习算法都十分重要. 在构建正负样本对时, 仅仅通过“是否

为锚节点”作为判断依据并非一个绝对正确的解决思路. 那些和锚节点有链接关系的一跳邻居节点应当和锚节点

在表征空间上距离更近, 但是当前算法几乎没有考虑这一特点. 因此, 在设计图对比损失函数时考虑拓扑关系, 重
新构建合理的正负样本对, 是图对比学习研究需要进一步考虑的问题.

 5.2   展　望

现有的图对比学习方法种类众多, 设计多样. 不同的图对比学习方法在算法复杂性、可解释性、适用性等方

面具有截然不同的优劣势. 未来的图对比学习研究应更多地考虑方法是否能兼顾算法高效训练、表征强可解释性、

融入图数据本质特性等. 此外, 应对异质图、时序图以及大规模图的对比学习算法还相对稀缺. 尤其是针对大规模

图数据, 这类数据在真实世界中普遍存在, 设计针对大规模图上的对比学习算法变得尤为重要. 此类算法在设计时

不仅需要考虑表征学习过程的合理性, 更会对对比算法的时空复杂度提出更高的要求. 借助节点采样式对比训练、

批量学习等技巧, 有助于改善图对比学习算法的复杂度.
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