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摘　要: 随着智能信息物理融合系统 (intelligent cyber-physical system, ICPS)的快速发展, 智能技术在感知、决策、

规控等方面的应用日益广泛. 其中, 深度强化学习因其在处理复杂的动态环境方面的高效性, 已被广泛用于 ICPS
的控制组件中. 然而, 由于运行环境的开放性和 ICPS系统的复杂性, 深度强化学习在学习过程中需要对复杂多变

的状态空间进行探索, 这极易导致决策生成时效率低下和泛化性不足等问题. 目前对于该问题的常见解决方法是

将大规模的细粒度马尔可夫决策过程 (Markov decision process, MDP)抽象为小规模的粗粒度马尔可夫决策过程,
从而简化模型的计算复杂度并提高求解效率. 但这些方法尚未考虑如何保证原状态的时空语义信息、聚类抽象的

系统空间和真实系统空间之间的语义一致性问题. 针对以上问题, 提出基于因果时空语义的深度强化学习抽象建

模方法. 首先, 提出反映时间和空间价值变化分布的因果时空语义, 并在此基础上对状态进行双阶段语义抽象以构

建深度强化学习过程的抽象马尔可夫模型; 其次, 结合抽象优化技术对抽象模型进行调优, 以减少抽象状态与相应

具体状态之间的语义误差; 最后, 结合车道保持、自适应巡航、交叉路口会车等案例进行了大量的实验, 并使用验

证器 PRISM 对模型进行评估分析, 结果表明所提出的抽象建模技术在模型的抽象表达能力、准确性及语义等价

性方面具有较好的效果.
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Abstract:  With  the  rapid  advancement  of  intelligent  cyber-physical  system  (ICPS),  intelligent  technologies  are  increasingly  utilized  in
components  such  as  perception,  decision-making,  and  control.  Among  these,  deep  reinforcement  learning  (DRL)  has  gained  wide
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application  in  ICPS  control  components  due  to  its  effectiveness  in  managing  complex  and  dynamic  environments.  However,  the  openness
of  the  operating  environment  and  the  inherent  complexity  of  ICPS  necessitate  the  exploration  of  highly  dynamic  state  spaces  during  the
learning  process.  This  often  results  in  inefficiencies  and  poor  generalization  in  decision-making.  A  common  approach  to  address  these
issues  is  to  abstract  large-scale,  fine-grained  Markov  decision  processes  (MDPs)  into  smaller-scale,  coarse-grained  MDPs,  thus  reducing
computational  complexity  and  enhancing  solution  efficiency.  Nonetheless,  existing  methods  fail  to  adequately  ensure  consistency  between
the  spatiotemporal  semantics  of  the  original  states,  the  abstracted  system  space,  and  the  real  system  space.  To  address  these  challenges,
this  study  proposes  a  causal  spatiotemporal  semantic-driven  abstraction  modeling  method  for  deep  reinforcement  learning.  First,  causal
spatiotemporal  semantics  are  introduced  to  capture  the  distribution  of  value  changes  across  time  and  space.  Based  on  these  semantics,  a
two-stage  semantic  abstraction  process  is  applied  to  the  states,  constructing  an  abstract  MDP  model  for  the  deep  reinforcement  learning
process.  Subsequently,  abstraction  optimization  techniques  are  employed  to  fine-tune  the  abstract  model,  minimizing  semantic  discrepancies
between  the  abstract  states  and  their  corresponding  detailed  states.  Finally,  extensive  experiments  are  conducted  on  scenarios  including  lane-
keeping,  adaptive  cruise  control,  and  intersection  crossing.  The  proposed  model  is  evaluated  and  analyzed  using  the  PRISM  verifier.  The
results  indicate  that  the  proposed  abstraction  modeling  technique  demonstrates  superior  performance  in  abstraction  expressiveness,  accuracy,
and semantic equivalence.
Key words:  deep  reinforcement  learning  (DRL);  abstraction  modeling;  causal  spatiotemporal  semantics;  intelligent  cyber-physical  system

(ICPS); Markov decision process (MDP)
 

1   引　言

信息物理融合系统 (cyber-physical system, CPS)[1] 是集计算、通信和物理环境的复杂系统, 具有混成性、复杂

性和实时性等特性, 通常运行在开放、不确定性环境中, 例如自动驾驶、智慧医疗、智慧城市、智能交通等环境.
CPS系统的控制部件是系统的核心, 需要根据感知环境得到的信息进行智能控制, 常见的控制器包括模型预测控

制 (model predictive control, MPC)、比例积分微分 (proportional-integral-derivative, PID)控制、线性二次调节器

(linear quadratic regulator, LQR)等. 以自动驾驶的自适应巡航控制系统 (adaptive cruise control, ACC)为例, 模型预

测控制器接收智能体与前车的相对距离、用户设置的巡航速度、自车速度和与前车的相对速度等输入信息, 然后

将加速度等控制信号传递给自车执行器, 执行相应的动作. 传统的MPC控制器通过预测有限时间内两车的运动,
每个时间步都生成控制命令, 以在保持与前车安全距离的同时, 实现用户设置的巡航速度跟踪目标.

近年来, 机器学习技术在 CPS系统中得到了广泛应用. 例如, 在自动驾驶领域, 感知部件可以借助卷积神经网

络 (convolutional neural network, CNN)网络来识别路牌、行人、障碍物等; 决策部件采用强化学习等技术实现智

能决策. 此类融合智能组件来实现系统功能运作的系统称为智能 CPS (intelligent CPS, ICPS)[1]. 深度强化学习

(deep reinforcement learning, DRL)[2] 结合了深度学习的近似能力与强化学习的决策能力, 能够处理高维、连续、

复杂的状态和动作空间问题. 它不仅能够基于原始输入数据自动提取有意义的特征, 而且可以在无监督的情况下

通过与环境的交互, 学习到策略模型. DRL 已经被广泛用于非线性、随机和高度不确定性的系统, 为其提供控制

优化策略. 虽然深度强化学习在 ICPS中取得了显著的成就, 但它仍面临一系列问题, 如规模性问题 [3], 即智能体在

每个时间步接收环境的状态信息并进行一次决策, 需要智能体需要在细粒度的状态空间和决策时间内进行操作,
从而引发了强化学习任务的规模性问题. 具体而言, 大规模的状态空间导致了状态空间探索效率低以及奖励稀疏 [4]

等问题. 其次, 长期决策的过程导致了轨迹空间规模庞大, 使强化学习的目标函数难以优化 [5], 进而导致学习效率

低、泛化能力弱以及算法稳定性差等问题.
解决强化学习的规模性问题的一种有效方法是使用抽象建模技术将大规模、细粒度的马尔可夫决策过程抽

象为小规模粗粒度的马尔可夫决策过程 [6], 从而将大规模复杂的决策任务抽象为小规模简单的决策任务, 减小状

态空间以及轨迹空间的规模. 现有的强化学习的抽象技术主要分为 3类: 状态抽象、动作抽象和状态-动作联合抽

象. 状态抽象是空间尺度上的抽象, 即利用状态抽象函数将大规模状态空间抽象为小规模的状态空间 [7]. 动作抽象

是时间尺度上的抽象, 即利用抽象动作策略将每单步决策的智能体决策过程抽象为每多步决策的智能体决策过

程 [8]. 状态-动作联合抽象是同时在状态空间尺度和动作时间尺度上做联合抽象, 旨在解决强化学习的规模性问题 [9].

3638  软件学报  2025年第 36卷第 8期



一个有效的抽象需要在降低复杂性的同时, 尽可能保证抽象后的最优性与原问题保持一致 [10]. 然而, 将抽象建模

技术应用于强化学习的工作虽然已经取得了初步的研究成果, 但是在保留原问题最优性上仍面临挑战, 特别是空

间语义、时间语义以及概率语义信息未能被完整保留. 这种信息丢失可能导致最优策略的丢失、泛化能力减弱和

策略鲁棒性降低等风险, 例如自动驾驶车辆在城市道路行驶面临多种复杂的交通状况 (行人穿越马路、车辆并线

等), 抽象建模中通常将城市道路简化为网格状的空间表示, 若空间语义丢失, 即车辆位置被粗略的表示为某个网

格中的点, 而不是精确的位置, 导致车辆在复杂交通中需要切换车道时, 丢失空间语义信息的抽象模型无法准确判

断何时应该并线以避免与其他车辆相撞, 导致车辆采取次优的驾驶策略, 甚至引发交通事故. 因此, 亟需探索新的

抽象技术来应对这一挑战, 使抽象后的强化学习过程最大化地适用于 ICPS控制器的决策生成, 并确保系统的安全性.
针对上述问题, 本文基于因果关系推理理论提出了一种基于因果时空语义对状态空间进行分层抽象的方法.

首先, 因果时空语义兼顾状态的时间信息、空间信息和概率信息, 从状态的本质出发, 对具体状态语义的每个维度

进行了第 1阶段的抽象, 将复杂的状态空间进行分解和简化, 以便于对状态空间进行有效的分析和理解. 其次, 提
出度量时间和空间变化的价值分布的时空价值矩阵, 并基于时空价值矩阵进行聚类抽象, 实现模型的第 2阶段抽

象. 该方法提高了模型抽象的程度, 使得抽象后的MDP[5] 模型更加精简. 此外, 由于状态和动作是密切相关的, 本
文提出在第 2 阶段抽象过程中需要兼顾动作抽象, 以实现状态-动作联合抽象, 达到最优的抽象效果. 最后, 结合

ICPS的典型案例进行了车道保持、自适应巡航、交叉路口会车等多组对比实验分析, 实验结果表明基于因果时

空语义的双层抽象方法具有较好的准确性和简洁性.
本文第 1节介绍问题提出的背景和重要意义. 第 2节介绍本文所需的背景知识, 包括智能信息物理融合系统、

基于强化学习的控制生成、MDP以及抽象MDP. 第 3节介绍抽象建模方法的研究现状和存在的问题. 第 4节介

绍如何基于因果时空语义构建抽象模型. 第 5节通过 3个案例对本文的方法进行实验, 并对实验结果进行分析. 最
后一节总结全文. 

2   背景知识

本节将详细介绍 ICPS、基于深度强化学习的控制器和抽象技术的相关概念及基本知识. 

2.1   智能信息物理融合系统控制器 (ICPS)
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智能信息物理融合系统控制器 (ICPS) 是在信息物理融合系统中融入人工智能技术, 帮助实现智能感知、智

能决策. 如后文图 1所示, ICPS主要由以下 4个部分构成: 基于机器学习的控制器、执行器、物理环境以及传感

器. 在 ICPS中, 传感器和控制器分别负责感知和决策. 传感器在 ICPS中扮演着感知器官的角色, 负责采样物理世

界的连续状态, 并将其转换为离散的信号, 在每个时间步   后输出新的系统状态  . 控制器则利用传感器接收到

的系统状态   及外部输入信号  , 根据所学策略输出控制信号  , 以引导执行器的行动, 从而实现 ICPS 的控制功

能. 执行器根据控制命令   调整智能体在实际物理环境中的行为, 使系统达到预期状态. 实际物理环境是 ICPS中

的关键组成部分, 通过 ICPS的非线性连续动力学模型  , 可以计算当前系统状态   和执行器的输出  , 从而得

到下一个系统状态  . 

2.2   基于深度强化学习的控制生成
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深度强化学习将强化学习 (reinforcement learning, RL)与深度学习 (deep learning)相结合, 用于训练智能体在

复杂环境中进行决策. 具体而言, 深度强化学习通过深度神经网络 (deep neural network, DNN)来解决复杂的非线

性问题, 使智能体具有处理高维数据的能力, 从而使 ICPS能够在复杂环境中实现自主决策功能. 如图 2所示, 在深

度强化学习的框架中, 智能体通过与环境交互来学习最优策略. 每个时间步骤中, 智能体接收传感器获取的环境状

态数据  , 并使用 DNN对这些数据进行处理和评估, 随后输出当前环境下的最优动作  . 智能体的决策受到探索

策略 (如 ϵ-贪婪策略) 的影响, 该策略用于对未知环境的探索与对已知信息的利用. 在执行动作后, 智能体会根据

环境反馈获得奖励信号  , 以衡量决策的效果. 智能体通过这些奖励来调整决策过程, 优化未来的策略, 以获得更

高的累积奖励. 通过这种方式, 深度强化学习能够有效地提升智能体的决策能力, 从而实现长期目标. 
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2.3   马尔可夫决策过程

深度强化学习可以通过马尔可夫决策过程 (MDP)[11] 进行形式化描述.
M= (S ,A,R,P,γ) S A

P : S ×A×S → s ∈ S , a ∈ A, Σs′∈S P(s,a,s′) = 1. R : S ×A→R
γ ∈ (0,1) γ γ

定义 1. 马尔可夫决策过程. 由一个五元组构成  , 其中,   表示有限非空状态集合,   表示有限

非空动作集合,   [0, 1]表示迁移概率函数, 对于      为当前状

态-动作对分配奖励值, 而   表示折扣因子. 折扣因子   决定了即时奖励对未来奖励的重要性. 较大的   将使

智能体从长期奖励中学习.
π : S → A π (s)

M π

V (s) s π

Q(s,a) s

a π

在MDP中, 策略   将状态集合映射到动作集合.   表示在状态 s 下应采取的动作, 马尔可夫决策过

程   描述了系统初始状态在离散时间步中的演变. 在 DRL 中, 策略   与环境交互所产生的状态转移和即时奖励

构成了学习过程的核心基础, 而策略的评估和优化则依赖于状态价值函数和动作价值函数. 状态价值函数如公式 (1)
所示,   表示在状态   下, 遵循某一策略   后智能体能获得的累计奖励期望值. 该值越高表示从该状态出发, 在
按照特定策略行动时可以获得更高的长期奖励. 动作价值函数如公式 (2)所示,   表示在状态   下, 采取动作

 并遵循某一策略   后能获得的长期期望回报. 动作价值函数用于评估特定状态下采取不同动作的价值, 从而帮助

智能体最大化期望回报. 

Vπ (s) = Eπ [Gt |S t = s] (1)
 

Qπ(s,a) = Eπ [Gt |S t = s,At = a] (2)

Gt t Eπ[·] π其中,   是从时间   开始的回报,   表示策略   下的期望值.
状态价值函数和动作价值函数之间具有密切的联系. 具体而言, 状态价值函数可以通过动作价值函数来计算,

反之亦然. 如公式 (3)所示, 状态价值函数可被视为特定状态下所有可能动作的期望动作价值; 公式 (4)所示, 若已

知每个动作的动作价值, 则可以选择最佳动作来确定该状态的最优价值. 

Vπ (s) =
∑

a
π(a|s) [Qπ(s,a)] (3)

 

Qπ(s,a) = R(s,a)+γ
∑

s′
P(s′|s,a)Vπ(s′) (4)

R(s,a) a s γ P(s′|s,a)

s a s′
其中,   是执行动作   时从状态   获得的即时奖励,   是折扣因子, 表示未来奖励的当前价值,   是从状

态   执行动作   转移到状态   的概率. 深度强化学习通过这些函数引导智能体在给定环境中学习最优策略, 即使

面对任何状态也能够选择最佳动作以实现长期奖励的最大化. 

2.4   抽象马尔可夫决策过程

对于现实世界中的 ICPS而言, 它们所面临的MDP模型状态空间通常庞大而复杂, 这使得在真实MDP中基

于深度强化学习进行决策生成变得具有挑战性. 为了解决这一问题, 抽象MDP通过将真实状态映射为简化状态,
将原本复杂庞大的状态空间转化为更小、更简单且易于处理的抽象状态空间, 同时尽可能保持策略的最优性. 这
里的最优性指的是, 在模型抽象后, 所学到的策略仍能确保在原始问题上实现相同的最优累积奖励, 即抽象后的

 

st

ct

AI 控制器

输入信号 it

基于 DNN、DRL 等
ct=C(st, it)

控制信号 ct

执行器传感器

系统状态 st+1

st+1=M(st, ct)
物理环境

图 1    智能信息物理融合系统
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t
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图 2    深度强化学习
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MDP能够保持与原始MDP中相同的最优策略 [7] .

M= (S ,A,R,P,γ) M̄= (S̄ ,Ā,P̄,R̄,γ)

Φ : S → S̄ Φ(s) ∈ S̄ Φ−1(s̄) s̄ ∈ S̄ . S̄ Φ

Ψ : A→ Ā; Ψ (a) ∈ Ā Ψ−1(ā), ā ∈ Ā. Ā Ψ

定义 2. 抽象马尔可夫模型. 设   表示真实的MDP, 其对应的抽象MDP表示为  ,

 表示状态抽象函数,   为抽象状态, 其逆映射表示为  , 其中      是与抽象函数   对应的

抽象状态集,      表示动作抽象函数, 其逆映射表示为         是与动作抽象函数   对应

的抽象动作集.
根据抽象MDP, 奖励函数和状态转移可以定义为: 

R̄(s̄,ā) =
∑

s∈Φ−1(s̄), a∈Ψ−1(ā)
w(s)v(a)R(s,a) (5)

 

P̄ā
s̄s̄′ =
∑

s∈Φ−1(s̄), a∈Ψ−1(ā)

∑
s′∈Φ−1(s̄′)

w(s)v(a)Pa
ss′ (6)

w : S → , s̄ ∈ S̄ ,
∑

s∈Φ−1(s̄)
w(s)= 1 v : A→ [0,1], ā ∈ Ā,

∑
a∈Ψ−1(ā)

v(a)= 1

R̄(s̄,ā) ā s̄ s̄′ P̄ā
s̄s̄′ ā

s̄ s̄′

其中,   [0, 1]   表示状态的权重函数,   表示动作的

权重函数.   表示在执行抽象动作   后从抽象状态   转移到   的即时奖励,   表示在执行抽象动作   后从抽

象状态   转移到   的概率. 

3   相关工作

为解决强化学习由于需探索复杂多变的状态空间而造成决策生成时效率低下泛化性差等问题 [6], 我们发现已

有工作通过将复杂的大规模细粒度MDP抽象为小规模的粗粒度MDP, 以缩小状态空间的规模, 降低计算负担. 在
深度强化学习的研究和应用中, 根据抽象对象的不同, 抽象方法主要划分为 3类: 动作抽象、状态抽象及状态-动
作对抽象, 下面将分别对这 3大类方法进行总结.

动作抽象是通过在时间维度上减少智能体决策所需步骤, 优化决策过程, 并促进智能体进行长期的策略学习.
目前的研究工作中将动作抽象引申出了宏动作 (options)、子任务 (subtasks)、技能 (skill)[5]、子目标 (subgoal)[12]

以及子策略 (sub-policy)[13] 等概念. 有研究通过减少必须进行的决策数量来解决需要长期决策过程的问题 [5]. 除此

之外, 为了提高学习效率, 动作抽象通过为智能体设定子目标并给予内在奖励来解决奖励稀缺环境下的问题 [8]. 同
时, 还通过设置与特定任务无关的子目标来增强模型在不同任务之间的泛化能力 [14]. 然而, 由于庞大状态空间导

致巨大抽象动作空间存在困难, 基于抽象动作的强化学习优化仍面临挑战.
状态抽象则是在空间尺度上的抽象, 其目标是将环境中的原始大规模状态空间抽象为小规模状态空间, 从而

降低强化学习算法的样本复杂度以及探索难度. 然而, 由于信息丢失、抽象非一致性等问题所生成的策略无法保

证与真实MDP所生成策略完全一致的最优性 [15]. 因此, 研究人员提出了多种度量状态相似性的方法, 以期望经过

抽象后仍能保持原决策过程最优性. 例如, Castro[7] 使用深度神经网络度量MDP中的状态相似性; Taïga等人 [16] 提

出了近似MDP同胚理论, 专注于合并具有相似迁移概率和奖励的状态; Taylor等人 [17] 则提出了一个宽松的互模

拟等价度量, 将其与近似MDP同胚理论结合, 以达到状态抽象的目的. Junges等人 [3] 将MDP视为层次结构, 将状

态空间划分为宏观级别和子级别, 将不可再划分的子级别视为约束, 不断对约束进行划分, 分析模型的不确定性,
以解决状态空间爆炸问题. 清华大学 Feng等人 [18] 提出了 DenseRL方法, 通过对现有自动驾驶数据集中的安全关

键场景的 MDP 进行编辑, 鼓励 ADS 在这些安全关键场景下进行测试, 展示了状态抽象技术在 ICPS 中的应用潜

力. 但是, 状态聚类抽象研究存在一个难点即如何保证原状态的时空语义信息.
状态-动作联合抽象同时在状态空间尺度和动作时间尺度上进行抽象, 以结合状态抽象和动作抽象的优点. Abel

等人 [19] 定义了 4种不同的状态-动作对的抽象类别, 并对原始问题提供次优解决方案. Song等人 [20] 提出 SIEGE,
将系统状态规约为性质语义, 以性质语义联合动作进行抽象, 但是规约性质缺乏对概率语义的描述, 会损失状态的

概率语义. Guo 等人 [21] 提出测地度量对系统状态进行聚类抽象, 考虑抽象模型能否保留原始真实模型的最优性,
但是测地度量更强调状态的空间维度相似度. 此外, 还可以利用神经网络进行表征学习的方法实现状态动作对抽

象, 如 FuN[22] 将复杂的高维系统空间映射至低维的抽象表示, 以此来减少状态-动作对的维度. 从本质上来看, 状
态-动作对抽象是一种通过离散化状态和动作, 并求其笛卡尔积后实施的抽象方法. 然而, 这一过程常导致状态空
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间进一步增大. 尽管采用神经网络进行表征学习的方式可以在某种程度上压缩状态空间, 但目前还不清楚上述聚

类抽象的系统空间和真实系统空间是否具有语义一致性.

此外, 因果推理是一门研究因果关系及其在各种复杂系统和现象中的作用与影响的科学 [23] . 它通过分析变量

之间的因果联系, 揭示事物发展的内在机制和规律, 从而为决策和优化提供理论依据和方法支持. 因此, 本文提出

基于因果时空语义的双阶段抽象方法, 从 ICPS状态价值语义、动作价值语义以及迁移概率语义等方面进行剖析,

刻画系统不同时间空间下的价值. 通过将这些涵盖的语义作为抽象输入, 进而实现保持抽象模型与真实模型的语

义等价性, 并缩小模型规模. 

4   基于因果时空语义的抽象模型构建

(ε,d)

本节将探讨模型抽象的核心问题——如何度量不同状态之间的相似度, 并据此判断它们是否可归入为同一抽

象状态. 解决该问题对于构建 ICPS场景中的抽象MDP模型至关重要. 为此, 本文提出了一种基于因果时空语义

的深度强化学习抽象建模方法, 该方法在保持真实马尔可夫决策过程语义信息的同时, 实现状态的有效抽象. 具体

来说, 第 1阶段从具体状态的各个特征出发, 依据特征间的因果关系, 确定特征的语义计算方法. 通过衡量不同语

义粒度划分对语义特征抽象的影响, 实现对状态特征的精确抽象. 第 2阶段, 借助时空语义信息, 构建了时空语义

度量, 并采用   -抽象方法, 构建场景的抽象 MDP 模型. 图 3 展示了基于因果时空语义的深度强化学习抽象建

模的方法框架, 主要包含以下 3个部分.
 
 

基于因果时空语义的状态抽象 基于区间盒动作抽象

a+

区间盒

因果图

基于时空语义的(ε, d)-抽象

时空语义度量→S=(s0, s1, s2,..., sn)

基于因果语义的特征区间化

y

x

构建场景抽象 MDP
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0.7
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S=(s0, s1, s2,..., sn)

Sl=(s0l, s1l, s2l,..., snl)

P(|X−μ|≥ε)≤2 e−2nε2

图 3　基于因果时空语义的抽象方法框架
 

(1) 基于因果时空语义的状态抽象: 因果时空语义涵盖状态特征间的因果关系以及状态之间的时空关系. 根据

状态特征间的因果语义, 实现对状态特征的压缩, 并进行区间化处理. 时空语义引入了价值信息、时空信息和概率

信息, 通过时空语义度量评估状态之间的相似程度, 从而进行状态抽象. 时空价值语义能够更全面地捕捉状态之间

的关联性, 提高抽象模型的准确性和实用性.

(2) 基于区间盒的动作抽象: 通过区间盒抽象, 将连续动作空间等距离地划分为单位区间, 并根据具体环境和

问题的特性调整抽象粒度, 以提升强化学习算法对动作选择问题的处理能力, 同时降低计算复杂度.

(3) 构建场景的抽象MDP: 收集安全路径数据集, 提出迁移空间的概念, 并运用霍夫丁不等式设计迁移概率计

算公式, 以提高迁移概率的准确性. 同时, 结合抽象状态和抽象动作, 构建场景的抽象MDP模型. 
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4.1   基于因果时空语义的状态抽象

在构建抽象模型时, 模型需要在简洁性与准确性之间找到一个恰当的平衡点. 简洁性要求有效控制状态数量,
而准确性则要求减少抽象状态与具体状态之间的误差. 因此, 抽象建模方法既要保证模型简洁易用, 又要确保其高

度实用和准确, 使得通过语义抽象得到的模型能够真实地反映系统的实际情况. 本文提出了基于因果时空语义构

建抽象模型, 以确保所得到的模型既简洁又准确. 因果时空语义包括状态特征间的因果语义和状态之间的时空语

义, 为系统行为提供了一个全面的多维度理解和表征方法. 通过因果关系映射, 本文将复杂的高维状态空间抽象到

更加抽象的状态空间表示, 并通过对状态之间时空关系进度量来缩减庞大的状态空间. 该方法能够准确反映出系

统需满足的规约性质, 并展示不同需求下的系统行为特征, 不仅能够更有效地捕捉系统决策核心含义, 还提高了基

于抽象模型进行决策生成的效率. 

4.1.1    基于因果语义的特征区间化抽象

在 ICPS中, 传感器数据的高维复杂性给决策带来了挑战. 由于实际应用于决策的传感器数据相对稀缺, 因此

需要对这些数据进行有效地处理. 单独一个特征并不能提供足够的信息支持决策过程, 而不同维度的组合可能会

为决策带来更加丰富和全面的场景理解. 此外, 在处理传感器数据时还需要考虑到不同类型、不同精度、甚至是

不同时间尺度下数据之间可能存在着潜在联系与影响. 因此, 发现特征间的关系并进行组合以实现状态维度压缩

变得至关重要. 本文结合自动驾驶的数据集, 应用现有的因果发现算法, 例如, PC (Peter-Clark algorithm) 算法 [24]

和 FCI (fast causal inference)算法 [25] 构建因果图. 借助因果图识别出不同状态特征之间的因果关系, 并根据这些关

系设计特征抽象映射函数, 将原始的高维度的状态空间映射到一个更加简洁、更易于处理的抽象状态空间.

G G = (V,E) V

E

定义 3. 基于因果发现的因果关系获取. 因果推理任务可以获取所有被观测变量间的因果关系 [23] , 输入为观测

到的变量, 输出为一种能够表示因果关系的因果图  , 其表示形式为一个有向无环图  , 其中   是节点集

合, 由原始数据中观察到的变量组成,   为边的集合, 其中, 边表示因果关系, 并且图中没有有向环, 即不存在从一

个节点出发经过有向边回到自身的路径.
si ∈ S D

G G

D

在本文中, 一个被观测的变量就是MDP中的一个状态  . 在一些假设下, 给定一个数据集  , 称还原真实

因果图   的任务为因果发现. 真实因果图   要求满足一致性和可识别性假设. 一致性指通过因果图导出的概率分

布中蕴含的独立性与   中的一致. 可识别性指因果图中的所有边的方向都被确定. 为了满足一致性, 因果发现算法

引入因果忠实性假设, 该假设要求因果图导出的概率分布的独立性能够蕴含因果图本身所表达的独立性, 这使得

这些算法能够重点关注图空间上的非参数性质.

s = (d1,d2,d3, . . . ,dn)

n G = (s,E)

s E

本文使用的因果发现算法为满足因果忠实性和因果无环性假设的 PC算法 [24] 和 FCI算法 [25]. 该研究中, 我们

首先使用 PC 和 FCI 算法对观测数据进行初步的因果关系挖掘, 以应对数据间复杂的线性和非线性关系, 并排除

观测特征中非因果关系的观测特征, 在此基础上, 使用互信息方法对初步挖掘到的因果关系进行确定 [26,27] , 最后得到

的结果即为我们想要的因果关系. 该方法的输入为观测数据也即 ICPS数据集特征变量  , s 为真

实状态且具有   个特征, 输出为不同特征状态之间的因果关系, 以 ICPS数据集为输入得到的因果图为  ,
 为状态集合,   为状态集合之间的因果关系.

s = (d1,d2,d3, . . . ,dn) s n Θ

θ = Θ(di, . . . ,dk) di, . . . ,dk Θ θ s̄ = (θ1, . . . , θ j)

定义 4. 基于因果语义的特征抽象. 设   表示真实状态,   具有   个特征.   表示语义映射函

数,   表示存在因果关系的   特征经过   映射的具体语义值  .   表示经过基于语

义的特征抽象后的抽象状态.

s (v,acc, x,y, . . .) v acc

(x,y)

s = (v,acc, x,y, . . .) d = (relvelocity,relangle,reldistance, . . . ) relvelocity relangle reldistance

如图 4所示, 我们对基于因果语义的特征区间化抽象进行举例说明, 以自适应巡航控制为例, 其目标是追寻前

车并保持安全距离. 自动驾驶车辆状态   用多维向量   表示, 分别表示车辆速度  、加速度   及空间

坐标   等. 通过对因果关系进行挖掘并因果图进行分析, 可以实现基于因果语义的抽象. 基于因果语义的抽象

将具体状态   简化为表示  , 其中  、 、  分别代

表相对速度、相对角度和相对距离. 通过基于因果发现的因果关系获取步骤, 我们得知角度和速度之间不存在因

果关系, 故无需特征映射. 基于因果关系筛选的特征抽象方法保留了 ICPS所需的关键信息, 有效地减少了状态空

间的复杂性, 并为后续决策和控制提供更高效且可解释性更强的状态表示.
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基于因果语义的特征关系发现

相对距离 drelative

安全距离 dsafe

安全距离 dsafe

drelative

速度语义 θφv: Vrelative=Vego−Vcruising

距离语义 θφd: drelative=Positionfront−Positionego>dsafe

前车
自动驾驶车辆 ego

预定义巡航速度 Vcruising

v

t

vego
d

t

相对速度 Vrelative

图 4　基于因果语义的特征区间化抽象示意图
 

θi经过因果关系映射后, 发现语义特征   的范围并不一致, 且表现形式仍然是连续范围内的具体数值. 为了实现

基于特征的区间化抽象, 需要将语义值归一化到统一的范围, 并以此为基础进行离散化操作. 这个过程可以被视作

将一个多维空间划分为若干个区间, 以确保每个特征取值都在可控范围内.

S = (θ1, θ2, θ3, . . . , θJ) J J
∏J

j=1
K j K j

d j
i=
[
l j
i ,u

j
i

]
d j

i j i l j
i u j

i 1 ⩽ i ⩽ K j

假设状态   拥有   维语义空间, 需要将   维空间划分为   个段, 每个维度上有   个区

间, 表示为  , 其中,   是第   维上的第   个区间,   和   是该区间的下界和上界,  . 基于区间化的

划分可以在整个空间中建立一个有序的结构, 这样后续处理起来更方便和高效. 但是需要确保这种划分是合理的,
因此需要将空间划分问题转化为了优化问题, 具体表述如下:  

max(u j
i − l j

i )

s.t.



d j
MIN ⩽ u j

i − l j
i ⩽ d j

MAX∣∣∣ŝ j
i

∣∣∣ ⩾ n j
MIN

MEAN
{
θ j

s−E
[
θ̂ j

s

]}
<e j

MEAN

MAX
(
θ̂ j

s

)
−E
[
θ̂ j

s

]
<e j

MAX

(7)

d j
MIN d j

MAX j ŝ j
i=
{
s|θ j

s ∈ d j
i

}
θ j

s d j
i

n j
MIN j e j

MEAN e j
MAX j

其中,   和   分别是第   个语义维度上区间的最小长度和最大长度,   是语义值   落在区间   内

的具体状态的集合,   是第   个维度区间中具体状态的最小数量,   和   是第   个维度上抽象误差的预定

义平均值和最大误差, MEAN 指的是均值函数, MAX 指的是最大值函数. 这些公式确保每个区间包含足够的具体

状态, 同时保持较低的抽象误差.
S

Ŝ Θ dMAX dMIN

nMIN eMEAN rd

rd

算法 1描述了基于因果语义的特征区间化抽象算法, 该方法将复杂的具体状态集合   转化为抽象且具有丰富

语义信息的抽象空间  . 在这个过程中, 使用因果语义映射函数   并遵循区间最大长度   和最小长度  、区

间内最小具体状态数   以及期望误差范围   和状态压缩指标   等约束条件. 有学者提出在评估状态压缩效

果时需要考虑参数  , 其目标是在保证语义信息不受损害前提下有效减少状态数量 [20]. 通过迭代优化以及语义损

失衡量 [20] 后, 该算法在不牺牲重要语义信息情况下将原始状态数量压缩至 10%–30%之间, 以达到既高效又精确

的状态抽象效果.

算法 1. 基于因果语义的特征区间化抽象算法.

Θ dMAX dMIN nMIN

eMEAN eMAX rd

输入: 具体状态集合 S, 语义值映射  , 最大区间长度  , 最小区间长度  , 区间内最小具体状态数  , 期望

误差  , 最大误差  , 缩减等级  ;
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Ŝ I输出: 区间化的抽象空间  .

Ŝ I ← ∅1.   //初始化抽象过程

2. while !refined do
j ∈ {1, . . . , J}3.　 for each   do

d j← s Θ j, dMAX, dMIN, nMIN4.　　   根据   进行区间化划分

5.　 end for
D← d1, . . . ,dJ6.　   //形成区间化特征集合

Ŝ I ←7.　   将 D 映射为状态

emean,emax← Ŝ I8.　   计算   与 S 之间误差

rcur←根据 Ŝ I ,S9.　  ( )计算特征压缩率

emean > eMEAN emax > eMAX rcur > rd10.　 if   or   or   then
dMAX, dMIN, nMIN11. 　　更新   //如有必要, 更新区间参数

12. 　else
←13.　　 refined   True //如果条件满足, 则结束细化

14.　 end if
15. end while

Ŝ I16. 返回   //返回区间化的抽象空间

eMEAN

基于因果语义的特征区间化抽象不仅减少了 ICPS中庞大的状态空间, 也为描述系统状态提供了一种人类可

理解的方式, 使得设计人员在面对传感器收集的海量数据时, 依然能够直观地理解系统的特性和控制器的行为. 即
便在预定义的误差参数   设定为接近零的极端情况下, 算法 1也能保证收敛, 即在最不利的情况下返回原始数

据构建的MDP. 通过特征区间化抽象, 具有相近语义值的具体状态被有效地映射至相同的区间化抽象状态, 为基

于时空语义度量的进一步抽象提供了基础. 

(ε,d)4.1.2    基于因果语义的时空   -抽象

(ε,d)

上述基于因果语义的特征区间化抽象缩减了状态空间, 但是其简化程度仍然受到抽象粒度的影响. 为此, 我们

进一步提出基于因果语义的时空   -抽象, 实现更加灵活和精确的模型抽象.
s ∈ S θ = Θ {V( s),Q(s,a),R(s,a),P(s, s′), . . .} θ ∈ Rn

θ Θ : S → θ s V (s)

Q(s,a) R(s,a)

定义 5. 时空语义. 对于任意具体状态  , 时空语义  , 其中  . 这里

的   表示通过映射函数   从状态   提取出的语义值, 包括了状态的多维特征, 例如状态价值函数  、动

作价值函数  、奖励函数   和迁移概率函数 P(s, s')等.
Θ

(ε, d)

其中, 语义映射函数   用于捕获状态固有属性, 并将所处状态转化为语义空间中的坐标. 时空语义极大地丰富

了对状态演变过程的认知, 提供了一个从时间和空间特征捕捉状态动态变化的分析框架. 通过这一框架, 能够更加

宏观地评估不同状态之间的等价性, 实现高效抽象. 除此之外, 我们采用   -抽象方法 [21]实现对经过因果语义区

间化后的状态进一步抽象.
(ε, d) (ε, d) Φε,d : S → Ŝ定义 6.   -抽象.   -抽象定义为一个映射: , 该映射需要满足下列条件: 

d(s1,s2) ⩽ ε, ∀ŝ ∈ Ŝ , s1,s2 ∈Φ−1
ε,d(ŝ) (8)

Φ : S →Ŝ S Ŝ Φ

Pow(S ) S Φ−1 : Ŝ→ Pow(S )

d ε

其中,   表示为抽象映射函数, 将原始状态空间   映射为一个抽象状态空间  . 映射函数   可以将一个真

实马尔可夫模型转化为抽象模型. 令   表示为   的幂集,   表示函数的逆映射. 状态抽象的核

心是测量状态之间的相似性, 并根据状态相似度进行近邻抽象. 其中   表示状态度量矩阵,   表示抽象阈值.
根据马尔可夫决策过程中的状态价值函数和动作价值函数可知, 如果两个状态的迁移模型和奖励相似, 那么

两个状态下的期望累积奖励也是相似的. 这为状态抽象提供了一种简化方法, 即奖励函数和迁移概率可组成该状

态的时空价值矩阵, 从而在基于时空价值语义抽象的过程中, 尽可能地保持抽象马尔可夫决策过程的最优值函数,
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保持与真实马尔可夫决策过程的语义等价性.
s1 s2

s1, s2 ∈ S

定义 7. 时空语义度量. 时空语义度量通过比较两个状态   和   在奖励、迁移概率、动作空间分布及状态上

的相似性, 来量化它们之间的等价性. 对于任意  , 

d(s1,s2) = d(θs1 ,θs2 ) ≜ max
â∈Â(s1)

∩
Â(s2)

{
cR|R(s1,â)−R(s2,â)|+cPDp[P(·|s1,â),P(·|s2,â)]

}
+ cDDA[Â(s1),Â(s2)]+ cT DS [s1,s2] (9)

cR cP cD cT

DP [P( · |s1,a),P(·|s2,a )]

DA[Â(s1),Â(s2)] DS [s1, s2] s1 s2 max
â∈Â(s1)

∩
Â(s2)

â cD, cT

cDDA[Â(s1),Â(s2)]⩽ ε Â(s1) Â(s2) d(s1,s2) = 0

s1=s2

其中,  ,  ,  ,   分别为奖励差异、迁移概率差异、动作空间差异和状态差异的权重系数, 用于调节各部分对最

终度量值的影响程度.   表示两个状态下采取相同动作后状态转移概率分布的差异度量.
 表示两个状态可采取的动作集合的差异度量.   表示状态   和   的直接差异度量. 

表示在两个抽象状态的抽象动作集合交集中能最大化后面表达式的抽象动作   .   是充分大的正数, 当
 时,   等价于抽象动作集合  . 时空价值矩阵满足互模拟性、唯一性, 即当 

时,  .
dMIN

nMIN dMAX ε

结合定义 6和定义 7, 利用 4个参数来修改抽象的精度: 1)两区间之间的最小距离  ; 2)抽象状态中包含的

最小具体状态数量  ; 3)两区间之间的最大距离  ; 4)时空价值矩阵阈值  .
dMIN nMIN

dMAX

ε (ε,d)

S̄ Φ

最小距离   保证了两个不同区间反映不同的语义层次, 最小包含具体状态数量   避免了只包含少量具

体状态的冗余区间出现. 此外, 当状态存在临界情况时, 将其合并到相邻的抽象状态可能会导致语义值出现显著误

差, 因此, 使用第 3 个参数, 最大距离  , 将临界状态分割为单独的抽象状态. 抽象状态的语义值设置为其包含

的具体状态的平均语义值. 最后, 设定阈值  , 以第 1阶段抽象作为其输入, 使用   -抽象得到最终的抽象状态空

间   和抽象状态函数  .

e j
MEAN

e j
MAX

(ε,d)

(ε,d)

需要注意的是, 相关参数可以根据精度和模型尺寸要求进行修改, 即越小的误差阈值, 对应的模型越精确, 抽
象状态空间越大. 公式 (7)中第 1个平均误差的公差   是为了保证抽象的代表性和整体的准确性. 理想情况下,

每个抽象状态应该表示一组具有相似语义的具体状态, 因此每个语义的平均误差应该相对较小, 以防止抽象状态

偏离其实际物理状态. 同样, 对于  , 如果出现较大的平均误差, 则可能导致过多语义差异明显的具体状态被聚

合为相同的抽象状态, 从而导致状态空间过度压缩. 第 1阶段抽象的作用是将离散化的数据状态划分为不同的区

间, 第 2阶段的   -抽象可以划分某类抽象状态的语义鲁棒半径, 实现更高层级的模型抽象. 因此, 基于时空语义

度量的   -抽象的核心目标是在最优值函数上尽可能保持抽象MDP与真实MDP的一致性, 以确保它们在语义

层面上等效. 这种方法的精髓在于有效地保留对系统行为具有重大影响的关键信息, 并剔除对决策和系统性能影

响不大的信息, 从而实现状态空间高效压缩和简化. 此外, 通过时空语义度量, 在空间维度上探究状态之间相似性,
并考虑了状态变化和动作选择概率分布, 在解决高维状态空间问题中提供了新视角. 这种基于语义相似性的状态

度量方法使本文能够更准确地评估状态之间距离, 并深入理解系统行为本质.
k

(ε,d) Ŝ Φ

算法 2 首先确定聚类数量   (见第 1 行), 然后通过随机初始化聚类中心点 (见第 2 行) 来准备聚类过程. 接下

来, 通过迭代将数据点分配给最近的聚类中心点, 并更新中心点, 直到达到收敛状态 (见第 3–10行). 最终, 算法返

回基于语义的   -抽象空间   和抽象映射函数  . 这里的聚类中心点 c1, c2, c3,…, ck 包含了抽象空间的最终表

示 (见第 11行).

(ε,d)算法 2. 基于因果语义的时空   -抽象算法.

Ŝ I = {D1,D2, . . . ,Dn}输入: 区间化的抽象空间  , 最优状态数量确定函数 K, 时空语义度量 d;
Ŝ Φ输出: 基于语义的 (ε, d)-抽象空间  , 抽象模型  .

k← K
(
Ŝ I

)
1. 确定聚类数量 

c1,c2, . . . ,ck ← Ŝ I2. 随机初始化聚类中心:   中的随机点

3. while 未收敛 do
4.　 for i=1 to n do
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Di c j(i) = d(Di,ck)5. 　　将每个数据点   分配给最近的聚类中心点: 
6. 　end for
7.　 for k=1 to k do

ck =
1

|{ i : j (i) = k }|
∑

i: j(i)=k
Di8. 　　更新每个聚类中心点为被分配数据点的均值: 

9. 　end for
10. end while

Ŝ ,Φ(c1,c2, . . . ,ck)11. 返回 

O(n · k ·m) n k m O(k ·m)

算法的时间复杂度取决于聚类过程的迭代次数, 其中包括将数据点分配给聚类中心点和更新中心点. 该步骤

的复杂度为  , 其中   表示数据点数量,   表示聚类数量,   表示维度, 而中心点更新的复杂度为  .
算法的性能受到初始中心点位置和聚类数量的影响, 因此需要根据具体数据集进行调整以获得最佳结果. 

4.2   基于区间盒的动作抽象

本文基于文献 [28]提出了一种基于区间盒 (IntervalBox)的连续动作离散化抽象方法. 该方法的核心思想是通

过对状态空间进行离散化来实现对连续动作空间的精细划分, 并利用这些抽象的动作区间来近似模拟实际策略中

的动作效果. 具体为使用基于反例引导的抽象和精化 (CEGAR)方法, 将连续的状态空间离散化为有限的抽象状态

空间. 在初始阶段, 状态空间使用区间盒进行粗略的离散化, 并根据验证结果逐步对抽象状态进行细化. 通过这种

方式能够有效地将原本连续的动作空间离散化, 既有助于强化学习算法处理动作选择问题, 同时也大幅降低相关

计算复杂度.
d A i (i ∈ [0, . . . ,d ])

ai [li,ui] Ii = [li,ui]/gi A

a Â â = [k1,k2, . . . ,kd] ki = ai/gi gi i

定义 8. 区间盒. 对于   维连续动作空间  , 每个特征中变量都有其自己的有效范围, 即第   个特征 

中的变量   在范围   内. 区间盒方法将此范围均匀划分为单位区间  , 实现对连续动作空间   的划

分. 对于动作  , 基于区间盒抽象后, 在抽象动作空间   中对应动作  , 其中  ,   是第   维的

抽象粒度.
k mk

m

a ∈ [l,u] ā= [l,u]

动作抽象如图 5所示, 首先均匀划分动作空间为等长的区间.   维动作空间被划分为   个子空间, 其中每个维

度上有   个相同长度的区间. 然后, 将具体动作转换为动作所属的区间, 即对应的抽象动作; 也就是说, 对于一个具

体动作  , 其抽象动作为  .
  

时间 t

抽象动作原始动作
集合

图 5　基于区间盒的动作抽象示意图
 

根据定义 8, 在抽象MDP中, 为了确保抽象动作的执行效果能够尽可能地接近真实MDP中相应动作的效果,
关键在于准确调整抽象粒度. 具体而言, 在确定抽象粒度时必须综合考虑环境特性和要求, 并根据具体情况设定每

个状态特征的粒度级别.
更细致的粒度能够使得抽象动作更贴近原始连续动作, 从而在模拟真实 MDP 行为方面提供更高准确性. 然

而, 过于微小的粒度设置也伴随着潜在风险, 可能会加剧数据中由随机波动引起的不准确性, 并影响模型的稳定性

和可靠性. 因此, 在确定抽象粒度时需要找到一个适当平衡点, 以兼顾细粒度带来的近似精度和过小粒度可能导致

的不稳定性. 根据具体环境特征和目标, 在不同应用场景和需求下灵活选择合适的抽象级别是必要的. 通过这种方
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式既能保证抽象动作在仿真真实系统行为时高度接近, 又能避免由于错误选择粒度而导致模型不稳定和预测误

差. 这一原则对于使用抽象 MDP 模型解决实际问题尤其重要, 在需要进行准确控制和决策的复杂系统中具有重

要理论价值和实践意义. 

4.3   构建场景的抽象 MDP

本节重点讨论在随机环境中构建该场景的马尔可夫决策过程 [29] , 图 6展示了该方法的具体步骤.
 
 

构建抽象迁移空间
基于区间盒的动作抽象

y

x

基于因果语义的特征区间化抽象

基于时空语义的 (ε,d)-抽象

抽象状态 S=(s0, s1, s2,..., sn)

状态 S=(s0, s1, s2,..., sn)路径 Traces=(s0, a0, s1, a1,..., sn)动作 A=(a0, a1, a2,..., an−1)

抽象动作 A=(a0, a1, a2,..., an−1)

SI=(s0I
, s1I

, s2I
,..., snI)

抽象 MDP

1 1

0.3

0.7

0.1

s3 s2

s1s0

a1

a2

0.9

1

图 6　抽象MDP的构建过程示意图
 

抽象主要包括 3个步骤: 基于因果时空语义的状态抽象、基于区间盒的动作抽象以及迁移空间构建. 通过运

用算法 1和算法 2, 状态抽象对状态空间进行压缩, 以捕捉其关键特征. 根据第 4.2节内容, 动作抽象将真实世界中

的连续多样的动作离散化为不同区间, 每个区间代表一组相似的动作. 本节将描述迁移空间的构建过程.
Ŝ Â T̂ : Ŝ × Â→ Ŝ ,

s ∈ ŝ s′ ∈ ŝ′ ŝ ŝ′

s s′ ŝ ŝ′

η(ŝ,â,ŝ′) ŝ â ŝ′∑
ŝ′∈Ŝ
η(ŝ,â,ŝ′) = 1.

使用抽象状态空间   和抽象动作空间  , 构建抽象迁移空间   抽象迁移空间是一组具体状态之

间实际迁移的集合. 特别地, 如果存在具体状态   和   之间的实际迁移, 则相应地建立起抽象状态   和   之

间的抽象迁移, 其中   和   是具体状态, 而   和   是抽象状态. 抽象迁移共享相同的起始状态和目标状态, 通过迁

移概率函数来表示抽象模型. 具体而言,   表示在当前状态    和当前动作    的条件下访问    的概率, 且

 迁移概率定义如下:
 

η(ŝ,â,ŝ′) =

∣∣∣∣{(ŝ,â,ŝ′) ∈ T̂ |ŝ ∈ Ŝ ,â ∈ Â,ŝ′ ∈ Ŝ
}∣∣∣∣∣∣∣∣{(ŝ,â,_) ∈ T̂ |ŝ ∈ Ŝ ,â ∈ Â

}∣∣∣∣ (10)

s̄ â ŝ′ s̄换言之, 迁移概率是通过从抽象状态   经过执行动作   到抽象状态   的具体迁移数量除以从抽象状态   出发

的所有实际迁移数量来计算的.
T̂

ŝ, â ŝ0

p̂ T̂

ε

ε

T̂

迁移过程如算法 3所示, 首先初始化抽象迁移空间   为 0, 并设置一个布尔变量 refined为假, 表示迁移空间的

构建尚未完成. 随后, 算法进入一个循环过程, 持续对迁移概率进行估计和验证, 直到满足精确度要求. 在每一次循

环中, 算法遍历所有抽象状态和动作的组合 ( ), 对于每一组合, 则进一步遍历所有可能的目标抽象状态  , 并根

据公式 (10)计算它们之间的迁移概率  . 这一计算步骤是基于预定义的迁移事件集合   和当前的抽象状态与动作

来执行的. 接着, 再利用霍夫丁不等式计算当前迁移概率估计误差 error 的同时与预设偏差阈值   进行比较. 如果

得到误差小于阈值   的结果, 则说明当前迁移概率估计已足够准确, 并将该迁移概率及其相应状态和动作组合添

加至抽象迁移空间  , 并将 refined标记为真以指示达到了所需精确度水平. 当所有抽象状态和动作组合均经过上

述检验与添加操作, 并无更多组合需要进一步优化时, 循环结束并输出所构建抽象迁移空间.

算法 3. 迁移空间构建算法.

Ŝ Â T̂ ε输入: 抽象状态集合  , 抽象动作集合  , 迁移事件集合  , 偏差阈值  ;
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T̂输出: 抽象迁移空间  .

T̂ ← 0, refined← false1. 初始化抽象迁移空间 

2. while !refined do
(ŝ, â) ∈ Ŝ × Â3.　 for   do

ŝ′ ∈ Ŝ4.　　 for   do

p̂← (ŝ, â, ŝ′)5.　　　   根据公式 (8)计算迁移概率 

6.　　 end for
7.　 end for

error←8.　   根据霍夫丁不等式计算

(ŝ, â) ∈ Ŝ × Â9.　 for   do

ε10.　　 if error < 阈值   then

T̂ .add(ŝ× â→ ŝ, p̂)11. 　　　 

12.　　　 refined=true
13. 　　end if
14. 　end for
15. end while

T̂16. 返回抽象迁移空间 
 

5   实验分析
 

5.1   实验案例

本文的实验案例基于 3 个不同主题的自动驾驶场景, 涵盖了自动驾驶领域中最为常见且最重要的驾驶环境.

由于真实的实验环境限制, 我们的方法聚焦于 Carla仿真环境, 并采用了高维数据来尽可能模拟真实环境. 通过对

比分析这些实验结果, 可以更全面地理解基于时空价值语义抽象的 ICPS在不同驾驶情境中的表现与应用.

dlat θyaw θsteer

● 车道保持辅助 (lane keeping assist, LKA). LKA[30] 是一种高级驾驶辅助系统, 旨在帮助驾驶员将车辆保持在

车道内行驶. LKA在实现自动化驾驶和提高驾驶安全性方面起着关键作用. 该系统通过测量车辆与道路中心线之

间的横向偏移   和相对偏航角  , 并通过调整前轮转向角   来保持车辆沿中心线行驶. LKA的目标是使横向

偏移和偏航角都趋近于 0.

aego drel

dsafe vset

alead

● 自适应巡航控制 (adaptive cruise control, ACC). ACC[30] 是一种智能驾驶辅助系统, 其功能是自动调整车辆

速度以保持与前车的安全距离. 该系统通过控制智能体的加速度  , 保持两车之间的相对距离   始终大于安全

距离  . 当确保安全距离后, 系统会使智能体尽可能达到用户设定的巡航速度  . 前车的移动由前车的加速度

 控制, 而安全距离则基于两车的相对速度动态变化.

● 交叉路口会车辅助 (intersection crossroad assistant, ICA). ICA[30] 是一种先进的驾驶辅助系统, 旨在复杂的交

叉路口环境中提供支持, 以增强驾驶安全性. ICA系统集成了 LKA和 ACC的特性, 能够确定最佳的行驶速度和方

向, 确保车辆在行驶过程中始终保持在正确的轨道上. 此外, ICA还具备随机性和混合性的特性. 随机性体现在在

面对复杂、难以预测的实际驾驶环境时, 系统能够做出适应并保持稳定控制. 混合性则表现在系统能够综合运用

多种驾驶策略和技术, 并根据实际需要灵活切换, 以提高系统应对复杂情况的能力.

在本文中, 所设计的 ICA场景包括两条相互垂直的双向双车道、一辆智能体车辆和多辆环境车辆, 智能体需

通过左转、直行或右转等方式, 成功通过十字路口并抵达终点, 同时避免驶出道路或与环境车辆发生碰撞. 系统的

观测值需涵盖 LKA和 ACC所包括的维度. 
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5.2   研究问题

为了全面评估基于因果时空语义抽象模型方法的有效性, 我们对以下两个问题进行了研究.
● 研究问题 1 (RQ1): 基于因果时空语义的抽象建模方法可否能够实现简洁性与准确性的有效平衡?
在复杂 ICPS 场景中, 尤其是状态和动作空间庞大的场景下, 构建简洁又准确的抽象 MDP 至关重要. 抽象

MDP能够有效降低问题复杂性并提供决策依据. 然而, 抽象MDP往往伴随着一定程度的信息损失, 从而影响模型

的准确性和决策质量. 因此, RQ1旨在探讨基于时空价值语义构建的抽象MDP模型在简化环境表示与保持决策

准确性之间寻求最佳平衡点的能力. 具体地, 本文将评估基于时空价值语义的抽象方法在简化 ICPS环境复杂性的

同时, 对决策过程的影响程度以及可能导致的准确性变化.
● 研究问题 2 (RQ2): 基于因果时空语义的抽象 MDP 模型在决策性能上是否能接近或达到真实 MDP 的效

果? 此外, 抽象MDP与实际模型之间能否实现语义上的等价?
在实践中, 真实 MDP 模型会因状态空间庞大和系统结构复杂等限制, 影响模型的应用范围和效率. 因此, 如

果抽象MDP模型能在保持与真实MDP语义等价性的前提下, 展现出与真实MDP相似乃至更优的决策性能, 则
这种抽象MDP的实用价值和应用范围将大大提升. 因此, 研究抽象MDP模型是否能够达到与真实环境模型相似

的决策性能, 并探讨两者之间的语义等价性, 对于评估抽象MDP模型的有效性和实用性具有重要意义. 

5.3   实验设置

本节详细描述了实验案例的各项实验设置、实验数据收集参数和抽象模型构建参数.

1.0×10−4 1.0×10−3 γ

reward = 1−y2−θ2
yaw−outOfLanecost reward = 0.05×vx−collisioncost−

outOfLanecost reward =speedreward+arrivedreward−collisioncost

在数据收集阶段, 使用基于随机网络蒸馏 (random network distillation, RND)[31] 探索的好奇心驱动强化学习方

法生成 LKA、ACC及 ICA控制策略, 并对案例环境进行充分探索以收集系统数据. 具体而言, 在每个场景, 使用

基于好奇心驱动的强化学习控制器仿真 1 000次, 从中收集经验. 然后, 将收集到的经验以 8:2的比例划分为建模

集和验证集. 前者用于构建抽象模型, 后者用于分析抽象模型和具体模型之间的语义误差. 针对 3个案例中涉及的

深度学习网络的超参数设定如表 1所示, 系统的 actor学习率和 critic学习率分别为  、 , 折扣因子 

设定为 0.95, 策略延迟更新步长设定为 2. 此外, LKA和 ACC的好奇心网络损失比例为 2, ICA的好奇心网络损失

比例为 0.1. LKA 奖励设定为   ; ACC 奖励设定为  

; ICA 奖励设定为  . 当智能体的速度在设定范围内且在规

定时间内抵达目的地时, 会给予奖励. 当智能体偏离车道中心线、与车道方向的夹角变大或发生碰撞时, 则会进行

惩罚.
 
 

表 1　强化学习超参数
 

系统 actor学习率 critic学习率 γ折扣因子 延迟更新步长 好奇心网络损失比例

LKA 1.0×10−4 1.0×10−3 0.95 2 2
ACC 1.0×10−4 1.0×10−3 0.95 2 2
ICA 1.0×10−4 1.0×10−3 0.95 2 0.1

 

d j
MIN d j

MAX n j
MIN

dMIN ⩽ dMAX epred eMEAN

eMAX dp

抽象过程的超参数,   从 0.01 更新到 0.1, 步长为 0.001;   从 0.1 更新到 0.005, 步长为 0.005;   从

0.1%更新到 10%的值集合, 步长为 0.1%. 自动更新过程按照步长进行迭代, 从中选择一组最佳阈值, 更新过程中

需要保证  . 期望误差阈值   设置为 0.05. 平均语义误差   设置为 0.005, 为整个语义值域范围的 0.25%,
语义最大误差   设置为 0.2, 为语义值域范围的 10%. 优化阈值设定为 0.5%,   度量概率密度的函数, 较为常见

是的是康托洛维奇度量 (Kantorovich metric)和总变异度量 (total variation metric)[32] , 本文为了简化分析, 选择总变

异度量衡量概率分布之间的距离. 

5.4   实验结果与分析

● RQ1: 在简洁性和准确性方面, 基于时空价值语义的抽象效果如何?
为了回答 RQ1, 从压缩率 (compression ratio, CR)和平均绝对误差 (mean absolute error, MAE)对抽象模型进行
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评估: 

CR =
|S̄ |
|S | (11)

 

MAE =
1
n

n∑
i=1

MEAN |y−ŷ| (12)

|S̄ | |S | y ŷ MEAN |y−ŷ|
n CR

(ε,d) ε

其中,   表示抽象状态个数,   原始具体状态个数,   是抽象模型的预测输出,   是真实模型输出,   测

量了一次试验中偏离参考值的平均值,   表示一次实验中抽象模型产生的抽象状态个数.   评价抽象模型的简洁

性, 即是否具有好的抽象效果, MAE 揭示抽象模型的准确性, 即能否保留原始语义信息.   -抽象阈值   分别由

Canopy聚类算法、肘方法 (Elbow)和 Gap确定.

实验结果如表 2所示, 压缩率 (CR)表明抽象过程能够有效地减小系统的状态、动作和转移空间. 实际上, 不
同矩阵的压缩效果均达到了 99%以上, 抽象状态模型中最多仅包含数百个不同的抽象状态, 相比之下, 真实模型

中存在数万个具体状态. 对于时空价值矩阵和欧氏矩阵, 在缩小规模相近的情况下, 基于因果时空价值语义的抽象

方法呈现出相对较小的平均绝对误差 (MAE), 因此可以更好地保留原始状态的价值语义信息.
 
 

表 2　不同度量矩阵对比分析
 

度量矩阵 ICPS系统 ε确定方法 状态个数 抽象状态个数 CR (%) MAE

欧氏矩阵

LKA
Canopy

19 728
53 0.268 7 7.275 5

Elbow 12 0.060 8 12.348 5
Gap 4 0.020 7 47.625 4

ACC
Canopy

23 756
53 0.223 1 3.362 3

Elbow 8 0.033 6 5.893 6
Gap 3 0.012 6 122.232 3

ICA
Canopy

58 991
225 0.381 4 3.423 7

Elbow 137 0.232 2 6.628 4
Gap 26 0.044 1 48.557 5

因果时空价值矩阵

LKA
Canopy

19 728
49 0.248 3 5.177 8

Elbow 20 0.101 4 8.677 5
Gap 6 0.030 4 126.957 4

ACC
Canopy

23 756
50 0.210 5 1.233 6

Elbow 12 0.050 5 4.465 3
Gap 17 0.071 7 3.354 5

ICA
Canopy

58 991
302 0.511 9 1.115 8

Elbow 156 0.264 4 3.423 6
Gap 33 0.055 9 27.785 3

 

实验结果表明, 基于因果时空价值矩阵的抽象方法能够以简洁且准确的方式描述这 3个系统的语义特征. 换

言之, 基于因果时空语义的抽象模型为理解系统状态提供了一种更为简化且直观的方式.

对 RQ1的回答: 基于时空价值语义的抽象可以有效地降低系统的复杂度, 并精确地捕获系统特征.
● RQ2: 如何保证抽象模型与真实马尔可夫模型的语义等价性?

为了回答 RQ2, 采用 PRISM验证器建模该抽象模型, 其中, 需要保留状态的必要信息, 包括奖励、迁移概率、

超出车道信息和碰撞信息等. 通过使用 PRISM进行模型仿真, 定义与奖励和危险信息相关的性质, 以评估抽象模

型在逼近真实马尔可夫模型的程度. 在此过程中, 将深入研究抽象模型的决策效果, 探究其在决策方面的优势和局

限性.

Rmin=?[C<= 60] Pmax=?[F<= 60;isOutOfLane = 1]

表 3 中, 将不同案例的抽象模型转换为 PRISM 的验证模型, 并定义模型需要满足的性质 [33] , 通过 PRISM
统计模型检测, 实现衡量基于时空价值矩阵的抽象模型与真实模型之间的语义等价性. 以十字路口场景为例,

 表示智能体在 60 步内的最小预期累计奖励,   表示智能体在 60 步
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Pmax=?[F<= 60;isCrashed = 1]

Pmax=?[F<= 60;reachDest = 1]

内至少超出一次车道的最大概率,   表示智能体在 60 步内至少发生一次碰撞的最大

概率, 同时   表示智能体在 60步内至少抵达一次终点的最大概率.
 
 

表 3　基于 PRISM的抽象MDP语义误差分析
 

ICPS系统 抽象方法 性质 验证结果 真实值 误差

LKA
欧氏矩阵

Rmin=?[C<= 51] 44.43 48.50 4.07
Pmax=?

[
F ⩽ 51;isOutOfLane = 1

] 0.13% 0.0% 0.13%

时空价值矩阵
Rmin=?[C<= 51] 46.92 48.50 1.58

Pmax=?[F⩽ 51;isOutOfLane = 1] 0.10% 0.0% 0.10%

ACC

欧氏矩阵

Rmin=?[C<= 51] 57.53 59.94 2.41
Pmax=?[F⩽ 51;isOutOfLane = 1] 0.7% 0.0% 0.7%
Pmax=?[F⩽ 51;isCrashed = 1] 0.06% 0.0% 0.06%

时空价值矩阵

Rmin=?[C<= 51] 60.33 59.94 −0.39
Pmax=?

[
F ⩽ 51;isOutOfLane = 1

] 0.01% 0.0% 0.01%
Pmax=?[F⩽ 51;isCrashed = 1] 0.19% 0.0% 0.19%

ICA

欧氏矩阵

Rmin=?[C<= 60] 8.38 9.36 0.98
Pmax=?[F⩽ 60;isCrashed = 1] 18.73% 20.80% 2.07%
Pmax=?[F⩽ 60;reachDest = 1] 0.17% 4.60% 4.43%

时空价值矩阵

Rmin=?[C<= 60] 9.38 9.36 0.02
Pmax=?[F⩽ 60;isCrashed = 1] 19.35% 20.80% 1.45%
Pmax=?[F⩽ 60;reachDest = 1] 2.50% 4.60% 2.09%

 

表 3中的实验结果表明, 基于时空价值矩阵的方法在 Rmin 误差 (–0.39~1.58)和概率误差 (0.01%–2.09%)上均

优于欧氏矩阵 (Rmin 误差为 0.98–4.07, 概率误差为 0.06%–4.43%), 更接近真实马尔可夫决策过程, 保障了抽象模型

与真实模型的语义等价性.
对 RQ2的回答: 基于时空价值语义测抽象模型更能够保证与真实模型间的语义等价性, 可以为训练策略提供

有意义的指导. 

6   总　结

基于深度强化学习的决策生成过程中, 其状态空间具有高维、复杂的特点, 导致其决策生成的效率低. 如
何对深度强化学习的过程进行抽象建模、降低状态空间的复杂度是目前亟需解决的问题. 因此, 本文提出基于

因果时空语义的抽象建模方法, 通过时间和空间变化的价值分布并结合强化学习过程中的状态价值函数, 动作

价值函数及迁移概率分布等, 形成因果时空语义模型. 通过构建时空价值矩阵, 对状态进行双阶段语义抽象, 从
而构建深度强化学习过程的抽象MDP模型, 解决现有抽象方法难以同时保留时间语义信息, 空间语义信息和

概率语义信息的问题. 此外, 结合优化技术对抽象MDP模型进行调优, 减少抽象状态与具体状态之间的语义误

差. 结合车道保持辅助系统、自适应巡航系统、交叉路口会车等案例进行实验分析, 并使用 PRISM对模型进

行验证评估, 结果表明本文所提出的抽象建模技术在模型简洁性、准确性等方面具有较好的性能优势, 同时能

够保证抽象MDP与真实MDP之间的语义等价性. 但是, 由于真实驾驶环境复杂多变, 仿真与真实系统之间的

差异难以避免, 本文所提方法在实际的极端复杂环境中, 仍然具有一定的局限性, 其处理高维时空数据的效率

需要进一步进行实验验证.
未来的工作将继续探索基于因果时空语义构建的抽象模型在深度强化学习中的具体应用, 旨在提高基于强化

学习的决策生成方法的效率和安全性. 本文所提出的抽象建模方法本质上对强化学习训练过程中, 其交互的环境

进行了抽象建模. 由于物理世界的采样代价和危险性远高于仿真环境, 下一阶段, 我们将进一步验证实际环境中的

抽象效果, 并充分考虑实际运行环境中的高维度和噪音问题, 引入更加细化的语义分层机制并尝试更加鲁棒的误

差控制算法, 以探索基于因果时空语义抽象的强化学习在实际 ICPS领域中的应用.
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