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Abstract: With the rapid advancement of intelligent cyber-physical system (ICPS), intelligent technologies are increasingly utilized in

components such as perception, decision-making, and control. Among these, deep reinforcement learning (DRL) has gained wide

w ARSCH BT VLS B & R A g R B IR AL A . ERER . e T8 K RISz .
SRR I 1] 2024-08-26; T4 8] 2024-10-14; S F I E]: 2024-11-26; jos 7E£% H4 R [7]: 2024-12-10
CNKI M2 8 &I 1] 2025-04-17

© TEBREEEEIEDT  htp/ www. jos. org. cn


mailto:dhdu@sei.ecnu.edu.cn
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
http://www.jos.org.cn/1000-9825/7354.htm
mailto:jos@iscas.ac.cn
https://doi.org/10.13328/j.cnki.jos.007354
https://cstr.cn/32375.14.jos.007354
http://www.jos.org.cn

3638 HAFFIR 2025 FF 36 5% 8 &

application in ICPS control components due to its effectiveness in managing complex and dynamic environments. However, the openness
of the operating environment and the inherent complexity of ICPS necessitate the exploration of highly dynamic state spaces during the
learning process. This often results in inefficiencies and poor generalization in decision-making. A common approach to address these
issues is to abstract large-scale, fine-grained Markov decision processes (MDPs) into smaller-scale, coarse-grained MDPs, thus reducing
computational complexity and enhancing solution efficiency. Nonetheless, existing methods fail to adequately ensure consistency between
the spatiotemporal semantics of the original states, the abstracted system space, and the real system space. To address these challenges,
this study proposes a causal spatiotemporal semantic-driven abstraction modeling method for deep reinforcement learning. First, causal
spatiotemporal semantics are introduced to capture the distribution of value changes across time and space. Based on these semantics, a
two-stage semantic abstraction process is applied to the states, constructing an abstract MDP model for the deep reinforcement learning
process. Subsequently, abstraction optimization techniques are employed to fine-tune the abstract model, minimizing semantic discrepancies
between the abstract states and their corresponding detailed states. Finally, extensive experiments are conducted on scenarios including lane-
keeping, adaptive cruise control, and intersection crossing. The proposed model is evaluated and analyzed using the PRISM verifier. The
results indicate that the proposed abstraction modeling technique demonstrates superior performance in abstraction expressiveness, accuracy,
and semantic equivalence.

Key words: deep reinforcement learning (DRL); abstraction modeling; causal spatiotemporal semantics; intelligent cyber-physical system

(ICPS); Markov decision process (MDP)
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= RWELRL A RS0 (cyber-physical system, CPS)!' SRR T4, SRS ARSI E 2 248, HARMRME. E 4
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CPS R MG RN O, 75 B ARIE RN 3 1045 B 01T 8 Beda i, W 0L 42 ) 235 G 45 B8 B T 4
il (model predictive control, MPC). LUHIF 45 (proportional-integral-derivative, PID) #&Hil. £8P — il 17 4%
(linear quadratic regulator, LQR) %%. DL H 2h 2 3 ) H i& M i 4% ) 240 (adaptive cruise control, ACC) A, #71 1ii
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IEAESR, HLAR 22 I HORTE CPS RAH R T T iz M. B4, 75 H 20 25 Sh A, AR A n] LAE B fp 4 )
#% (convolutional neural network, CNN) P48 SRR AIBAEL . 17 N FEISYIEE; Yol AR s b2 > SRR sSp L
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(deep reinforcement learning, DRL) &5 & T I 5 > (I AULRE 1 5 984054 3] (WS RE 0, Relis bR 4. %4,
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Wi 5B A E, ) RIS, DRL C4R iz A TAEE . BENLAN & BEANHE VR R 4E, R H AR (%
Ptk S, ELARVRBESRANAE SITE ICPS T EAS T &35 (F ek, (Ee (7Tl — 2R 471 vl AL, A A 1) ), B B AAE
BEAIT B BCER B BRRAS AR B I AT — IR SR, 75 25 R A4 7 BEAE Q000 BE PR R 25 725 (B A0 ke S I TA) A R 47 454,
M 51K T SR A2 ST 55 IR 1) . LA 5, RS IR AR 23 1) 5 30 7 RAS 25 IR 2 R AR LU b i 1)
S5 L LR, KR SR I R S BT B0 s TR K, 8 SR Ak 2 ST 1 A e O DA AL B, T S B0 S AR
i V2 AL RE 77585 DA S SRR R 1 22 46 ) L.
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GRS RBCRELAE FE 14 5 R T 9 e S A 1O, DT KRR 52 Z3% (1) e SHEAT: 55 ol 5 Ay /DN RAE 7 B [ b AT 55, ok /IR
2575 ) DA K e 23 () (R AR B SR S I REER £ 250 8 3 2 RS G MBI R AR -2 BB G 3
B IR A G 2 1) R b AR 5, B FEDR 54 52 bR 0K OARBRIR 25 2 il i R R /N A bR 25 2 1) U0, B Vil 5%
ST I TA) RUBE B 4, RO R 4 G 30V SRR 15 50 DS I B e A vk SR AR 4h OB 2 5 T SR I 3 R A v 3
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JE— T RE A

2 BRAR
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&%, £ ICPS H, AR G AP 2 70 7 1 ST AN D AL AR AE ICPS rh iy 845 IR &3 B 1 A £, SR STRAT A BT
TGRS, Mg FA WO B RN E 5, TR [R5 ¢ 55 BT (0 RGUIRAS s, F 025 U ) A% R 2R 20 21
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. PAT SRR B A 2 o, BB REARTE L PR SIS h AT 9, 8 RGUA BITUIDIRES. SEPRY B2 ICPS
HISCHE LIRS 7y, 33 ICPS HIARLR R SL 8] ) B M., , W DATHE S 1T RGUIRTS s, FIPAT 82 A% ¢, AT A
BT —NRGRE 5.1
22 ETREBRLESITHIER

TR 5 AL 5 ST K 584k 2 3] (reinforcement learning, RL) S5¥R %% 3] (deep learning) #1455 &, F T I 4R REARAE
RAME AT . BT S, TR 5040 52 STl I PR BE AR 22 I 44 (deep neural network, DNN) SRR U 24 28
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BEAE s, FFEH DNN XF I L8 F0405 47 Ab SEANVEAL, Bl 5 a0 A AT T R AR IAE o, B BRI R Z BIR R
TS (U DR AE SR ) W20, 1 RIS H T X R AN H SR R 5% 2 AE BRI H. EHATIIMEG, & ek il
B IR RS S 5 r,, DUBT B R SR A ASCR. Y e A ad ol I e 22 i SR R B W SR I AR, AL AR SR I S, DASRAS B
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4.1 BETRERTIEXARSHR

FEAE B Tl AT AR IR, A5 5 LA (7 1 5 A P 2 TR R B — 0 4 1) S . T Tk R A s IR A R,
T B D0 B SR/ e SR 25 5 BLAAOIRAS 2 TR 3 22 TR, et 5 g B 12 B AR e AR v 5 P, LR R L v
JE S FH MR R, {37530 5 18 S A5 21 AR TR B S Sz S Wk 2R BE O S B 0. AR SCHR M 7 366 T BRI 254 S0
A AR, DABA ORI 13 2 P ASE 20 B £ 5 SO VR . DS SR T 253 8 SRR IR A5 R 1) (1 8] SR SRR 2 1] f ) 78 15
X, NARGAT IR T — AN AT (6 2 4 P FR AR AL 75 3. et R R 56 R, AR SO R R K i 4Rk S 2 Al 4 2
SN G FPRAS 2 1) 7R, I3l I SR A 2 1 I 25 56 2 38 8 SR Aok K PO IR A5 23 0], 1207 VA RE W v I e HE 3R
S8 T A E R, R AR 3K T B R GAT NHFAE, AL A O R GRS O & X, i 1 5
T G AT LA RN R
410 BT RFNE SURRFAE X R Ak dh 5

E TCPS Hh, % B a8 HOHE 1) v 4 A 4 M 2 e S 5 SR 1 Pk, £R T Sz 7 PR T 4 S8 10 A ek s 00 AL K s e, 81
LN X SR AT A A A FE . BB — ANRRAE FE AN RESR LR 05 1 (5 B SRR R, TS TR 4 B I 286 T R 2
NGRS Ok B I AN AT (K137 S R AR. LA, 6 AR BRAL S SR N I TR B LR BN R A . RFRE T HE R
AN R is 16) RUBE R B8 2 160 ] e AFAE B T AR IR R SR Rk, R EURRAAE 18] ) 5% 2R FEHEAT 240 & LA ST BIDIR A5 48 FEE 1K 4
AR A G E . AU A B B R B A, S B [ DR SRR LAV, 4912, PC (Peter-Clark algorithm) 97 4
F1 FCI (fast causal inference) 97 2 b 2 D8 5L P, i B A1 SR B3R HE AR TR A RFALE 2 T8 (1 TR 56 R, AR IR ¢
FBET R T G LS B8 B, H5 TR P o0 4 T FRDDR A5 25 ) R 38— N SR N 7 vet . 5 5 T AL B A e GoIR A A 1.

TEN 3. BT R R R B R 556 RAREL. DR SR HEFRAT 45 rT CASRER AT e 00 02 o 1 g R SR 5 28 0, S A A )
A, HH R RRE R X RMERE G, RRRERN—DE R ERE G = (V,E), v 24 f%
&, HEAEEE R B AR R AR, ENAMES, o, IFRRERRR, I HEPEEH R, IAGFIEN—
AN R G AT 1A R B B AR

FEASCH, — AN A Sk & MDP H ) — ARG s, € S BB, 458 — MR EE D, PRk J5 B se
KR G A5 AR R R B, F R R G B SRi 2 — SO A R AR, — St e @ i R R S R oy
AT P2 S BNV S D A S0 AT R0 e R SR B R 0 BT L T R . O T R Sk, TR R I
SN DR RS A B, 2B 1 R IR R P 5 H A AR R A P A v i B 2 4 DR SR I R B T 3k A M, S A 45
XL RS H S I A ) L RS S R

AR SR F DR 5 R B B9 g DR R S R R SR TE IR PR 5 1) PC ARLVE B R FCT G503 ), et e v, A1)
B e fEF PC R FCT 325 W I S8 04T 4125 (0 DR SR 96 R 4580, LA 509 1) 52 2% (R R M R 2R 1E 56 &R, I HEBR
AR AE R DR SR 56 28 LIRS AIE, 72 B 3ERE_E, {8 ELAZ B 7 i 15453 2 A IR SR 56 SREAT # e P77, Bn 1331
4t SRR BRATTAE L (R R SR O R T VR N LA R ICPS BB SR RHIER & 5 = (d),ds, ds, .. d,), s HE
SORAS BBAT 0 AMRFE, S AR FRFEIRES 2 R R G &R, DL ICPS B8 N AN B B R REN G = (5, E),
s WIRBES, E WIRESES Z IR K.

EN 4. 3T HRIE LR R, B s = d1,dads,. .. d,) FRFEIRG, s BAT n MEFIE. @ Fonil LWt
H, 0=0(d,....d) BARTFEFRRKLRN d,...,d FFIEL T 0 Wbt Bk E XHE. 5=(6,,...,0) RRLTFETE
SCHRFAESH 55 1 SUIRAS.

WNEE 4 B, BTN T DR SR B SCRRRAE IX TRt AT 24051 50 B, LA @ REIK AL il 481, B Ao 38 361
IR AR, AV SRR s 2 %A (vace,x,y,...) T, P FREFESE v. KR ace [ 2308
ABBR (x,y) % 38 Ik Xt R SR O R AT 45 0 R IR SR B EAT o0 AT, T DA S BILRE - R SR S . BT D R AE S R
B BARIRE s = (v, ace, x, Vy.nr) W NRINd = (relyerocitys T€langies T€laistances - - - ) » Horp relyeiocity ~ T€langie ~  T€lgigtance AR
TR RE < A i BE AR X 2 0. 3 3o 35 T (R SRR B LR 556 R 3R HIUD 08, A1 143 260 £ B RS B 2 1) S A7AE [
R R, MOCTRAE WG, BT R OC R I (KRR 5 7 VAR B T ICPS FT i HCH(E 8., A3 s> TR =
V) R 2 24 P, 0 i 48 e SRR 4% ) B A1 o v 28 EL P R M B R IR S R
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h
- - s
\ ’
IV

T SR L Voriing

LA due

>

! t

o FE TR BE SCIRFE O R ORI
H 3 2 3 2245 ego L
I YRR . A%
EX{U\K—’ L Vre ative < ®
A —

S RE L ) " -y —
HPETE S 0o Vietative™ Vego™ Veruising

v

BEETE X 00d: d,g,5,.=Positiong,,—Position.,.>d..

B4 T DR SLORAE DX A 4 2

L35 LS R, SRILVE SURFIE 6, BT FR I 50, LRI 207548 S v 090 PR P B L PR o 7 5
ST AR X LA R, 75 A7 S A — P BIE— T, I LA SRR AT 35 B B . S5/ R LA
A2 2 4 A A X 1, DA AR I (B A 7 4 PR

TBBIRAS S = (61,600,61.....60,) THT J Heif5 L2, 5 9005 0 ezl b [ K AVB S AR BT K X
I, R /=[], B, af RS A RS i AMK R, 1R ) R L T RA RS, 1 <i <K, TR L
145 T LAZE AN 73 ] o e 37— N PR M, SR I S K 5 7 T B LS T 00 AR o 25 S 2 B,
b 7 4 25 0 4 ) BB (A T DAL ) B, i

J J
max(u —I!)
J J J J
e S U =1 <y
ol J
|s[ Z My @

MEAN{0/~E 8]} <€/

MAX (0])-E 0] <€}yux
He, gl A, SRS jANE SCAERE B IX AR MK AR KK, §/= {s|9§ € d{} FEVE E 6 KEIX (7] &/
HERRAS OGRS, nl RS AN RE X I b LR A (N, o Rlled R AR iR 2 1 il
SCPIME RN KR ZE, MEAN 18 W2 358 B0, MAX $8 12 B KA MR 2. GX 8 A 30 PR B A X )4 2 2 0% 1) Bk
RIS, AR RAFRR A I GOk 2.

SV 1R T 3T R R SRR X Ak 3 R, TR E R MRS ES s OIS H AR EE
B S BRI R S . fEX AN FR A, A A DR SRS OGS R 3L @ FF TS X 18] 5 KK dyax AR EE dynes X
] P 5/ BAR S H ny LA R 22 V6 1 eypan PR R GE 1845 ry SEL MR KA. A 58 12 B AE A IR R 46 2
R T &SR r,, HoH B R EARIEE SUE RS2 ERTIE T A B R HE P, @i 100tk DL R i X i
SR PO R, R SEAE A B EE U BSOS EIR IR SR A E 10%-30% 2 1, LA I BE & 8O R
PRSI R AR

BOE LT RURAE SCRRHIE X R 5 %

N BRIRESES S, B UERS 0, B KX IHHKE dyax, /DX K E dyn, X P &8N BAARS B i, T2
-‘L%;J:é €MEAN » E’ij(i%% EMAX > %M%éﬁ Yas

© TEBREEEEIEDT  htp/ www. jos. org. cn



W 5 B RN RESUIRS R E R ) R Ak 3645

A CIRAAOE B Sl TR
1. §, «— @ /I ST 2
2. while !refined do

3. foreach je(l,..., J} do
dj — S *ETE @j’ dMAXa dMINa NMIN i&fr}gl‘lﬂ{’tiuﬁ

4
5. end for

6. Ded,,....d, ITERIX AR IESE &

7. S, < ¥ D WK

8. Cmeunslmn — WH S, 5 S ZIARE

9. Few — RIS, S) TFEAFIE RS

10.  if e > emEaN OF €max > enmax OF Ty > 1y then

11. E%ﬁ dMAX: dMIN9 nyiN //ﬁuﬁiz‘g, E%ﬁlzrm%ﬁ

12.  else
13. refined « True /U1 R4 1F i 2, WIZ5 R 411k
14.  end if

15. end while
16, 3&[8] §, /73R 1] [X. 5] A4 T4k 5 2% 1)

BT RS U RHE X AL A D> T ICPS A P KPR AS 23 17, AR RAUIRASIREE T —Fh A 2KT]
BRAR 77 5K, ST N 7R T A% R AR i B R I, SR B 08 U b B A 2R 0 R0 P R s ) 2% (0 AT B
EIETIE LR ZE S H evpan W ML FHIRIRTEGL T, B 1 WEELRIEYSL, RITESRAFI I 5L T iR 5] 57 46 %k
PEHIEE () MDP. 38 RHAE X a4k e 5, B A S SCE I B AR 3G Ao 5 23 4H R 10 X TRl 4k 3 GOIRE, S 2
T B2 R R R AR T B,

4.1.2 FETHREE KIS (e,d)- T 5

IR T DR R SCRRRAE X TA) Ak e G 45 ok 7 RS 225 1, {2 LRI A FR B ATD SR 52 e GO & I RE . Dy ik, R4
R MR TR RAE W 2 (e,d) - %, S I RIS RS A 1R B 4 4.

EX 5. WZE L S FAEZERMIRES ses, B 2iE X 6=0{V(s),0(s,a),R(s,a), P(s,s),...}, L oeRr . XH
10 FniET W R EL O S — 0 MRES s TREUH K135 SUAH, 56 TR 1 2 4ERHE, Bl aniRSMERE V (s) 3h
TEME R O(s,a)~ IR EL R(s,a) FIEBMER R EL P(s, s) 5.

Horp, 15 WU R 0 H T ORES BIA TR M, JEH BT AR IRAS e Ak D9l AR R AL KR B 2548 SO OR 5
TAPIRAEAD S AR AN SN, $RAE T — AN MBS [R) R0 23 [ RRAE 3 SRS B AR AT AE 2L, Sl X —HEZE, B8 58 N
ZE WHL AR AN FLRAS 2 1) B A0 1, Se Bl R 5. BRIk Ah, AR (e, d) - % 710 PISealng Geisd R 38 X
[H A G FPRAS #E— P R

EX 6. (e, d)-HB. (e, d)- TR E N MG D, , S — 8, ZMEH T B L T 5150

d(s1,5,) <& V5 €S, 51,8, € D(5) ®)
K, @:85 -8 o N GG ik 5, K EEIRE S E S B — M SRS =E S . R o T — M E
S R RALBVECAL S GARE Y. & Pow(S) KRN S HIREE, &' 1 S— Pow(S) s BRI WLt IRAH G 10#%
Lo ERAS Z (A AR A, FRARIDIR S AU AT IE AR R, Horh @ TR RS ERIERE, ¢ R SR 1E.

FR A Ly 7R AT % e S 3o F2 b R ES AN R BORN B4 AN R E50mT 11, WS B ASIRES BT R BB RO 2L B AH AU, R4
PIASIRES T B EE SR At A A, X O RAS Tl AR AL T —Fh i 4k 7 vk, B2 J5h bR SO0 # 26 7T 20 itk
BT SAN B AR R, M6 3L B A0 8 SCh R I 72, AT fig b AR et 5 7R AT 9 e SRt 2 1 g A0 A1 R B,
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PRAF 5 LS By R ] R PR SR R (T8 SCAF 1.
TEX 7. I 72 R I 2 E E R P ANIRES 5, M s, 25D TR ShfEAS 00 FoRaS B
FIAR AL, REACEATZ RIS E. X TAER 51, 5, €8,
d(sy,8) =d(6,,.0,,) = max {cglR(s1,a) — R(s2,@)|+cpD,[P(-|s1,&),P(:|s2,0)1} + cpDy [A(s),A(s)]+crDs[s1,8:]1  (9)

aeA(s1)NA(s2)
H, con o cpr cp BHINEIESR . ERMARZER . FE2 12 AR 2 R IBCE R L, 8795 4 340 Bt
R BT, Dy [P(-1s1,a), PClssa)] TR PR R TIOR3 16 J5 4R 5 56 55 L2 43 7 ) 22 5 B
DATAG)) ACs2)) FR PR TORIUNEN S 2107 SRR, DT, 0] B s, M s, IELE SR IERE,  max
T AE T A I GO 5 14 5 3 1R HE 4 30 B b B K AL T 238 SR I R 1 @ ooy T RINIERL, 4
coDalA(s))A(ss)I< & I, Asy) St T B A 42 2 Acsy). 28 UL MR 2 TR o WP, B34 di(s) = 0
B, 51=s,.

L4 L6 FISE S 7, FUF 4 ANBHORAS SO S ORSRE: 1) 155X 102 10 BN B dy: 2) S50 A7 6L 2710
BN EUAR AR mya s 3) T X 10022 0 KB By s 4) N2 VB A PO e

SN BS g B T AN IR X 60 SRR 7 05 SUR VG, BN B RS SRy 86 T L5 0 AL
R A ITC A X I R . BEAb, SpRA A TR BLIN, 45 3L 4 I BTSRRI LR 25 T Al & 5 BT S 19 35 %
e, L, (B2 3 AN B8, BEREE B dyga, H60 TR 2080 4 SOIR S . 0 SRS 1038 S B B F
B LM 0 T 38090 UL B0, B2 UM e, LA | B B AR 9 FN, () ()-8 BB T i R 2 2
1] § A GRS A .

T BEVEREIO 2, M1 2 BT DURAR R JRE RORLIRY R~ B R AT i, B/ 15 2 R (L, X 7 PR 6,
GURAZRIHA. A8 (7) B3 1 N THIREMAL o] RN T B GO P AR (e . B AR T,
G SR A RS T — ALEAT AR DL SR LIRS, LA 8 ST 3448 22 R, A 1 ok 25
(55 SL SRR BAR TS . FRE, LT oo AR M BUR R B P52 22, T S0 2547 S22 5 ) 2 LR
AR R i Bt A, TS SO 2 i BE L 46, 25 1 W Bl 5 10 1 FE A 3 MO BAR 5045 9 A% R 1
I, 5 2 B B ()-S50 T BRI93 SEAN SR AS 15 U H %, ST v R R B 5. PRI, ST 2
RERRY (e.dd) -0 5 OB o FL 7 5 R 0 R T R 458 % MDP 15 205 MDP (10— B0, AR 8 0117535 X
FEHTET bS50, SR VR RSB T A OB R B R G0N B A 15 B, IS v R R G
WA K13 J, AT S BIAR 75 2 ) TR 5 R A B4, St 22 SRR, 775 P04 L4 0k 2 P AR oL,
S TR A A RIS Ve E M A A1, TEAR DR B AR 5 2 0 I P L0 T 30 MU . SRR T4 SUMI LM R s
7 RS Bl T A A IR 2 IR 5, SRR\ FEAR RGUAT AR

B 2 B GH R EOR & (LS 1 A7), SRR BENLRIAG (LR et (LS 2 47) e Tt B, 3 F
e, ik i P SR 45 P48 A TSR r o 0, 57 b 2, LB BICSIOIRA (U3 3-10 47). 2, HIKIR
[T U (o) - R 220 § A S B . X R DA ey, e €., 0 B8 TR RAE
= OLE 11 49).

Bk 2, HT BT SR 2 (o, d)-H R BLIE.

N KLHI R S, = (D), ..., D, ), SRR SR B8 K, B3 S o
ittt T8 S (e, d)-A SR N S, S .

1L WE RAHR & — K(S)

2. AL TR AL cruc e S, HIBEHLA

3. while K ULSL do
4. for i=1tondo
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5 HEEA S D, S BCgh Bl B0 s i) = d(Dsycr)
6. end for
7. for i=1to k do
> .3 N > L 1
8. WHAR L AT AN o= — 5" D,
I{i: j@) = k}| &iio=k
end for
10. end while

11.1’2@5‘,@(6‘1,6‘2 ..... Ck)

SR IS TR) 52208 B R T SRS R OIS AR B, v A 3 ot i 7 B 45 TR il s AT 00 1L 12D 3R
MIRIREN O(n-k-m), Ferb n Fom Bl R, k TR RRER, m FoRYERE, T s ST 0= % )#ijO(k m).
SRR RE 2 BI0)4A 0w BMUER R BCR (520, TR 75 AR A B A SR 34T T 4 DL A e (45
42 ETXEZMEHR

ARCHET R [28] 42 T — BT X (8] & (IntervalBox) AIIESEZNIE B #1071 1207 %0 AR 2 il
T PR AS 7 (A AT B8 B SR SR BN % 2 3 4 25 (B WAURE A0 K 4, ) FH 3k e e G 1) B 4 X V) S ALUASE 4L 552 o R i v
FRIBIE R, BAR N LT e 91 51 S S A0S 1k (CEGAR) J7 1, B SRS 23 18] B B o A TR it SRS
EA] FERTAR BT BL, RS 23 (A X B] G kAT REL S () B Ak, AR B Vi 45 S0 i GORZS HEAT 4i k. J8 i X Fh
77 SRR RO Re S5 A L 1 B AR 2 1) B B, BT BT 9 2 o S0 A B A G 438 ) e, [ Tt R A (R AH 2
TTHEERE.

EN 8. XIE. X T d EESFNERN A, GMHER R EEG H A A BEEH, B i MHE G <0,...,d])
W AR ap PR F (1, 0] . X TR EDT VR G R 3 S0 R 2 N AL XA 1, = (1, w,]/ gi, SEIRXTEESEBNIEZSH] A F K
o S FENE a, BT XGRS, I RSESR A PR NEEa = [k, k.. k], FoT k= a/g, g 758 i 4600
G HLE.

SIER G AN 5 BR, 1 563 20X 40 SR 2= AR K 1 IX 0] & 4Eh AR 2 AR 5 A mé A7 25 10), A dg A4
& LB m A HHFEAKERIX AL 285, W BARSNTEH v N E BT R I X 8], RIS S04 S ah i, i, i-F— A

RENE a e [Lu], I B EN a=[Lu).
i 18] ¢
TEE%{ZSM'E

K5 ETXEEKEHSRE

MR E X 8, FEFMGR MDP 1, Jy 1 Gfilt S SR (K0 AT ROR e L AT RE b JL s MDP AR BB I RCR,
BT T HEAf R B e GORLEE . FUATIT 5, TEHf 8 i GORLIE I 02025 & 78 FE IR SARR PE AN LR, JRARE B IE W v e
ANIRZHFRAE FRLEE 5531

SO BHDRLRE RE 0% 15 1l 3l 1F MGG IR AR T S8l AF, AITAERLL IS MDP 47 77 4 it 5 s e k. 48
T, 3o T ARPAGEFBE V2 B8 A P I A XU, T RE 2 R 58w e BEATLIp 3 51 B AN HE TR I, SR o B 7R F) A e
AT FENE. PRI, £ 0 52 Tl GORLIEER 75 SR E — A 2 14 e, AR AHRL 2 7 R AR ALURS BE AL /R FE AT 5 20
IR E T MRS BARIABERFAE AT H b5, 724 R 32 5N R R T S5 W F6 5 1E A 3 S ) 2 i ). 3 I 3K Ay

-

x
AR,
= A
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FUBERE ORAIE T BB AR AE 07 FRL S R GEAT D9 I vt BE BT, SCREIRE S Hhy B R 08 L 58 T 3 SSUAE E A  AN T %
Z2. I JFUNR T F e 5 MDP ASE R g phe S 1) UM L B B, A o AT HETR R ] M SR R R b AR
DS ERIDN 3-8
4.3 HEARHIHER MDP

RS E S AE BEALER 5 T b 120 B SR AT RS R B B 6 JROR TR VAR AR D IR,

M A=(ap, ay, ..., a, ) = HEAE Traces=(so, ag, $1, @15e--5 ,) —p CRES S=(50s S1» S2r0s 1)

FET PR SRR IX A R
Y F A G R 2 1) v

SI:(SUI’ Sip Sapeees Su[)

ST XM R SR

v

x . ‘ FET N2 SR (e.d)-T%

v v

WL A=y, a,, dory ) —

[ G S=G0, 31, 8500, 8)

K6 % MDP H#aTfER &K

R B 3 AP BT HE R ZE LRSS . 2T XE s e Ll IT B S W E. Wiz
FHELE 1 AL 2, RIS GOPIRES 25 (AT Fe 48, DARPEH OCBERHE. AR 28 4.2 1WA, BI1FE#h GOk B STt 5L
B 2 K R ENAE B U AN R X ], A XA R R — AL I S AT R 72 25 (M i d it il A2

M GORE S S M ESES A, WEMBIEBEMN T S xA - S, MEEBaE—HARREZ
[A)SEBRITRS L&, R, A RAEAE BAROIRAS s e § A1 & € & Z B SEPriT R, AR R @ s GOR G s Ml g 2
[E RIS, Hd s Ay 2 BACRES, 0§ s R GORES. S RIS R R GRS B ARRE, @it
%Z*%iui&ﬂ%%f%ﬁﬂ%*ﬁﬂ. BART 5, 5(5,0,8) BARELADIRS s MYTE{Ea M4 N Ui ¢ KR, B
Z a8 =1 TR E L

—
—~
()
m>
-
(/)>

a8 eflse ‘e S”
n(s,a,8) = (10
G4, ) eT)s ‘

5 2, R A GRS 5 2 $ATEhE a BIHh GOIRES & MERER L E R A GRS 5 R
1 R S bR iE # BUE R 1T 5.

TR RIS 3 FR, BRI ST S0 T o 0, 3R B — M /R A & refined AR, BT B2 K
MM ARTERK. B G, SN —MER SRR, Fre TR MR AT 45 T RIS, B 235 R i B R . AR/ — IR
IRep, B0 1 BT A M SORES FBME A A (8,a), W TR—HE, Wk— L8 ol ae R B b SR 5, 4R
A 10) HHEEMZAREBMR p. X —HFP R ERE T HE LHEBEMES T ML imsoRs 51k
RHPATH. B, MR E R TASERH LINER R THRZE error IIIRIET 5 T n 22 BIME e 34T bhE. a0
HRNRENTBE e 25 R, W L aE AR T E 2 B TER, TR ZE MR LA RDIR SR BIEH &
INEMBIE B0 T, 3K refined bric AE DI RIE R T TR0 KT. BrE MRS MEA&H4E
KIS SR INERAE, JF 0 2 4 & 7 B D UL AR, DI GE B4 H AT A i GO B = ).

Bk 3. oM R
N GRS HES S, R AMEES A, TR FMES T, MEBRIE &;
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i g T

L. MBI GER 2518 T« 0, refined « false
2. while !refined do

3. for (3,4) €S xA do

4 for ¥ € do

5 p— AKX (8) HHITBME (5,4.9)
6. end for

7. end for

8. error — IRIFERT AN

9. for (5,a)e S xA do

10. if error < [H1H & then

11. T.add(§xa— $,p)
12. refined=true

13. end if

14.  end for

15. end while
16. R M B ER =0 T

5 SCIEAR

5.1 SKIRZEM)

ARSI SIS SR T 3 ANANE ) B ) B B, WEE T E 328 A i o L H e B B A G R
BT 5 S 1 SR IR BR 1), FRATT 51 SR AR T Carla 4 IR, R T 408 SRR v] REAS DL B S PR SR .l it %o
b 23 BT I e S8 45 S TT DATE AT b 3 2 T I S AME S S SR 1) ICPS 7EAN R 2 B B (R -5 B A

o ZEIERFFAHBN (lane keeping assist, LKA). LKAP” & —F s 20 25 304 B R 5%, & 76 ¥ B 25 b 50K 2 40 (R P 1
ETENATIN. LKA fERI B S B B AIEE s B ok e AV 5 i CEEH. ZRREL N E E RS ER P oL
8] B IR A e AR RAT IR Oy, FOEIT VI BT L U A Oer RARTF IR O ZRAT . LKA 18 H A5 2 (8 7]
% A AT M #B IR T 0.

o & BRI H (adaptive cruise control, ACC). ACCPY & —Fh & RE B Bl B R 45, HIhRE = A B R
TR DLORFFE ST 2 1) 22 42 PR Y. 12 R Gl I 75 1) B AR BN . g, DRIFTZE RN ARNT BE 5 o, SRR T 2242
PEW dge. MR T AEFER S, RGOSR BEAA R AT BEIA B 7 108 B MU B v, BT 22082 30 B 5722 10 Do 2
Qeaq T, T 22 4 1R 2 DU 55T 79 2 DR RS 2 Bh A AR K.

o % XK 1142 4248 B)) (intersection crossroad assistant, ICA). ICAP? & —Fh5e i (25 Bl Bh R 46, BEAEE 2238
X% AR IR AL RE, DGR 3 2 M. ICA RAEM T LKA Al ACC IRFE, RETEHA E fe 14T B 2 A0 7
M, B PR RS TEAT B P2 P U A AR FRTE IR A I EIUIE . 4, ICA i B A& BEALERIVE & PRI R, VLR IR TE
DN 2% e DATION £ S B 28 B PR ISR AN, 28 495 R 8 {0 HH O B IR R AR F 1). JR-E PR R INAE R Re B 45 618 H
Z PP B SRS AR, FEARIE SR 75 B RIE VI, LR & RGN R R 15 DL e

TEARSCH, BTt ICA 5B HE P 25 AH B B AW mDRUZEIE . — 5 e 2R 5N 2 SR 58 224, 2 Re AR =
B R BEATBUR RS T7 2, D I R HCR 2 p, (R R G i T B B S T R R A R AR . R
NLIIAE 79K 3% LKA 1 ACC Fr el i ge s .
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52 RIEEE

9T AT VA 58 T DR SR B 2 0 Sl A T R R 25, FRAT TR DA A I g AT 1 B

o WFFLIAI L 1 (RQ1): T [5 J 2 15 SCRh GO A7 ik vT 75 B 0 S IR vl 1 5 v M 19 30T

FES % ICPS Y5t oy, JUHORIRZAS RIS 1 2 ) JE K 37 50T, M vl XEH i & MDP 2 CE 2 il 4
MDP fe 47 R4 FEA ] B A2 s M T SR AL PR AR SRTM, 1% MDP AL PEBEAE — s R A4S B2k, AT RE M A Y
(R AE R AN e S . BRI, RQL B ZEAR T S T I 23 0 (1 SO (14 R MDP B AE fai A A 45 7 15 TR Fr R 5K
HERA L 2 ) SR B P48 s PR BE 0. B AR, R SR VP Ak 35 T I BV SR R T VL AE T4 TICPS A 5 2 R
[FIN, 3o P S AR S FE 2 DL K AT e 3 SO HE R A4

o WFFT I A 2 (RQ2): H:T (A BN 215 SRR MDP R 87 P 3 14 B _F 2 75 R4 1 B B 55 MDP (3K
R oA, G MDP 5 S2PriERY 2 [8] 875 SR LB RS2

FESEER T, 98 MDP A5 R 2% FRRRAS 4% 18] R AN 58 45 25 46 52 2% S5 PR, S 0 45784 (1) 2 P S RN 8. BRIk, 4
R g MDP BERY BEAE (R KR 5 FLS MDP 8 CEM R ETIR T, I 55 305 MDP AR TS = AL A v S 1 we, T
IXFhd 5 MDP (1) 52 AN E A0S Y6 LG K ORI BRIk, BF 74 5 MDP A8 15 e 5 1A 1) 5 B SR A5 B AH A
(P RE, RIS 2 (8] I8 SRR, X T PPl dil . MDP A5 7Y (¥ 75 v A sic B PR BA S 030 X
53 SIEWRE

AR VEANIIR T LI I TR B . SR BRI S HOR i QAT S5

FEBAR AR B B, 8 5E T BE AL N 4% 7818 (random network distillation, RND)P Y 452 [R5 45 0o BB AL, 2% =) 77
ER LKA ACC K ICA Ffi| Hems, JExE IR BT 78 IR IS R g8t BRI 5, AR I,
BT oA O IR I 5RA 22 S S I 20T L 1000 (0, AR, ShE, IR BN AR LA 8:2 R LLGI R 43 A g
EENIGAESE. AU FH T @t QU8R 538 F T 20 At QUL RRN B RY 2 [A) (198 SCRZE. BEXT 3 AN i B i)
TREES 2] 48 1S HOBE INER 1 s, RS actor % > %A critic % T340 308 1.0x 107, 1.OX 107, 0Ky
BEREN 0.95, TG LEIR FHHE K s 2. Ak, LKA R ACC U 77 O I 48 35 2k ELAFI N 2, ICA fRILF 43 0 45451 K%
ELB1°8 0.1. LKA 2Bl E N reward = 1-y*~6;,,—outOfLane.,; ACC Wi € N reward = 0.05xv, —collision . —
outOfLane,,; ICA BN N reward =speed,,,.q+aArrived ey, q—collision o . 2 BE A P R 1 e VS Y ELAE R
SE IS A NHIRIL B I, 2245 T2, SR ae ki B T8 0. S ZETE T A KR A AR R EOR ARSI, 2> AT
&L

F1 O IESH
R4 actor®: 5% criticZE SR yIAETF  EIRERBK LA PR R LA

LKA 1.0x1074 1.0x1073 0.95 2 2
ACC 1.0x 107 1.0x1073 0.95 2 2
ICA 1.0x1074 1.0x1073 0.95 2 0.1

SRR SHL, d) A 0.01 FEHF 0.1, 25K 0.001; @), A 0.1 FHF] 0.005, 25K 0.005; n), A
0.1% TEHTE] 10% MHEE S, DKM 0.1%. ANTFISFRIZRPKIITIEN, Wik —HRdRE, B s
TFELRIE dyi < duiax- HIEEIRZEBUE €0 BB 0.05. THIE SR eyipan EH 0.005, FEANE SUEIRIE 1 0.25%,
B KR emax WE Y 0.2, NG SUEBEER 10%. R BE N 0.5%, d, MR B3, BONH I
2 I 2 BEFE IR 475 ¥ & (Kantorovich metric) 148 5 & B (total variation metric)®™ , 48300 T ik 404, £ 48
S JEE B AT R 3 0 AT 2 T [ B .

54 LWHERSHH
® RQ1: 7 faf v 1 FNAE B 1 J7 T, 25T B 208008 SRl G R dn el 2
NT 1812 RQ1, MEZEZR (compression ratio, CR) 1P 455 % 2 (mean absolute error, MAE) Xl G AFE AL AT
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PPA
S|
CR=— 11
q (11)
MAE =1 > MEAN|y-$| (12)
n i=1

Horh, (S| 7R GORS L, 1S | IR BARREA L, y b SR R B, 9 2 IR L, MEAN [y—5| T
B AR T R B S HE T IE, n R — IRSER hah GUAE R A I SOIRFS L. CR VT il SR 1 1 il
P, BT B I R, MAE 87~ ST A 1, B RE TR IR B RS E B, (e,d)- TG HE & 7 Hl B
Canopy KB, 772 (Elbow) F1 Gap €.

IR SE RN 2 PR, IE4i % (CR) RIS R FEREWS A ROl N RGERPIRES . SEMEFR =M. 92br B, A
[F) A5 R 1) R 48 ORI E] T 99% LA_E, 3l GUIRZAS A vh g 22 AL & A AN A R i GUIRES, AHEL T, By
FRAEAERCR N EAARAS . 0TI 25 A7 R B2 AR K D e, ZE 4 /N RUBAEAE PR 1 00, i T DR SR 25 0B Sl 5
J7i5 2 H AR NP AR 22 (MAE), RG] DLSE 47 R B R AR RS BB XUE .

R 2 AR R R RN A by
JE R ICPSR% et ik REMNML HMBRENM CR (%) MAE

Canopy 53 0.2687 7.2755

LKA Elbow 19728 12 0.0608 12.3485

Gap 4 0.0207 47.6254

Canopy 53 0.2231 3.3623

[/ EG 8 e ACC Elbow 23756 8 0.0336 5.8936
Gap 3 0.0126 122.2323

Canopy 225 0.3814 3.4237

ICA Elbow 58991 137 0.2322 6.6284

Gap 26 0.0441 48.5575

Canopy 49 0.2483 5.1778

LKA Elbow 19728 20 0.1014 8.6775
Gap 6 0.0304 126.9574

Canopy 50 0.2105 1.2336

R SR 25 48 5 ACC Elbow 23756 12 0.0505 4.4653
Gap 17 0.0717 3.3545

Canopy 302 0.5119 1.1158

ICA Elbow 58991 156 0.2644 34236

Gap 33 0.0559 27.7853

S 45 TR AR W, FE T IR SRR 2 0B R B ) i % 5 Tk e % DA AT R ELHERA K O IR X 3 AN R WIE SURFE.
B2, HT RS S RO PR R GURSIRAE T — R i H B =

X RQ1 1R BT B 23 0B 8 SRR R AT DT MO PR AR R GE 00 5 242, FEREH kbl 3k RGURRAE.

® RQ2: WAl {RAIFh AR Y 5 B 9 By /R i) AR i SN2

T % RQ2, SR PRISM 46 1iF 85 A i SR 2, o, TR RA L Z(E B, AR . THAME.
A S AR S B 55 I PRISM AT R B0 31, 8 X5 2 Bl A0 /s A5 SEAH DG IR PR I, DAV et A
RITEIE I FLSE Ty R A RAE A RE T, 7 I AR o, R NI U3t SR 2 (1) e SR AR, TR L LAE WS 7 T I L 38 R =
PR 1.

23 P B R E) 2 ) (b BB My PRISM 36 HE R, I s ORI 75 308 2 o ) B, Jlid PRISM
G A TG N, S I A T A 0 R B 4 e AR T b B SRR 2 I (A U . BT 3 S
Runin=2[C<= 60] /R T BEARTE 60 25 P 1 B /INIUHA SR 1T, Pow=2[F <= 60;isOutOfLane = 1] RN GEMRTE 60 2
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WED B — IR ETE W KR, P =2[F<=60;isCrashed = 1] B REARTLE 60 5 N F /0 KA — R BIERE I 56 K
WEZR, [ P =?[F <= 60;reachDest = 1] R REIRTE 60 5 N 2 /DHRIE — IR S RRER.

# 3 AT PRISM K% MDP & SR Z AT

ICPS A4t 5 52 4 5 UL L HSE w7
Rpmin=?[C<=51] 44.43 48.50 4.07
Ik R e . o o
LKA Pmax=?[F < 51;isOutOfLane = 1] 0.13% 0.0% 0.13%
B2 S Rinin=?[C<=51] 46.92 48.50 1.58
I " Prax=1F< 51;isOutOfLane = 1] 0.10% 0.0% 0.10%
Rpin=?[C<=51] 57.53 59.94 2.41
[RK ES 8 [ Pmax=?[F< 51;isOutOfLane = 1] 0.7% 0.0% 0.7%
Pmax=?[F< 51;isCrashed = 1] 0.06% 0.0% 0.06%
ACC
Rpin=[C<=51] 60.33 59.94 -0.39
2B LERE  Pmax=?[F < 51;isOutOfLane = 1] 0.01% 0.0% 0.01%
max=2[F< 51;isCrashed = 1] 0.19% 0.0% 0.19%
Rinin=?[C<=60] 8.38 9.36 0.98
R A ot Pmax=2[F< 60;isCrashed =1]  18.73% 20.80% 2.07%
A Pmax=[F< 60;reachDest = 1] 0.17% 4.60% 4.43%
I
Rinin=?[C<=60] 9.38 9.36 0.02
W2 NMEAERE Pmax=?[F< 60sisCrashed =1] ~ 19.35% 20.80% 1.45%
Pmax=[F< 60;reachDest = 1] 2.50% 4.60% 2.09%

F 3 SIS RE I, I T S AR 5 IRE Ry, R 2 (-0.39~1.58) AIMER R % (0.01%-2.09%) L1
AT IR AR (R #2254 0.98-4.07, BERIRZ N 0.06%—4.43%), BRI FSE T /R AT R g e B, e 1 b G A iy
5 RS AN 8 U

X RQ2 112 : J5 T 2 (i 18 SO SRR B8 BR A% (R IR 5 B SR Y Al (R SCEE 0 14, W] LA YIRS mE SR 4t

=VQIE A

6 B £

BT IR RAL SRR B A O R, HORES W B A m e AR A0HS s, S B RS A R AR
AR L SR A o 5] K I REREAT Il SO A L BRARCIR A 2 18] ) B 2% P A i o 3 g8 e 1 i AL (R, AR SR M T
] SR 22 S i G A 5 3, e I T A 2 ) AR A KA 20 A O 5 5 A 2 ST AR TR KR S O [ R 2, 3l
W18 BR B ST R M2 70 A 55, T8 BRR] SR N 25 4 SORE Y . 3 Tod g 2 I A B B, PR A HEAT XU B R,
T R T R PR A0 2 > 1 R 1 il B MIDP AR 7Y, i ke BDLAT it 5 T 9 X DL T I B B ] 38 SCA5 IR, 2 A i LA A
MRS SUAE SR ). BeAb, 45 S IR B % i 5 MDP A B HEAT AR, 92D il GUIRES 5 B AR 2 1A 38 S
. EGFERFMBAS. HIER SRS 5 K 12 455 ZOEAT 298 0 Hr, JFEH PRISM xof 4 7 idk
ATRAE VP, 45 RBWIA SR 10 i SO B BOR AR R s b« v 1 555 T B A e O PR RE A 9, [RI I R
i fRAEH R MDP 5 F 52 MDP 2 [8] ()i SCE 4 1. (B2, T MOSi B MM E R 228, T 5 KL ARG LK
72 5 Mk LA o, A ST J5 5 AE S B I A i 2 AR 3R BT, TR AT — 5 0 J) R AV, A AL vy 4 2 0 1) R
i B — D AT SR IR IE.

AR A A AR SR 2R I T DR R 284 SOR ) Tl RS R IR i AL 2 S0 vh R AR RE Y, 15 AR B 2 T oAk
5 SRS ROTVE I BCR AN 2 Ak, ARSCIT R I B 3 SO A7 kA ot B s b 2 ST U Rt A v, HAZ 3R
BEAT T S T S AR AN R B Pz v 107 OB, R — i B, AR HE— 2P IR SE PR 5 1
TR, I 785075 F8 SE RIS AT G (1 v 4 AN i R, 51 N SE AL (K S0 FR ML O 2 5 & e 1 3%
ZEP i, DAIRZR I T IR SRR 28 SLa B ) 5k 27 5] A2 SE B ICPS Agi b (52 .
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