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Survey on High-dimensional Bayesian Optimization

CHEN Quan-Lin', CHEN Yi-Yu', HUO Jing', CAO Hong-Ye', GAO Yang', LI Dong®, HAO Jian-Ye’
(State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023, China)
*(Noah’s Ark Laboratory, Huawei Technologies Co. Ltd., Shenzhen 518129, China)

Abstract: Bayesian optimization is a technique for optimizing black-box functions. Due to its high sample utilization efficiency, it is
widely applied across various scientific and engineering fields, such as hyperparameters tuning of deep models, compound design, drug
development, and material design. However, the performance of Bayesian optimization significantly deteriorates when the input space is of
high dimensionality. To overcome this limitation, numerous studies carry out high-dimensional extensions on Bayesian optimization
methods. To deeply analyze research methods of high-dimensional Bayesian optimization, this study categorizes these methods into three
types based on assumptions and characteristics of different kinds of work: methods based on the effective low-dimensional hypothesis,
methods based on additive assumptions, and methods based on local search. Then, this study elaborates on and analyzes these methods.
This study first focuses on analyzing the research progress of these three types of methods. Then, the advantages and disadvantages of
each method in the application of Bayesian optimization are compared. Finally, the main research trends in high-dimensional Bayesian
optimization at the current stage are summarized, and future development directions are discussed.

Key words: high-dimensional Bayesian optimization; Bayesian optimization; black-box optimization; dimensionality reduction; variable
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jillls

1 5]

VP22 Rh 22 TR i R AT LA e G oy 28 e A I 8, K 22 ) R ) s R T A RSB R v S 1. DL R4
(Bayesian optimization, BO) #& —F i i ZR ML 2 10 ) 5 72, CUIEVF 22 U043 2032 BEF, s A e 3¢ 1
H sl B0 AB IR P, 258t . WA M4 45/ 2R (neural architecture search, NAS)®, 27 it P,
WIAEL TR MLBARR T BREE F gk ) U

T DU AR A AE V22 USRS T By, A8 I8 PR 5 o R 0 4 ) . 7 P 48 i PR 22 20 4 1Y, 4
ONZS (A4 FE TR, DU B0 A0 A M R 2 SB35 T B U0 SR, VF 2 S il R0 A0 i N 2 TR TR R 1), 491 VR A S MO
XI5 (mixed integer programming, MIP)?', ¥ 2% > 708 PRI G SE R T P S8 vk EE A AT iE—8
37 J DU S A0 A 1) B2 36 B, 22 AR 3000 T i e DUk S0 O A 7 v 4 2 1) TR R Bk k. DR T v AR 4 2 EL T
(curse of dimensionality), 38 % 7 % 5] N&UAME B —LI7vE5I N T A BURGEFE B P, 59— 2k 5l N T ik
B L AT — LT IR BN ML, T2 5 T e i 2 ok i FE AR R Y

DU A A A — T B P SR B AR A AR, VA Y 2 SCRR G JEBEAT [ RN 23 B U520 R0, vk DL A Ak 1
9 DU AR AN K — AN 53 S, A5 BRZ 7843 1 [ AT 4347, 385 (AR Dy DU A AR 2k 1 — AN F2 45 B0 S ok, T4 D
DAL ST A T — e B e, A S TAESR T R ik, A R A AT TR SO RR AN AT
B, 2RI 2% (1 P B AHE BT e 48 DU B R AL S T 58 2 i e

BT ERIR, ARSI AT gl DU AR AL B 7T, DA R AR SR B AR D R R AL B e A
32K T ARG E I ik BT IR vE . ST R R ik, X 3 205 ik AT AT S .
552 128 UL A 9 A R O S B B 379 40 BT DL e SO DR A A v 4 ) R e T PO PR B 4 T TR
I HIETH ARG FEABE R T 78, R SRR 4. Rk, LTSI IBR4E ) VAE PR 45 DU i 4k
CEAIRE R, JR TR S A 5B S ATVELI G TN B R I v, R S DU B AR Ak A A R
B IR HAR A A B 6 M IR R TR AR R 1 T VE I A HAR B 5. BB 7 TR e 4 DU A Ak 1 L R 45
B 58 T A28 e 4 DL A4 (537 SRS . B 9 7Y a0 A o F B e 4 DU SR R SR T 1) RS R
A3

2 DML
5T RAG RS, UL A ) H AR 2 2R3 H bRk £ F i, B

max S,

Hoh, X 20475 5 H AR AL R AN [F (R, DU AT ) A0 1) A B — SeRe ik i IR ), BT 5, W4T 4R
X FUE bR £ 38 A LU R e

(1) fERMTE MR RS, B f 2 — A8 (black box), H— AN B #2211,

(2) fIVFAL T AR =, T AR PAL B IR (JLHIRECE TUE IR, B PRSI AR (JLZNED).

(3) X —R—AFRRES, W&, FEAR A x ZHEET X PRIURE ST

DU AR ALt P N A 2L, 433l e AR ER AR Y (surrogate model) A1 4E B8 % (acquisition function). £ FEAR 7Y
TXF H AR SR EOHAT AR, BT LA HH AR SN SR R AR IO AN 22 SR A R 5 e 3 A A T R R B
RN RN, 555, REE B RARMRRI N N — A RAFE s, Horhr, AR 3 TR R R 3R & SR (R R AR 2K
2R, EEONARRE WA 1.

BoE 1 i it 2.

BN DAL BB f, MIUERAE A B ng, BRFEREIN ;
s R AL f R DA
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L. #17E GPR 555 B, HFERER T ox; D,) .

2. VIGRHT REE ng NMEEA, B D, = ((X1,31)s -+ s Ko Vo) | FoH s = £(x)).
3. neng.

4. while n <N do

5. fEAEHEE D, = ((x1,3), ..., (X, v}, FEE GPR LA,

6. JENEKURERE ax; D,) KIEHF — 5 x,., B

X1 = argmax Q(X;Z)n)'
xeX

7. PP X BIBREUE y,0 — f(Ro)

8. HHEIEE D, — D, U{(Xper, )}
9. end while

10. 3R [E] Dy, HP BR AR R R 55

W FH B AR RS B 413 & W 1 A% 111 9 (Gaussian process regression, GPR)®N, FEHLARA P, %% B Akt (kernel
density estimation)”"**\ R RIS PN T GPR R AR AOAE AR F SRR A M RLAF IO BRI R ), K2 HOL
ISR A B9 48 B GPR AR ER A Y.

TEfG M EFTH, FATHAESS 2.1 74 GPR AT ZEN-28, 7E58 2.2 1% R4 R BOHAT 1 BEA 4.

2.1 SHEiEEY3

TRy Tt AR (B A — i T A E A e 2 AR Y e T A e e v (Rl E B0 [ ()9 R AR Y G, 2R 1 (Bl 1
UL EFA AR AN fx) =x"w, BE f(x) = ¢(x)'w, o, S8 w2 — e 2. GPR Y X —#a, i
ZH w NS R (W w ~ N(0,X) ), 13 f(x) MECHBENIAE &, 158 T Y (1 R g AR RE 7). ) —MEE
i ) 2R T R B IR BUE f(x) MLIBENLAS &, JH7E BR 0 18] R AR R 2 TR, AT A4 s il #E e
SR FAE A 7] 7R A R

TEX 1. WLSCHR [32] BOE 3L 3.1, 4500 TAE R E 1 x, MUl fx) 2 — AN BEPLIASE, WIFK £ HEHLRER 4L
EHE— W Y, VX, ..., X,,, n JCENLAE &

f=(f(x)s . fx))T
R n TC A, AR f(x) —A> i .
FR, GPR =T W AEAMEE: (1) BHFsRE f EAATIE E R — s Hnd 58 2) n ot R W E R 7 2
J3 59 BB B A m(x) RIP 5 22 BR AR ke(x, x7) SRR, B
E[f(x)] := m(x)
{E [(fX) —m(x) (fX) ~m(x )] := k(x,x)
FHor, SBME R m(x) AP 5 Z2 BR B e(x, x7) 30 AR AT S0 38 AR R T 90 8 -3 e

FAb, 25 FE BRI S 5 rh W — e A e, R IIE y BN y = £(x) + e, HA e B E B4 A 1

5, B e ~ N(0,0%). T AR I 5 3 e 38F . GPR 40L&, S ABlathy, LI Ay Y 8 R0 B 5 22
Ely] = E[f(x)] +El€] = m(x)
{ cony,,¥,) = k(X,,X,) + 026, ’

e, 6, /& Kronecker ic%5, 24 p=g i, 6,,=1; )l ,,=0.

B BRI, SRR D, = (Xpn Y1} MR x,, A 0+ 1 TG A

Vi KXy, X10) + 021 K(X1,X,)
[ fx) ] ) [ Koox,)  kex) )
1 Sherman-Morrison-Woodbury 5 ¥ 9145, F(x,) WA N
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FEID, %, ~ N (1,00,05(9),

ki

() 2= (%) + k(e X1) (K1 X1) +021)  (¥1 —m(X1,) €
2%, = k(% X) k(K X0 (K% 4 02) KXy X,) @

Z5 EFTR, GPR WIRIE 2548 O, KN x, _E1 B bR s UE, Horh p, (x,) FRTIMEIE, T o2(x,) EaT
W

GPR H i LA™ J& 2K i b7 557, X2 Ry ELI (8] 2 2 O(N?), 2 [RI R ZR 200 O(N?). [HL ik, A — e TAREEL
J1 T4 GPR (3 JE v, tnfi s i B id A2 (sparse GP) 7 i 1] 5 2% 0 O(MIN?), H. M < N. & #i- 5y /R Al et
#2 (Gauss-Markov processes)m]ﬂ']ﬁlmg <N O(NlogN), 25 [B] B 2 & 8 O(N).

GPR W32 RS 75 73 F H A o5 SR SR AR R 26, (B a8 T BRI 56 3045 5, TR Be i AT 441,
552,11 WIRATE A ATk B I0AE B 15 ZE Rk S E R B m.
211 SBE BT Z R

TR 2 (R AR S M I N L, — AN AR IR, BE S AH LT K6 AU RT REAE AR AL s 25{A. 1T GPR 8 T iy
75 2 BR BRSO BOAH O, b b7 22 R 0 2 AR IR

IIx =Xl < [Ix = x"|| = k(x,X') > k(X,X").

SEAN, 107 2 BB R 2 TE € AL, DLORIE P 0 Z 6 ME DA E IE e R, T, 0120 4l 3 Firbh Iy 22 8
SR Z A TR S 2 AL, AR T 2 AL

o PRath i Z R AL, TRt 7 ZE R BUR TR 7 E R k(x,x') R x—x R5E, B k(x,x’) 7 BATH 5 O k(x - X').

KA 7 Z R B0 Mz R L, OB 08

r2
k(r) := apexp (_2_62)’

Hr, r=x—x|l,. AR S R DA, P A BEES r SN, k(r) AR TR, RIEI 7 2
(B HIRAE) 2FH T B, Mo, S EOBUR, k(r) B r 39K N BRAHEZENS. H24 GPR FINZEA i x, HOHARER
HUE £, I, IIZREE T B x, BRI TR £, Msema ok, JF B S S8 e Ak

Sy P R B 7 22 R R T EA% R 4 )

kMalem (r )

20 ( @r)VK ( @r)
rml ¢ e )
o, v, CRIEFINEBSEL, K, B0 NZERREL S IR R LB E & m iz R, X2FEN Yy -
A, Sy PR B OB A A =y T B L. S PR R B mT DAL P S 8 3 AR AL
o LA 7 Z BRAL. PR 7 E R BN — AN R BR AR, TSR R [1) oR HU% 40 FR AR AT XS AT 2 A R 1.
Sebr b, PR IT 2 R AT LU AR AR U U7 22 SR AL, S I T IR R AR RN A e, BT
Kyarp (X, X) 1= kg (W(X), w(X')),
o, BN w R R SRR (B DUEE S A ) RS AR AT,k TR T T R
o FYET )T 2 R, Em A 1) R, AL SVEAR X A PR B RE AR 78 0 R R A A ). A, BOCK Y it [
FETE 0 e 4 7 22 eR 4, B TR S IR AL VR T 2 MR &R nAT AR I b0 7 BT AN /21 57 (BOCK B e s AR AR AE ol
PR HAEZE T OR).
T 26, PN x AER Py Bl ST B R AR, R
{ (Xl x/IIxI,),  if [Ix]l, >0
T(x):=
0,aupitary),  ifIIxI,=0

T '(r,a) :=ra,
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Fo, Ay AT AL BRI R (0 10 R 1200 N AR T DA O BRI R DX, WA I I T B DXH BAE B T 2 R
Hreaon:
key (X1,X2) 1= Kyarp (71, 72) * kpory (a1, 22),

FE, ke (ry, o) B85 B AR ARAR AL, DR 9 AR AL BR B ko, FRIEEL HET B S wo 2 BRI R IR, BN BRI O,
Kogarp TR, T LA kg (71, 72) BB BVE IR R R BT I XK. e, (a1, @) 2865 5 25030 55010 A FE AR LA, 50 GPR R T30
75 7% BT Hl A

Y8 e Bl 5 SO &, Bl m(x) = . BIR P77 22 BB S 2 DA R S5 e ) 1 B ATIR T GPR B2 (i
S IR S OB H T DT IR 6 e, 7R dE R R i 1T (maximum likelihood estimate, MLE)“R]\ 54
KJG¥AL T (maximum a posteriori, MAP)[Ig] DA% 56 4 DU 73k B30, BR T, 36 808 100 st AR AR AR A Ak 75 5
NSRRI R O, S A A SR AT 2 > 1R 2 O 5 7 vk 0.
22 RERH

U352 GPR [ Yo 4011, S T ELBE B 1, (0) S0 ARH A A B A, (ELS 7 5 6 BV M AR B A g
TR SR R A RN A R R, LRI R 25 RS AT 22 R, AT T A R RS R A (x), BLE
BT X FERFEME. L, W5 N — 5 RAEAL B O — MU I R, /1:

X, = argmax a(X).
xeX

T4 3 R F R RS R, 2 BRI T (expected improvement, ENM'1. HEZH$ETH (probability
improvement, PN HIE {5 & L7 (upper confidence bound, UCB)™.

ET AR R % 18 R x BB R 2R IR, R THE 2 SR
1) := Max{£(X) = Ymux: O},
FOH, yonae = max y s, T 4TGRO BRI, 1 2RI, JK R FINE £ <y, MEGRAE RN
BT v E O, By Fx) REBENLAS R, BT AR THE 100 HURBENLAS B, 05 SR SU0 R (A, 1:
@) := BT = (14,(X) = V) [1 - @(%ﬁs(x)) +a(x)¢(ym“‘%,’:)"(x))

Hrr, © RAFHEIEZ 700, ¢ AARAEILRS 701 (1% FE B4
PI SRR ET ML AHE B FEHIZ £(X) > Yo FIHEE, R

(%) 1= PE(f8) > ) = 1 —cb(y"‘_—“("))

o(x)
UCB I B4R R 2 o, (%) IMNIME p,(x) 1, AATIT 3G INSRAE RO PR 2R 1, 38 S 18 2% Sk P N = il de £
fi, B
12

QUCB(X) = ,U,,(X) +ﬁn+|0-n(x)7

Hor, B R NEHL I T BRI, 35 B UK, MIRR MEGE.
3 SRR

DR SUTER A0, i N A 32 3 S AN 20 s 4R S e, SR PR RERE SRR B 1 A R R AN R R
S BEARER B RO BRI B T B DL e 4 R AE R O LA AL
3.1 SUERIBREEE TR

v A 2 [ ) ) A R AR R SR, B AR B AR, AN AT R A B AR A % SR M I S T AT 35, A
B AE AR R B 0 2 (A 2. sk b, BRI ZREE X = {xy, .. x, ) MR R x, 07 [F) G A (B 5320 A
RFEE [0, 117, W BU x, BIVIZREE X Sl B8

deo(x,,X) 1= B [min ge|Ix, = Xill -
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ZER B AEAE T F (UEW ILSCHR [44]), B

D 1
d.(x,,X) >

2D+1) n/P”
W1 PR, S48 10 DL ER, BPEREARSER K, WIRMELLZ T FHEI 0. bbb, AT (2) AT, 24
Mox, EEIGE X B, 72 o,(x,) K, WL % T RS 2S5 7R GE R R A AU,

#F1 4xX)HNTHR

D n =100 n = 1000 n = 10000 n = 100000
1 doo > 0.0025 doo > 0.00025 deo > 0.000025 doo > 0.0000025
10 deo 2 0.28 deo 20.22 deo 2 0.18 deo > 0.14
20 deo >0.37 deo > 0.34 deo > 0.30 de > 0.26

3.2 SYERERBHELURIL

PSR K SRR EN, THE T A BE 4 B3 n 258 B K. SR K& mR B I ISR i 2 e R Al
ZiE A RHEER.

S JRBRALLAE FE Y20 (dividing rectangles, DIRECT)* 44, DIRECT #4544 & 43 8] %l 4> o 2 AN EAE T, FH]
Lipschitz 4 VG B A 18 77 I IX 3, 4k 80K KR or N T /NRREAE T, B S Ik id 72, DIRECT %4 ok £ A if)
WHCN O(P), Forb ¢ iR 2219 T LU B DIRECT FH 50145 il 45 B 338 I i 45 20 &, See e 4 A 10 B
A RIS BT e

% 70 R R AR 2R DA TR B 0 & SR 2 O, R TE SR B R S, BN AA SRR RS AR T H E
W SRR IR AR, T AETEZ AR R AAR PR BRI E . AT, V72 T2 br i 4R AR B EUTE RH0 43 KO8 o 38,
PG DB SRAFAE AR B e B, A 22450 5 A Uk S QW I, =) 4 2 A RSO S A U T, 55 0 s A it L i 4
FETE T X3, 7E 4 2 (], B R Bk o, AR M RAE BAT T3 AR SR I B 20T

EEX R 4ER G R EL, EGPYHR I T — R R L s K 7 R, LSS 28 s R A R 1 PR R LA 5, 24 4% iR 5
WIS CBUN, RERBULECT I, R, RERMSEWRREE. 558, RERBENFESEC TR
FEHRE AT Y. BRI, BEREEREUN ax|e,), W EGP & Jaf Kb—AN € B KR EE R 2L, Bl

x; = maxa(x|f),
xeX

Hr, 0> 0, 5% xr R FORIEA R R AL a(x16,).
33 5 %

NT S RRAE R T, 8 T B NSO U, ARE TR R 8 S s A, BT s 4 DU A T AR
LR 3 2%

(1) 2:TA 8R4 AR 75, X5 R RN 23 (8] PR — /N AR 4T 25 8], %7 25 8] A2 LASCRF T
U E bR R BUY. WoX ISRk FHRZARYE T 25 18], SR G TE T 25 (8] _Bdb A7 DU SRk, M oo Mgt B 3H 5. 4800,
B R SR AR ETIED, G AT 7 7 2 D) %) 4 S5 AT TS ) A, 122 BR 1) T 3 8 5 v e R P S .

(2) BT I AR 1 J5 vk 31X 5 VAR W 4R iR 0T 4y R D MR AE R B AN BT B, IR VE R
YEAR 5y A T, A2 A R BN — AR AE B AR EREL, AR5 F DU S A A SR SR ARG 2 1 B b BR A, AT e AR 4
FEAH T AER, %5 VR ISt PR ) T LB Y L A, RIS A A R A SR D, R A s A 5 A AT R T
i 7.

(3) ETRAB RN L. EEITEAFEGIMUR . FAR SRR @2 mR A TR, BT LU 20775
SN %A EARR AT R ER I A, A LT R R v, X 2805 T R 4 R K.

PAVESR 2 X i e DU AR Ak 5 iR AR 25 A EAT X b S
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2 W DU AR I T I S R L
ik s 5H
[N et g (D) NI R T U AT I 5
ARG RR T R T R MR AR ) s e

(1) B2 30 [ R o) T LA i 5 4 B A 55

T IEB B 77 i REA Rt AL E A Ik 4544 1) e 24 R 2 (2) e B 5 LS A 4
BT RS RN AN EBIMOR, B8 2 R TR R 4 e A JS7 P 02 BT R ) - AR 2 P2 PR A 55

4 ETHYREERZHSYE MR

RRTHEBBAN ] X < RP AR — M R ARYE 522 18], 1212 18] A2 LA A 1) A ok e, 23X
— e, FATAT CAEARZE 723 8] v AT DU A, AT R 4k 2 1H 5. BRI &, 2 T BUR4E LR B T AT
M 3 AR AR

(1) EESLHAN T (8] X BIRYE 725 18) Z BIRGE, REREAR x,, .. x, B MBS AR R 2y, 2, 5

(2) M EAELEE (2, y))e, FEARYET 18] Z AT DI IE4L, i€ T4 RiE s 2

(3) P MARZE 722 6] Z BN 25 18] X AT, R FE AR & 2 W x, JFRFE f(x).

KRR EWE 1R, Hd, h AR X RIS 0) Z M2 HeR H, F O Be e Z E 6 A )
Y IR, ¢ MM BRI Z BHA ] X A EAL R AL

LB
l@ﬂ&ﬂf
y

Bl ETAESUIRER FERRER

FR AR S 7V AN (6], 56T U4 BEAOR R 7 ik T i — P Moy N2 A28 EET RN 7k, T4
EIRBERITTE TN ITEU R T AR5 B 4il5 2% (variational auto-encoder, VAE) B4 (1) 77754,

4.1 ETREHPEER A

RKRTJERT — ML ORI A RUARYE T 75 (8] 2 — DG 7 (). ST, XA etk 17 R BRI, RIx 2807
RN B . T IR N MR A — W, FRATT B S A A R R s 3L

EX 2. BRAEE. HAAELENETZEN T (dmT = 4,), 5N THA x e RP#HH fx) = fxr), WKERE f:RP - R
BABMYAERE d, (d, < D). o x; /& x (6 T LB, 72500 T MFR A 2k gE 120,

BARME, £ — L MESE T S AS R N T 5HEZA TR T MEM, IRP =TeT. TRI=
HExeR? AN =x;+x,, KT x, e T, x, e T MBERTEMEBERERIME RS T L#EAH K, B
f&xr+x,) = f(xr).

SR, Xt F 2 R, AT RE VR B — AN T 28 T A0 2 f(x) = f(xp). Ak, B TAERB T — /AR
WIS B, X—2 AW f(x) 5 f(xp) FIEE—TIRZE, BAAETF.

EN 3. eATRHEE ™. X TAT R € > 0, HAEAELME T 210 V. c R, fEE X T HIH x e R? #H |f(x) - f(x)| <€,
TFRREL f:RP —» R HEH G RLERE. Horb x, 72 x 1ET 2510 v, I

W A ARAE LI 23 ) P REANME— . RT3 &6 7 B e e 2 P R T e /NI 7 ), O AR I - R4 B 5 SR

d.:= nxllin dim(V,).

HREADINIRE e BUN, W d AR, 2, 35 e BOR, W d, B 12— R, SR8 R 00 HOn] e A7 A2
AR B AR, B A SR RUR B K €, MABHK B — M2 oA B 722 8] V.
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4.1.1  BEHLFFAE

TEFR B G T2 A FR v, BEATL R 4B A8 5 SR F A 32 B 20 BEALHR AT sketching. 3X PIF 775 &%
BRE R, g DU TR ] RRARAE T A [R] AR e L

BE L N\ : REMBO (random embeddings Bayesian optimization)™* 2 B 38 it B AL [ B AT 4% 1) 3k 19125 17,
AN AT 2 ), BT,

FEEE 1. WL REMBO € EE 2. 4558 — M REEE R d, REL f - RP — R AT — D BEHLEEFE A e RP (A H1¥ 7T
M HREE TR EIES AT H d > d,), WA FAERE x e R2, BL 1 ERIFA— N z e RY, 75 f(x) = f(Az).

A EENAE T, BfRE TN T RIE S x* e RP, MRTFEIE 27 e RYE 1R f(x) = f(Az"). IXfELF AT
PABEL AL — MR LE R B g(2) = f(Az). BLAh, BENLAEREIE B Johnson-Lindenstrauss transform 15 °%, 4 1
B 52 (B P PE S TE e 4 2 [A) R RNTEAR 4 2 8] bR AH S5 1. X T e A 204k R, A S lm B kor, RISE
2.

TETE 2. WLOCHR [49] HISIBE 1. 4558 — AN BREL £ - RP > R — DB FE A e R (d > d,), ML 1 HOHESE, Xf T
{5 x e R?, #A71E z e RY, {815 | f(x) — f(Az)| < 2e. T A H 5 70 3 ST M SRASE T B o IE 2543 A

RN ZS 8] L AR A SR G B PR — 215 REMBO —FEEL A4S R IR, — A WiHb4i/N& Z (sequential
random embeddings, SREM"). SRE H1#% 0> AR RAR AL H b5 52 X

8(@) = f(x;+A"2),

Hoh, AO B YT B A B LR RE. &

z; = argmax g(z),

U4 R A 0T X o= X+ APz BERP R ZZ DN |Ix7 — x|, R —8 HHeAk B bR A
g() = f(x. +A"V7).
ANV T DL 5 1 45 B3
MR 1. UL SRE FIPER 1. 4 S, = {ADz)z € RY) RORBENLIEFE AC B SLHF =00, idx —x, £S5, LRESZ A&
A
(1% — A%z, < 1%l
(1% 5 x —xil’

TP = xil| > 1% =Xl

SR, (AR R, BURMER 1 ORIE T 3R 22 S AW b, (85 5140 i R 22 JFAS— 8 23 bU B AR AL R 2
g(2) = f(Az) EHX.

o Sketching SEHLFELE. B T BFEHLIRA S, sketching 4 R 12 SEILFEYE 1) 07 1%, Rl 2 & ) LA G612 5 )
f3 (hashing-enhanced subspace BO, HeSBOP!y”, HAK .

Sketching H AR FIAE AL — M T 4R 2 IR 2 e R I HL, FAR 1, D WL EEE AL, X R
A xi, ... xp DAHBLEE AR BUAE 5 R — AN [ A d A7l AL, SRBVEHRR 1., D L E
RZWBAE. T 9eIX— 5, E R TIPS G A R

uniform hash function 4 : [D] — [d],
uniform hash function o : [D] — {-1,1},

Hh, [D]:={1,...,D}). RE W &S (D] BIES [d] h, I HERBUETE [d] BRI 53A0. SRR b2 R,
WAL i = j= h(i) = h(j). UM, R o ¥ [D] W BIES (-1, 1) . I d M EER, N 2, FBFBIGAEST
JIBEE, EE j AT BRI S, B
24 = 0 (i) - x;, if h(i) = .
WO AT R AR A
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z= Z o@i)-x;, Yjeld].

ith(i)=j
ﬁ:f‘%"‘?ﬁ E[U'(l)yh(,)] =X, Fﬁ u\% lﬁﬁ%%ﬁ%ﬁﬁ'fﬁﬁu{aﬁ O'(i)y/,(;), ﬁﬁﬁ?\j
1 D
Varlo)z,0) = ,-;,-#,-x?

XD ARG R OCR ST KEHAR M HE AT sketching.

£ T B8, HeSBO HILALI IR AT AT A B3R (1) LA BO IRAIR4ER & 2., FHFSBIRNM 27 ; 2) F
Fi sketching B AR AR 22 RE i 45088 x-. B4, BV ATER X = [- 1,107, WMR4EL RN Z = [-1,1]9, i
HeSBO ANz = Az <id) i i,

SRTM, HeSBO ‘8,75 i AR AR ISR LA (3T [52]), FAAER e

d!
Z";D,d,d,) .= ——.
pu( ) (d—d,)\d*

Tt S AR A2, BAXUS (BO with adaptively expanding subspaces)™ & FIFR G FE S € {0, £1}42 1
RBCGEAERE, Kb 5 BACE — N EER R, 817H D/d MEEZ IR, X I 24 4

d,
‘ d(1+ sma)_D D—d, smal i i

( Bl ! )( de _Bl ! )ﬁsmallﬁlarge
i=0

()
d,
b, Bon = LD/d)], Bsge = [D/d]. WAV, limpops = pr. SHEE D BRI, pp LAARIEL pyy.
412 JLFEE

57— R AR ) S ) R AT AR R ) (K 2 R4 Z < R VE R B A4 X C RP B H N T R, R
EE M 1 R WIIRLE S A RY AL S AR 2, (B LR Z K, AL B B 1, R, LR A/, T
A RE TR L A R A 2

Y b, HARE TR, REM X, = Az, TRESTEELIREE X 4. IR, F5 20 x, S8R 4E X b, B

Px(xo) := argmin||x — X,|.
xeX

Kk, bR BRI EABREON ¢ - 2 Px(Az), IR4E2S 0] T BEAT 5 ) 4E X IE 20N & = p(RY). TERERL 5 & FHI1H
SUF, RMARE Z R RBOREITUR L 2114 540X b, IWTITINOR T ARG HE . 3K T 5L R ARy <ids Fi 17 it
nlE 2 pros. For, TS HKP L € AR X B BR S, SURIBT 55 2 DR xp, x5 B UM, Y ARG
[EIZIREE, Ran(A) ZHEFE A 50, AY REARYEL) RAAE o 4 2 (8] (O (EIR. AY, TR RYEL R ERIE AR, T
AY, FoRRGEL FAR LI N, Py(X) 2 FTAT4E X 7E Ran(A) ERIFEE. & 2 R4EZE MI7E ST ¢ T AO{E .

ps(Z';D,d,d,) = -

X

B2 5 n i e B

T 5 i R A oA B S AR T LA 7 DR (1) 7L F 0X EAEI— rix,, HIEBN (z: ¢(2) = x,). R
TX U L e 2 2 1 O N [R] AN A, (AR AL R B k(2. 2) B E AT F ) 05, 3 3 DU S AL 2 TR 9 R
UK RFEZ L TOAR . (2) HR v 2 ) RS R B D HERS, EL A% PR AL ke (p(2), () 22 52 B4 LR L.
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ST E A P TR A R A R R T B R R S TR AR 4 1), REMBO-¢ ™ MK i1 F 90X F 1 s T TR Wi 3
Ran(A), Bl ¢ : 2 Py (¢(2)). XEBAZRREL ky(p(z), w(2')) RETETE M FH vy 24 8 25 1) [R] ) 388 4 52 B 4E FE AR FE, TRN Ran(A)
RARYEF 210, SR, ky(p(2),w(z')) FFASREA R BE 1E SRR B B R IR R AR X3,

BT MRk E R ARE: w3 3 W, NIETHECNE 4, RIERLREE, AT DU 2 R4 60,5 S it 1O A
RIRFEA—AE L

IR 3. I REMBO HIEHE 3. 457 — /M B4R d, FIRELf 1 R — R FI—DMBENLEERE A e RP (d > d,), W
PLED 1 - e IMERFE—N 22 e R H15:

F&3) = FAZ) A 121 < (V[N -

i, 2 R B TAT SN X = (=1, 117, WIARE E 2 3, B0 1 - e IHERA:

ll2* 11, < (Ve./e)lix;ll < (Vd./€) V..

(K, Bk £ Z BRI S ER (0,d,/€). SR 1T, X FP VL7 4E — e R BR 1.

(1) HEIE BRI 26, M) Z 75 BRI AR 240K, B a0k, VR e R T o 1.

(2) 1ZEHL B E IR AR RS

R, KR ITIE IR B AR U S . R TR T — AR SRR, (LS S b el L

SRAFE 5t /I IR 240 SR DR 3 5 100 0 D it iz 7 i L, PR (D7 92 2 SR B/ INI 2 R Z, R RAE L R 7 o5
&, Bl

inf Vol(Z)
ZcR4
std(D =86

SR, 1219 RR LA A U e — TR ClEM4E), FLRMBE RS AR T & (WL SCHR [54] 2R 1), # REMBO-™
P T R AT IR, AN S ¢, 112 BIN— AN R AR e . O B RS LU LD R

(1) BE3L Py(E) C Ran(A) 5 & ZIAIIXUR, B Py : Po(E) = &, Py : & — PA(E).

(2) & BPA(E) c R 5 PA(8) Z A BTN, Bl BT : BPA(E) — PA(E), B : PA(E) — BPA(E).

(3) XL BPA(E) E & IXUT y : BPA(E) — &.

HrpAERE B BT Ran(A) FIIERR SR, 25 1, y R :

y(2) = PXﬂP;'(BTz)(BTZ)‘

KA Z* := BPA(8) F1 & REFE ST WU, BT LAJEAIL Ak il BT i 4k A

inf  Vol(Z).

ZeRi Y (Z)=6

Z I ERN A Z7, € & Zonotope (— TP THIAAR). A LL R TR o, Zv G5 AL B R 5T REUR] K R R AE
Hrp.

DL 20 5 1) SR 45 BR B 1Rl 7 B: ALEBO (re-examining linear embeddings BO)Y SR 45 B AN 21 3 LUS#
TR F e e, B

maets)

{s.t. ~1<Az<1’
Horh, -1 <Az <1VERIIA G RN Z WK, BE TrATE X, B2 A2 5 2810, 93RS a3
RAATENETE, Tl eS8 RILMIMENT 1.
42 ETEERENGZE

KT ERR AR B T A 80T A R R E T 55, AT o Vr A B 7 0 G B, DR B A S 4L, AR
B 3 froR. AR P U5 o B A P AN SRS BEALE A AL TR R e AR R Hoh, n RN D AR
Wt d MR, Z 3R d MRV, fRRA0 Z B a0 Y KR, ¢ RORIHTE D-d MR,
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x-SR £
l [ R 1
Y
K3 T ARRERNRER
B AL P B DropoutUCB! M — 4 BEALLEFE d A4k % HEAT DU ER Ak, MATTIRE S 1 4R IR E. E45 5] — 4N d
e ARG, B 7 B AT AL D —d DA R. — R U7 R B A A AT SR R AR IR TS ME, PRIESH
FAEFE. (AR1ZT7 RN e FEEIER AN R S IO, LR ZA — 2430, B BL— AN/ 2T AR rh B
HLRFE D —d MEME TR .
RRFFEA LRI TR, X — i m IR S 2 3. AT &, S H AR 8 802 L-Lipschitz 4k

[, BB S N:
JC\BLy: T +2TL(D - d)+2,

He, ¢y, Br, yr, LA BIRA LB 2TL(D - d) REZEFE D—d NERHRIHIE LA
B TR % R4S B VS-BO (variable selection BO)PYJE T DA T WISk #4858 H bR ok o T48 & x, B 5
Of 10x; TBRK, 1% Sl L. f T 05 B RS AR AU 34, VS-BO X GPR HI¥IME R 5, HI:

Vau(x1D)
V.f~IS = ]EM",M)[ ) ]

MR L 1S ¥ 8 MK BNHES, AT @ AN s AT DU e b, AT 8t S 4 25 1H U8
VS-BO i H —Fh T I 7 S (A SURFE T — A Z o0 Wi A p(x|D), 4 WU i R A6 13 51 x? )5,
A0 D —d N8B xPORFET 20 p(xPx?, D), IR AT H AL E % CMA-ESP7 i AR,
43 ETFEINGE
IR IFIGATET WA 52 3], R HIE T 5 S 0778 SEENLRE 40, x5 ik v B Ar R A 1K
YrzERa, BEREL £ R? — R AT HH— AT FRAERE A € R 2 3L:
S(x) = g(Ax) 3)

Hr, g BT —RZ IR R %
KA MR N S0 ActiveGPP M FE A M1 GPR IR S5k, @it RGBS MRS A A, BARTT =,
GPR S EAG BREL g, e FH vt S o 2
k(u,w’) := y*exp [—%(u— u) (u- u’)] A

U e I e A A% bR KSR
kx(x,X') 1= y*exp [(x —xX)"TATA(x - x')] .

A LR R A RAZEREL ko (x,x) S EL ARIZ A BRI IRZ om0, 454 GPR LR 311 p(ylA, X),
FIH Laplace J@31T AT sRABHFE A KRR p(Aly, X). FAEZE BT 15 A A5 HHE A )5 4 55 g(Ax) Eit
A7 DU SRR Ak, AT S8 G 4 252 1 UE.

M) AR R 4 B Pk 5 005K SR i A SI-BO (subspace identification BO)P K R i A % 4k Jo IR [ 1k 2 il ft
(low-rank matrix recovery). B AT 5, HEEZIENAI AR 3) A5, VF(x) = ATVg(Ax). B £ MR ¥ BT A:

fxtep) = f(x)+ e, V(X)) +€EX, €,9),
Horbr, eE(x,e,0) AR K5 Vf(x) By ATVg(Ax) 7 15
(¢, ATVg(AX)) = (f(x+€p) — f(X)) /e~ E(X, €, ).
I m AR {(x, f)ye, I, LT EAL S
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y=0X)+EX,6,0),y, = (1/) ) [f(x;+€¢;)— f(x,)] @)

H, X:=ATG, G :=[Vg(Ax)),...,Vg(Ax,)]. AT (4) & — MEFRAE R S 08, 25 HAR A X, M A = svD(X) B 4
JItsR. B 5 AE BREL g(Ax) 3EAT DU Hied Ak, DA 8k S 4 5 i .

K SIR-BOM ™M 139t 71 [5] Y5 75 (sliced inverse regression, SIR) SR AFBELAERE A, SR G E R g(Ax) LT
Pk, Mk G 4 3H UE.

MGPC-BO" Ui FF] 4 228 ) 4% - FRAB L 725 171), [R] Ay o0 445 ) 286 16 308 Bk S 2 oA 801 £, T A 3 ok 3 ot 22 o
GPR™2E 5] Gk bf, FEAR4E 725 0] EA% 2R B ) e D Al ok 22 %t GPR ELA4.
4.4 ETF VAE BRI E

FEARACTLSE IR B (5> F 450 S M BIERIA =) I, I B8] GO W Bk Z B EIBUE RoR. B, #E
W e H AT IR, SR E A BEHET A, VAE-BO & —28 % 1T TR0 B e M Ab st G i) DUk Wit 7 vk,

Pt FE: Aot 3 B bR 2 R I EAT SEARAG2 JE P K9 4 1, B

r;ggf (m),

H, M- REFEARME BV RE, MEBERITE 5 FABE S, XA R G AS EZBRER: (1) 7T
ATHE M BRI, AL IRATIR M2 A — AMBAE AR m e M. (2) B ¥5BRHUE B A1 AT & 8, X2 B ikl
OIS M T B AT S 0 B R — R A B LA .

CVAE (character variational autoencoder)”'45 & VAE 5 BO LAf# vk iR AN ) . %4 T4 1 ANl @, CVAE ¥4
I e O S 1 . BT, I — A VAE, GRS E Enc : M — R? FIf#IDES Dec : R? — M, {13
Dec(Enc(m)) ~ m, Ym € M. IXFE, HEA4k 17 @l 3K

max f(Dec(z)).

2 A ENEE BO SRV, By BO 2 — M AR MRS BERAE AR, BATS, (1) SHNIIZ%E
{Enc(m;),y))., FerE GPR #L4Y; (2) il id i KA R MBS BREIE X 7., 5 (3) TS T my.y = Dec(z,,) 5 (4) VF
a8 7 F LB E v,y = ).

G SR RE: (1) 25T SMILES Romik, #5078 MmN 715 5 Encg : M — X, A SMILES 715 &
o] LLRRY A B 43 T Decs = 2 — M, (2) F4F B 3h9mtd 8% (character variational autoencoder) ¥f SMILES T4 &
P i AR LE R [ Ence - ¢ — R?, LACKHARZE R R AFAS )9 SMILES 747 5 Dece : RP — T BAREE WA 4 Fr.
| (Encg,Decs) 778 SMILES w8 2% 55 8%, (Ence, Dece) 778 CVAE W) gatl 8 Al it 2% . o] 3 A
g:Z->YHATEEARE

ELInE TR
Kmmmmmmm—— » 7 —
Enco Decy Dec o Decg
l R g
Y

B 4 VAE-BO fI=EE

441 “BEX”

JE CVAE EMRA G HIA R 5 T HRAT 1 525 0 i, (B4 A2 — e, o e 5% ) ol AL B 2 ) Z o A
FECHEIX "—— X B8 X P ) s B S 2 7 AR TE AR 73 T 454 35 BO IRRAR BRI T BB DX r 1 1, X i
fJ 2 AL JE R SCHR [65] 045 1 e a] iy BL<SEIX 110 3 A L.

(1) VAE 2AERZ 0 Z BN ERDA0 pz), BEEBERARMCIK mAR AT BEA2 TC R

(2) B [ 4E LR i, A 5 P AR SR IX
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(3) NSRBI AT I, SR EICHE 2 18] o (0 SRR A DX Il S 38 K 22 ) i AR S A S X,
L)W PR R B BB I R, SCHR [65] BUMIIZR— > —ar KM &%, DLRR S A B R N, Fith g
A g DRI IR . 1K B s i) Z IRk el RS AL — AN QO R I A A ) R
rzlgazxf(z), s.t. Pr(C(z)) =2 1-9,

Hh, f2) & BEFREL, Pr(C(z) £ sz LIRS IIREZE (FH /0 KL 4A ), 1 -6 KR 2 I o2 T AL
2 DU A A v, 3883 77 240 B R SR 2 BRI R S X Mty 20 SR AL
| Pr(C(@)EI(z), ifIz,Pr(C(z))>1-6
Elc@ "{ Pr(C(z)), otherwise :

W EIC [F) 25 & SETHE E1(z) FUERS BRI FE RN,

JAE s 2 SRR R A R B R T R BE X M 26, (H = 73 S P 28 R I AT A8 A0 A T S B g ANl 5 31X
A3 1Z 07 M DL B S 37 5 58 A .

1 FH 9 B SR 4 AR 72 GVAE (grammar VAE)' T & —Fh 3 F SMILES 45 5 i | F 30 T8 9% 303
(context-free grammar, CFG), CFG F T 5|3 VAE 4425 i 24/ SMILES 5 8. Bk 5, CFG ¥ SMILES
5 5 BRSNS D9 AR 7 51 (BURATAY), VAE TR T 7 51 2047 9 B AN ARG, JHC rp A 28 R AR i ~F SOV I AT e 471,
AEAETY (1) G L) 25 AL FERD 25 20 .

Enc = Encg o Ency
{Dec = Decy o Decs’
Hrh, Encs 1 Decs 73 3R 754 SMILES 74 i UACKE SMILES 745 #5970 1, Ency A Decy 735144
SMILES 4 8 g ith A A7 17 51 LA SRS ST B g SMILES 74+ £

J5felith, SD-VAE (syntax-directed VAE) T & — 3T SMILES 45 & [ & 11 303, JB ¥ SCi:7E CFG 3454
RN AR AE S, AR AR AR 5 R E LA

SRIM, A8 A g3 SOyt ok 7 37 1R PR AL X B2 07 VAR 8 SMILES 44 8 2 & T L F U KA, (Hsebr b
FrAEGnbt, X BRI T 75 ) 3E F G .

15 FH R 20 oK G2 722 JT-VAE (junction tree, VAE)' ™ & FI 4% (junction tree) SKE R 1, H LB RAE D
N30 (1) BT, T B iR, AT SO B R — N KL JT-VAE 43 516 B A Ry
DN [26,27] ; (2) RIS, 2z, 24 B — BRIEFEA, FoAo Ry SRRSO 20 T v B (3) UGBS B v BOg JUm A&
7520, AT GRAE AR B AL 5

{H JT-VAE 77— /IR ME: (1) MRS, SEIGTFHEKR; (2) REERME A Bz [BIMZER:, TTIERER
IR L.

MHG-VAE (molecular hypergraph grammar VAE) V&%t IT-VAE (A&, & T8 #19 GVAE JT &k —#h B 0%
(molecular hypergraph grammar, MHG) Sk&4mid b 22290, X $115 VAE BERRAER T 01ER:, 151§ VAE (&4
ARG T. BARTE, (1) MHG-VAE K75 T @ B0y R, Hoh JR7 @O, Jm s @By 5 15 (2) BISOER
A P ACLT 2 156 53, H i S DR A% (SRR AT 1 571); (3) GV AE X A AT P 51 EAT 23 ith A AR A . 28 A 204 f)
Tl 25 AN AT 25 P 23 A

Enc = Ency o Encgo Ency
{Dec = Decy o Decg o Decy’
Horhr, Ency M Decy 73 ¥4 73 TGt B I LA S K BB B RS A 73 T, Encg M Decg 2T B 303245 701 K4 768 I 4 i o
FERHTIE B LA B A SR AT 7 B RS 9B IS, Ency A Decy # GVAE, HH Decy U848 A BUE BRI AR IF 1.

S ik BRI T E AR S i A, 8 T SR R R T R, — R TR

T 55 @A 7575, 0 COLD (constrained optimization with latent distribution) 'l BVAE (Bayesian VAE)"". 4%
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M, 3X 87572 10 R BRAE T AR T F) AR Th 6 AN i

COLD £ [ 2% 8] b RFE 5 I ZRaa AL 25, 12 IR R 5 11 2R SE AR BA ¥ B0 58 WT R AT 2800 250 . AT 55,
VAE HIBa 2 A AT N —ANE & R R A (GMM), 5 MEER 25 B X3 A0 i T8 AT R 7 A2 S5 N REEAR LA BE AR, BT A
COLD % & —ANBIME n RIWE—ANAMTE Z = (z: p) > ), HIEZTATHE LRATHAL.

BVAE B [X [l BUH F T-/3 4ii #h (out of distribution, QoD [{I#4E. 1R B IN ZREE M FEA 25 p, 25 FA
B s xs IR A pr, WIFR x* 2“43 A5 A (in-distribution)”, 75 WFR x* /& OoD. 2L, 7 VAE KRR ZS[A] L, 25 1%
i 15 OoD HH, 1 IR AAAD #5 KR A pl— AR 045 S, B A m B S E. T BVAE YU, fH MLE ki it
ZHCT B AR R IO 45 SR T A5 J3xt OoD ##i). Mk, BVAE i FH 4 DU kR i e i S48, LR &
B (6, B

px|ID) = f p(X|D,0)p(61D)d6.

4.4.2 FIHPRZAE B g ka7 8]

BT _ERFFEX [0 /R, CVAE BTG 5 — N HkiR: VE T & BE4E /7%, CVAE RAE78 7 I A AR 2515
B BUR a8 ) LR R F A B8 25 500 1) 2 TG A A AT 55 1R e 2 ) 5 3.

5B VAE-BO: VAE-guided-BOV & i —F Wi B (f) VAE, M8t 30— MEAD 28 po (ylz) SRAHEWT 5 1454
p(x,ylz), NI G2 ¢ - 7 — Y. BARWF.

T BB VAE BRI 5(a) fros, o, SEER RN A ARRY, AR R G5 i AR @ in. Ho2 ) Bis
R KE R X MR po(x). BN log py(x) B T

log py(X) > B, gy [10g pe(X|2)] — Dx1. (go(2l%) || p(2)).
WA R ECN:
L, = =Eppoom [log pw(x2)] + Dk (go(zIX) || p(2)).
T qu(zlx)  fARLEE py(x|z)
— 0N

--------- —_— X mmmmm———p T
lﬁﬁﬁ%%% Polyl2)
Y

(a) W BF VAE FOARE 2 P i 70 (b) 2 Wi VAE M= I

Bl 5 ol VAE AR IS E VAE FIREEE EIRRY
P VAE BRI 5(b) Fis, Bl sisk Z - Y R BR oA, 22 3] B AR BE SO R A [F) I 2
X, Y BIRER p(x,y). 25Bh, KA log p(x,y) B TS
log p(X,¥) 2 Bygyax [l0g pe(Xl2) +log pe(ylz)] — D1 (q0(z/X) || p(2)).
WA bR 2B A5 % B O
L= —E, 4y [log pe(x]2) + log pe(ylz)] + Dk (qo(2IX) || p(2)).

BRI, 2 M B 2 ST IR RN £, + £,

AL 27 RN LG VAE-BO A AN 2.

(1) A= B 2 5] B AR S Ak B AR ASIGHL, A e B ) 2 31 b 1 B2 1] L ) S 36 40 A /L AT R e s J 4%
5045, LA B bR 7E B s 8] b R B O . 5 IR 10 B AR R B AN, B s 18] o AT AT 3l o R A8k
P, SR o] BEASAE T AT .

(2) 2B AR A 78 4 FFH R s 45 2, TSR 553 1T i L JH A 57 T S0 A A AR

BEH IR A SR, 1% 7 VRN VNGBS AT AL, b i 501 o P 5 A o v A B, st 2K R B0

Zx’eD w. L(X;),

Ferp, I SREAE AUE E SON:
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w(x; D, k) oc 1/ (kN + rank; (X)), where rank;n(x) = [{x; : f(x;) > f(X),x; € D}|.

T R 2% 1) £ ) S 98 K XA Je. e, B CRFERTAE A S, VAE FRIIZR— X, LA S0 FI BT REA (S .

R IR B 7S T8 - FE 53 AT S5 b, BT n] ) RE A () ZEATAS [F) SRR ACAE B2 23 1) BE B AU, FRRFEARE R
2R B REBECR, AN SEE A R0 RAT 55 TG T, RISSRE AR s BB AH I (RRE AR, T 55 AR ek 4K
TEAZEBRMFEAR, B

D =x"eD: |[fx)-fx)<nl, D :={x €D: |f®)-f&)l=>n.

T-LBO (triplet latent BO)" 51 N5 B 5 5 =), SRy gt ml S0 1 () B 2 ), A L 3@ 4 R IR ERALAT 55
45 H

FEBELE L PAT DU p Ak At xoh s 4 SR 2 o MO AR AR [ 19 8, LineBOV™ e g SUrh i % — K B 46, (Ei%HL
& BB RERB I RMMA. B S, M5 TS0 (HL) ESN:

L(x,d):={x+ad:aeR}INKX,

Hr, xe X Nm#EE, deRP NJy ), W KAKERER RN

max a(x|D,).
xeL(x.d;)

IR FEET ¢ B B AR x> AR AS B, T 7 1R R 77 20 3 FhaR s BEAL ML — A7 1), e — A~ 4k
TSR 55 14 5 1905 B8 1 BT R AR AR U6 B 7 ) V().

FRgi AL B8 B DARE S 205 2 1H - SAASBO (sparse axis-aligned subspaces) 3T — AN Se4 % #i A\ 2318) X
1) & 2 B2 A G 1) HLE JE R 1), Bl G ik e o 1 7 B T ()R AE, ) — e FE R v A B RRAE, HER M AN L
REAE. SAASBO A5/ 0oB THA% B HUE S 301 SE 56 2 A, 30 4% R B0 o5 4 FE PR AS MR B, AT 5 D38 4 4 P55 R A AN o R
fiE, BARIR.

SAASBO (1142 [ % s L 20N

12
K'(x,y) := 0'% exXp [_z Zpi(xi _Yi)Z} s

Hoh, BSEIRRA N o2 ~ LN(0,100), p; ~ HC(1), T~ HC(@). Ho 1 LN RN EIER /30, HC R
Gy RT3 AT AN IEZS 20 A ARAR A, 02 8], PRI, 245 X, W o, OB SR TR e 0 PR, 3X S UK 4 4t
FEXS A% R ETTHRAR /N, 55— D5 T, 5 IEZS 40T AR AN [, 400 78 A BG R R, 8 o, A/ MR RS 0, I E
o LA JE PR B BRHAE. B JE S B REAE R, TR B KA B B A TR E S L

fi=arg f}nax Pr(y|X,n)p(m).

HRLE p, WG O FRILE BE AR B — AN 55 1 722 18], SREE BB IR T k(x,y) BIRREL, PR 2 1 R TR 3R F) il
XEFF5 22 18], M 3 G 4 2 AH .
AR LA B8, FRATTR G 5L T R LR BB 7 A R A, A 3 BT,
R3RETHBUIRGEE BTN

] SRR oy TR
o T FLbRER BT FRCHRTE, (B UAEFEFS P22 PRSI 25 O PR T AR ML 17 3
U475 Al
SRE TR T R R TV RAF AL T
ETHINL REMBO-p 58 A 7 o M A ZE L ) R e A MY S
f";ff REMBO-; KA N 20 25 S U e 9 il H T LB R
ALEBO o 2 241 AR S R B 1 5 AT 173 L & e D
HeSBO 1 Fil count-sketch=Z i [ 4, HAN 2= 4230 5t 7] 7 T A A s LR AR 2R A

BAXUS PR AR R S B, DA v 1 2 o) S i LA R -
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R3ET AR5/ (88)

F9 RELE KA e
HFAR : AR - P 8 52 PR 1 78 SR W, i e A 3 7S
;@i{%ﬂ’? DropoutUCB BEALHE DN AR B i B a N AR SN A B
Trik VS-BO TR R /NE AN B, FEHR H T 7 SR A 253 DropoutUCB 3 % 7
ActiveGP g%ﬁﬁ"ﬁ)\fﬁﬂsﬁéﬁﬂl%*%ﬂ%, 1 i Laplacei& i 3K @ #d 2 S P A T T
T2 SI-BO ) PR A B R R SRV SR AR B R A —
SIPIRPS KSIR-BO FGKSIR5BOZE 4, Ho A K SIR A7 s B R4 1k e 4k )y v BOHHE 7345 AN S K STR [R5
MGPC-BO gi;ﬁ%Wéﬁi%#éﬁﬁﬁ‘ﬁﬁ)\ﬁkﬁi @I % % H GPRAY I o B L (2% ] 45 R
SE R L 1) T ' A 7843 F B AR 245 1B ik
CVAE IV AESE B E 2 144 N\ Bt 5 DL K% i H Bk 55 fyepiy e
T S e bR R i - . F£ Ak T A5 SMILES 7 777 5 # 4% & -
GVAEAI SD-VAE S BN SCTE RS R A5 00 A R T ARt FUEE
A Ao ERARIRL AL, LU G S PR BN T B A
COLDFIBVAE SRR IUIX ) R, I 5 52 bRi i RS I AR F A TR A Tk
Wﬁgﬁﬁfo FIF R0 B EE A AL SR ARHE X
- LineBO RIER B L PR RS, DARRRR S o S A A T 8 K SICH FE 12
. SAASBO s A% B8 H DABE S 20 P AH HEIFAS K

5 ETFmHEmiga =g N EiTiL
i G g FEAR T, — 6T GION TR R, 1X — AR B AR R AL f R o iR I K
BRI% 1. JnPEAB#, W Add-GP-UCB™ ) B 1.
F®) = fOED) 4 ),
Hoh, x0 R x FL g S, DB EREZHIE S P, Bl x0nx? = 2,Vi, ).
ST IR B, FATAT 0 R4 M AR LE R K £ (x©), AT I8 G2 FEAH T X, BFEE M A RSO R AR A x
BT 75 44 R ) B A A
AN fET A 2R ] 56 BRI 22 GPR, A B i fa)of o 4 25 g A7 40 4.
51 g zEY3
ST INPEAR %, Add-GP-UCB F M A GPR 205306 M AME4E R % r@, BD:
O~ GP (m(i)(x(i)), k(")(xm,x(")')).
AR SCHR [19] MLEE 1, iIX S5 T — w4 GPR UG iR 4 £
[~ GP (m(x),k(x,X')) (5)
Horh,
mx) = > m &%), kxx)= ) KOxOx).
BT, SRER BBt = NI e B, LA UCB i,
s = ) ) 4B (x).

PUALR SR bR BN, T2 0004 M AMIRLER S8 B8 2, I HHE M AR B AR x| BURTAS F — SR R X
R ige £t M A S R BT M1 bR B DL R D T ify 52 R 24, X8 715 G GPR HEFL.

B AFIFATT  httpy/ WWw. jos. org. cn
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SR, T3 — A il R 5 A ks x TP D AR RS EERE M NSRS B — ANl T S 95 T I A
SRR SRV AL AR F5 1/ BC 77 3R F GPR 44, #0 GPR HOBLARMEE = B iy, A ltt, ZE7E M Fh oy T J7 5 Pk
P& U — Pkl Lein Add-GP-UCB XAE M AN Be 77 28 h BEL I 645 T Mt J7 58, 1EMR%IET7 & rh k%
AR B K7 5. AR, IR TR AR A 31 1 70 BL 7 S8 /2 W 4 1.

R ] R — AN AU RE (T NP e ), Dy 7 R A 1% R, G 7 SN LR R A A,
K 1% i R A D B ) R
52 ETF MCMC RHESEHRR

Add-BO-MH" ¥ e 4h A 43 05 R T — 30434, 454 GPR [IRUSR - i, B J5 19 BG4 o0 LK JE 560 7
A1, i e 1975 58 0 MAZ e 96 70 A o R BT, BT T3 RAREE & G, 455 G — RS i p(G), 1 UL
SE, AN I RS
_PGIX.gp(s)

2. PX.g)p(g)

ZJE IR AT AL G TR RN T SN R AR RE 0. SR, 5T E 7 RN e IR AE T RN ATAT Y,
W D IREE S K% (Markov chain Monte Carlo, MCMC) 75 2 R KA J5 384347 .

FT MCMC FRE 370 A 1% B FT 1 MCMC J7324 Metropolis-Hastings (1% MH &%), MCMC J7i%
A% O A AT M 0 5 IR, (T AR A AT N AR R AR I 5 30 70 A0 . T MIH B 1) 32 AT 252 26 At /2 FR BRI
B IREE (g0,81,...}, BMAE T R g, F, BRAI T =R g, MH BIEMHIES RO T.

(1) M G&E M /310 (proposal distribution) g(-|g,).

(2) M qClg) FFET— MR ¢ BT S, 85I CL 172 MRS IE Y570 Bl & 3 8 0E. k8955, WIBEAL
AR, BT A, FEFA I, MV EFER AL &, B HA I v—4H.

Q) MM ERLZ ¢, %2 g, WL g, =g TS g, = g/ M E SUN:

p(yIX, 8)q(g:lg")
"p(yIX,g)q(g'1g) )

p&ilD) =

A(g'|lg,) :==min|1

5.3 ET Dirichlet i3 1289 4B 75 5%

Add-BO-SKLY™ME #4341 7 S RAE H 2 504, W) Ji5 5 43 41 4 Dirichlet 4345, 1M BT 7 f177 %€ \iZ Dirichlet 4
idRFE. BART S, D ANEEWHS S M AES Ty D P E SR, B0 AR s 4 3128 40
RN 6, FABENLAS & 2, = i KRR ES j YR B AL i NMES, W Pz, = i) = 6. IR, M MES TR EE
(M, ..,y T2 22 T 53 A

(ny,..., ny) ~ Multi(6,,..., Oy),
Hi, ny+...+ny = D. HT Dirichlet 7317 /& 2 Wi /3 1 B AL HE 5658 (BRI 24 6 1465050 1 =& Dirichlet 73 A H, H 55
43 Afi 72 Dirichlet 7347), AfETHE, &£ J04 & 0 5650447 A Dirichlet 7347, Hil:

RS R0 A0 DIR(ary + 1y, ...y +ny) = D. 55 X0 J5 U5 3 A REAT RAE R AT 453 B %5 0975 58, AR SE Bk, Jl 3 A
I MCMC T353R Ja S A BRI aIE] 6 iz, Herh, n 520 s B S5, 2 Fiil A\ 22 ) £ 0 .

O—O10-

@ 0 z df y
Kl 6 GPR I ElRER
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54 ETHEEIRENSETTE

DL BT B — AR E L HIE MRS, B x?nxY = 2,Vi, j. G-Add-GP-UCB (graph
Add-GP-UCB) " ihA 1 % A8, FovF— A8 Tn] LA B H e AS ) R S5 .

BRI 2. ¥ Rt

F&x) = fO) +. .+ fOOM),

Hoh, x0 B x By ERE S, — MR LIER HIEARRE ST, B xOnx9 £ @,3i, ).

G-Add-GP-UCB HJ#Z% 0 AR M A O BN R — AR G, MR AL 54 0 1) A A R s A8 2 [ AH DG PR 1
i) B Ak, 1% 7 i1 RIS AR SR SRR B ) (1) 00 2R AR RO TR, 20 58 ) (WA DG TR 2R, AR B AR A% Y
B 185 K ] (maximal clique).

5 AR FE R Z R BRI, 2y = | RN & x, M x, MO, z; = 0 MIPRAR B 0 Ok e A SR 3 A AR N 2, IR 5
5%, 454 GPR MIMLMR A0, AT 15 2, G IR 730 p(z,1D,). S 2P H MCMC 77 1R A J5 36 53 A7 RURT € z,; B HRUE.

AR, B R B B MG R 52 R ) s A

a(x) = zM] a9 (x).

SR, SEG 2 MAEIEHS 7 B0 &, BRI s A6 & MR Z4ER AR i 4. St G-Add-GP-UCB 18 FITH &
FEI R R AR A SR L

(EAFTE R, T R S 10 T S R B J5 K 1 38 K P S g K N BRI H S P4, Tree-GP-UCB! M
FAR R AR A AR B[R] 1R G &R, DATRIAL BISERY. BART S, SR MG 58 23 A1 R AL SRR M 2, I, 4z = 1, WA 2
WL R TTE BRI, T8 R ER 4 z,; = 0, AORIE BB R 48 282 — PR
5.5 ETHEHSARTE

CA b3 VAR R T2 20, BN 5 SR o SR A A6 P 3, T I JR3 3508 1) 23 AR 4l A AT AT AHE T B4 5.
1k, RDUCB (random decompositions UCB)"* " &t — i 41 T 5% ) 43 41 )5 325, Fokz O S A e — AR BE ML 15 v 4 i 45
. AZBENL A HIPEAMTEIR T AT IR BRI, JEHR AL T AW SE MBS ARIE, BIR T (MBS BRI S, 2 R4
BBl N RSIC 12 22 78 SUR:

€ = minﬁe‘f{,|ft _floo

Horr, H, ke (x,x) B AR RAARE T 8], g, 255 52> R S5 K. AEBENL 70 A7 v op, X Ph R L IR Z A7 AE b

S, B
[ D(D- 1))

Hob, M=) |l E IR IIIEL ABEZ R, J6 2 5T 053 41075 P AR S BHRL IR 2200 L 7.

5.6 Hftbrsk

BOE IR S IR i) 7R ie, B

J&) = fOWIR) + fOWDx) + ...+ fOWx),

Hh, WO e RO W = [WD, . W] e RPP ZHREHE . 356 ME W = T, “BE AR50 (R A0 e R
B, WA AR 1 R B AR B (KRR

7E AL FE I, RPP-GP-UCB (restricted projection pursuit GP-UCB)" 5| N\ T NZE#e Z. = WX. BRIt 2 4,
RAEYE Add-GP-UCB fR#F— B T B W NS DL J5 2R R B2/ MLy GPR B 8 24, h
EM BEAALHE 2 5 ) AT 13 B e ),

FRA DA b 3p 18, FRAT TR T A e B D7 v B AL R AL S5 R 4 .

<TM(1
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R4 TR T M /NG

RETAE LR T
Add-GP-UCB FEH I 25 H I GPRABERY KA A AT F
Add-BO-MH L0 T R — AN B8 0 A5, 454 GPREE R FILLAR o0 A, M) TS s 7 745, B A AE A R+
I BN, IEFIMHE SRR Z S 3040 A1 104 LT fg 1) 1 % ]
Add-BO-SKL B or 4177 E M Z 153 A7, K@ Dirichlet /546 73 4, HH Gibss SR 2 Wy A 1E 5 ie, 20 7 248 & 8] 1
N RS 0 A A

IR VIR B, SRV IR AR, IF 5 AL B
I 20 A R ) 55 AR

TreeGPUCB  WMEIEIACR AR AR, AR s Rz ) AL TR I R TR &, 25 A

G-Add-GP-UCB PR BB TSRS K

NJRFR IR S
—— NIE G S SR T A AR A AR T, SR B ML 2H 7 3, I S T _
S BT 9 5 R
RPP-GP-UCB T RB TR, 5 NBmtE & NI 2B, M AR - S )

6 ETHARE RIS LK

UL ETTEAR, £ T RIS R A IETL 5 NBUMRBE, e SLAE WA R 2 L (1) GPR H {11
T R A A A QAR R 1) R B384 AL AT X ORF — 3 (2) SRER R B R IR R B A w4 23 1A]. SE IR SR,
VST T T R AV 0 110 =) 8 DX 3
6.1 ETIEEEHA MR

He TR AR T AR 4L (trust-region BO, TuRBO)* 1Kt b3 53 3 (X 8 FR % AE 3 (trust region, TR), JF F13&
JS2 3t B O, AT E, TR SR, FR 2 AN iR & (1) TR MiZ 2% K BLA & U5 #; (2) TR
3 /N AR PR AR AR R A 2. SO AL A R rh o A DUSE AR, U978 TR, e 2 47N TR.

TuRBO [ 4EF m A TR, FEA TR ML AR, ] f; ~ GPY (e (), ko(x, X)), e AR € FRER €4
TR, b ¢ FoREE ¢ KR, X S VFAN ] XA A AR BEAS AR, S T S A (R ARBABE AL e b, SR RR B BR 1) 7E %
N TR R, A RGE e R ERR. BAKTT S, B 56k TR, B HuL: A TR, HEEHLEFEE T4 4, 128 TR}, 285 HR4E R
RN TR, P Ffk i, R

(1)

X;” = argmaxarg max a(X).

l XETRI[

HE WA g K, WIS g MEE S X, i=1,...,q.

BB 7 A UE F T 4 N 25 18], T4 2 B8 A a2 1) O (B3 e o 1B (128 ol 8 ORY).
X2 FH TuRBO 7Ef KA KA s B0 23 B RUGA TR, (3 FERIARE A T S i ).

6.2 ETXISHZR=EMNIHE L

TuRBO & T 2 AN Jm 8L, T AR 7 BB 2R 25 6], X R EUR 0 X3 AR R B X 3. AL 2T, B
N JTVE N &R A4 2R A ) X, AR SRR BRI 0 1 XL 91 301, BaMSOO #4482 A ] Rl 4 A T A Y,
VOOT #4442 2% 181 %] 5 Ay Voronoi F, LA-MTCS JUJ 5 7R 3 1k 48 2% 2 18] 1] 43 A AR X 45€.

2 R4 % 4 1) R 4> R DOO (deterministic optimistic optimization)®* 41 SOO (simultaneous
optimistic optimization)™ JZ Y73 FI T ATHE X, 25K 5 38 DX SsRAN M 1 0, D2 IR o0 B R AR 24 T Hy e — AR M. Bk
&, BT RE AT, LS A RS m D RIFN R+ Lkm+ ) )ogia . X ERE XL X, #5558
kAN X3k

Koo - 0<i <k—1).
DOO BBAEAE— A FE R 1 f(x') - f(x) < €(x,x"). RFB Xk X, (19244708 SR
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o(h,m) := sup, L(Xp,n,X).
Fo, X, 2 X W AL FERRIRY RS BB, LB HE £(X,) + 6k, m) BRI A

Xh,.ﬂm, = argmax f(xh,m) + 6(h, m),
(hm)eLeaf

o, 6(h,m) BAZIX AR R A, A ITALET PR 25 <RI
SOO ks 7 DOO [, BB B B ¢ A7 4810 o 7 R0 T8 H B AT 3, e i SUR B IX R4z, iU

FITA 5 L AT S T IS LA IR (1) 2432 AR Z C3A AR T RO, S ROk ke, X
LT ARZ, (2) 1% RAE £ (%) KT RR AR B A 19 5, I AREL T <A

BaMSOO (Bayesian multi-scale optimistic optimization)®J#id % SOO f#%:fl_E 5 A GPR %, 5 SO0 ML,
ERR T REER L, 5 BO ML, B BOACRE R EL. JTUHX T1L48 BO, HUlsh vk 7 ZRBUE REFR FIR A B
) E U, T BaMSOO FIWCSUNAN TR Bz . BARIT &, 44 19 5 (b, m) I, 795 sEHIME € SO
S Ko amsi)s if UCB(Xps1jans) > frna

LCB(Xj414m+i)> Otherwise

(Xt gomei) i= {

A% SO0 2 KA FTHE 711 A, BaMS00 HRFE UCB KT Mui S AL E =5 s, HoAh T35 s W B LCB 1 ks
e, AT BRAR 7 SRR S 44 UL S AR G A 1Y) UCB 9 BT

5 BaMSOO 21, IMGPO (infinite-metric GP optimization)* " th#E SOO -1 i1 GPR 4%, {HEF| ] UCB 3k
vl o, LLA R BGOSR IR, 1 BaMSOO HIIBHE S A 2 4. BARTI &, IMGPO 4 & 1715 x5 22 [wl I il
JEPIAN AT (1) 1ZM T S BE f(x,,) KT RVZFRZE R BT AT 8 (2) M1 S UCB KFIRZ 15 .

B R A AR AN X 38 VOOT (Voronoi optimistic optimization)™ ) ff ©. & kE A & Voronoi ¥, A5
B2 R SRR 2 T S DAL P P X85k, KT 75 38050 P {0 8 A

LA-MTCS"™ NI SVM 43 528 W B AR (1) 61X 35, T UCB 4% Jm B IX 3, AL PR 2 5 FI .
BB IR,

(1) W14k, FFEART, ARYE <RI 5 B fE F OB FEA M B — IR SR RIS R, AR5 IRIE R B e E B —
AR, FEEE AT AT 1 SR 8 X AN AT DU Al A

(2) R RAE. R0 oy — AT AU, B SRR 1% T AR M DXk R, MR AR 4 AP R PR AR, AR JE IR
SVM 432838, MM 40 X3, 25 RPN 715 543 BIAR R W A S /N X3,

(3) PR, KAUTF 2 BB L (multi-arm bandits)™ [ 8, MRS S, THHEIELFY M1 UCB JRE R EK
[T R, SRR T PG, AR E R RIRERE E BT A Ik

SR, VOOT #1 LA-MTCS 5 R i )1 43 7 2t Al He ke = 184k 5, RV = e S PE DR IE.

MG A B i, BALESLE TR T R R ISR sk &, ik 5 fis.

RS ETIRMMERITIER/NGS

RETAE EEPa v
. ot i N 2 T EAT R0 o, FE AN DX I 9 LA 20 1 I PEGPR, 384T . b

EBO™ WU AR A, T JR3 3B DX sk 51N 5 PR i e A8 i

- 5 22 A Jo ¥ DX 3ok 2 ST AR B TR SR 0 X P SRR A% A DB G Fh TR A0 R I, R AE AR R R

uRBO N <

TERER X 35

BaMSOO éﬁ%ﬁf&%?lﬂtﬂ%%ﬁ%ﬁ%, FAE S EL T 77 1) R 3 X sk A R (A% 5 21 (R

IMGPO EBaMSOOLA |, FIF UCBAG 2 &, LA BIF S s i A —

VOOT %I Voronoi Pl SIEIL B 2R 3 1) 2 11l 4 S = WU (AR
LA-MCTS K FISVM 53 28 K 44 2% 23 [ %1 43 A R [X 45k S Z WS SRAIE
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7 S DI ER AL RO R A S

AT NG NI v 4 DU A A 7 24 T 2 SR A P R R
71 SRUES]

T4 DU B PR AL SR A0 2 T 1) S A R T BT T R R GIBOY R BO-MPD M 5t T 28 1 5 s (¥ 175 0,
B 77, : RP = R™, 7y(s) = As+ b, ZEU=E0 N 6 = (A, b) e R "EAI{E CartPole. Swimmer & Hopper 5555 4k2% 3 38
BE i R0 BO 14 2 Sl DL KA IS BR B, 45 3R B s 4 BO LU BEATLAS 28 07 2 T8 Rk B A 2 A

# OAYIGE NS, R A A 2 AR A N I . bodn, SCHR [91] 13 H /R E8 BO B A7 22 3 1 3R
W, CAPCEAR AL HLaE A2 s, CRBOU M R 3 BO Tl Ak 2 ) S i, {588 e A D id T AR 2515 5
7.2 HlB|A

e 4 DU S AR AL RN 88 N Ut G BRI R . b, SCHER [52] % =4k BO H TS 2 HL38 AT &, (R
FUIE FARL B, (R I J8E G 5% 7 4 B iy B2 i 2202 K. SCHR [77] A 4 BO K B =& AT-F i XU HLAs NI Z AL, LA
PR AT R, SCHk [90] ¥ =4k BO Al FHCE BAHLAS FE S5, IR i vt 2 B hr i E.
7.3 BREBEOKRRSE

Fe 24 DL S A0 70 S B VR & B B0 K (mixed integer linear programming, MILP) >R fi# 2% (B S 805 R I H
0, ANFE FI R 2 B A B I S 80 (8], L LPSolve (https:/Ipsolve.sourceforge.net/5.5/) A 74 4EHE S %25 4],
ifi SCIPPIA 136 4k 240 ). SCik [23] FEF BERD i\ BO 4L LPSolve 24, SCHik [79] WA it BO
itk LPSolve fIFEZ 3.
74 TIEAR%

e U I RAGEE R B TR R RS HOT AT 2 M. Heln, SCHR [73] £ =2 BO I E T BOLE S
£, DR RGO Re & SCHR [74] 18 A =ik BO BLBR ZE BT IIS 3, Dl MEGTRZEJR & SCHR [95] 158 AL Sk 4%
BO fit B RS54, VAR R LA HHRE; STk [96] AR 21k 4% BO MG R MM A EEHRE RS, LK
BE AR It SRR KA &R,
7.5 BElRFES

TE E SIHLAS 2% ) A, w4t DU e A0 R R L EEAE . L, SOk [80] A A i BO AL RIZ% 1) 9 Fif
MBS, ARG E. BRE BAUR B ICEUEOE R B 2858, SR [52] 18 FH =4 BO 48 2 B RN 42 I 2% 1) &5
K, SCHR [97] A8 w4 BO AR ZR P Rl AR () 10 WAk 8 2 45 SClk [19] A it BO fRALZRI: 73 225 B S 4L,
DABR iy AR A vEE e 28 Sk [75] 480 F it BO e B 0 B b A B I S 40, RAVRS BEUS ) AR 22 SCiik [74] T
1 &= 4k BO A% SZ RKF R &AL (kernel support vector machine, KSVM) A S %]
7.6 £, E

e 4 DL S O A s Th B T AR RIS AT, bdn, SCHER (98] 48 F AR Sk % BO L B AR sh A AR B ALY
SR, LR SRR TR 25 SCHR [9] ] VAE-BO AEHTor T, LA R0 T HI/K- 2 B /0 e R 50
7.7 MR ALETSES

e 4 UL At s T N T 2Rtk R AL 88 (linear quadratic regulator, LQR). LQR & ¥ #l ¥ i # i — 4>
RN, BEER N RG IR IMUZ AN, 231 RG89 x(t+1) = Ax(0) + Bu(n) + w(o), T R ECH:

J:=lim %E [ZTOI X"(QxX() +u" (NRu()|,

T—oo

b, x(0), u(e), w(e) 70308 ¢ W20 R GOIRAS . SR R TGRSR RE Q A R D IE € AR .
A R GECHIN, LQR [l BAF A8 W] R ROR W i . 2810, 2420 ) R GEAR RIS (RIAERE A A1 B R %), LQR
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R AR EL b 1) BE A A Ak 1) . GIBO A FH /R &6 BO SR % il i, HAE A E J4 ¥ 5 LSPIV 24, {(H/hF ARSI,
BeAh, RN BRETINABUERE Q A1 R A%, LQR WAk 5 —Fh B & fu Ak il &, STk [101] 18 2 T g3 & 11
BO R 7 i

8 LM

e 4 DU ST DA U AE 22 R IR 37 SRR e, AT A 28 LM 37 5 A0 F p .

ik 175
8.1.1  FETH R B ilis 5

TX SR R FH B0 R B E R 55, AN RIS Y 1 DL A4 07 120 22 e 138 5 LR AN B AR 32 45 O 0 R
K. a0, He T A A 7 2 i T R I 0 R A, i A RO R A 5 R UM ) T A A P R R
H, BRI,

Tk B ol B 0 v 2 BR R A T R B IR B 9 G, T SRR AR T B L

2 o) 2
Fx) = log(O 1}7 p(”X;h‘;” ) 40, lﬁ p(”X;h‘;” ) +0. SW p(llX;h‘;sll ))
Ho, v, vy, va 2 EDE R d ER 5, by = 0.01d%, FTATEERBIE x e [-1, 114, BN x = v, QI M BEE, &
A i xO PUSTATFH — AMIELE T SR EL £, (x©), W i 4 1 bR BT %R
F&) = fax) + .+ fu(x ™).

AARERNZ, B f0 A 3 NE, B F(x) B3EA 37 Mg

— LR 37 3 ) B N PE GPR (LA 3K (5)) AE IR ek 2 U7, 4Pk 3 2 x 1 A ok (i, 75 R
% GPR [{)J5 3546, G-Add-GP-UCB #—2 3 & 7 iZl B E, Hntk GPR RV A RI4LIE) A7 /E E S AR &

A 248 B8 P 502 BRI 0 8 T AR A 5 A1 8 P DI o 001 T 368 5 s P 6 i 4 B2 PR 502 BR 4, 9, g 2 2
Branin BRI D -2 A ToR4EE, BITDE Y BN D 4E[ Branin BEL. 230U, 6 4E 1 Hartmann FRELELE d (d < 10)
LI Ackley BRECHERTT DLIDN TG L B2 R Fe i 4 (1 R 4L
8.1.2 fjHSEL

DU ARACAE 52 B S F g 6 T L8 2 21 R TR KRGS HOR . 4l

(1) SVM Z4E55: SVM % B B 2 88 2055 T 40 iU 4 B2, 55 JEERURNEAE 55 1 B0 48 B s, SVM
VBT 55 ) RN s 4 2 S e Ak il A )

(2) LN 2% L5 ¥ 48 R AT 55 (neural architecture search, NAS): NAS /£ 45 vl #:40 N EA 36 NS E R ML
Ao i 2,

(3) Zﬁﬁﬁﬁ‘ﬁ% MOPTAO08: ZAT45 BA 124 ANih-S4, A THIBRMEL (XCRMEMHER, BEARFGHE
ORI 2y A L

(4) 75 RIS NIRRT SH 72 NS5, BEY S RAERK S, Y G2k B brhr &, (5 8
o T T R % 5 v A 2 K B

B 7 LA EBAEAE S RN R, EH — LS AR A R, 51 RE. 0 HEE, X s A
F VAE-BO [ ffj s
82 HMHEE

ARATREA LB W PR A .

(1) BoTorch!" V& 3T PyTorch 9 DU Ak gm FEAE L, S 7 FH 10 R A5 BB 22 L 1) BO S35, e b,
BoTorch #2447 — L& 4k DL #4572 (1 TuRBO. SAASBO. BAXUS) 12 H b UL #4657 (1 L 0.

(2) Ax-platform (https:/github.com/facebook/Ax) /& & T Uitk fk LK 22 B W AL I ARAD e . 3L DU S f Ak e
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HEZEHET BoTorch JT R, A& T —Lm 4 IR LS (W0 ALEBO. SAASBO) #1225 H b DU LA S (1 B,
(3) HEBO (https://github.com/huawei-noah/HEBO) #2& & DU Hir A4k PR ED B, SEBL T 2 s 4 DL S 0 5
% (01 RDUCB. T-LBO). It4h, ‘Bt & 7 IR MR R Bt Ak 7712 (i HEBO'™), CompBO!™).

9 REKMRFGME

B 4 DU B R AL I RR SR T, e O 12 R T A SR RSO, S % F e 4 B | Ak el R T —
FRE AR F AR SR AR A . v DU S Ak B R 5 A R B 4% 3 P 49 8 SR BR R T 56 T AR 4 B (R (0 7
SR EEH ARSI B bR R S, vTACEE T & T RN S ) S s v R EE A T
TENPELE R H bR B2, 7T AREE LGRS 2510 2T R S8 R IG5k 2 & T & Fh B AR R4, vl abss L4
E PN TR

REE @t DU Wit 58 CEUS B3 ke, (A5G Y 2 a) R Ar o, RN AR JIASJ .

() B R PR 17 22 7 VA T B N B 8, 022K E B bR 5170 (R A 5 40 Bl n Mk 544, R T X AE L i3 3
AN R T BRI, AT B X R 15 R PR R AR U e SR R 22, A AR SR A0 14 £ 1) R

(2) BBRE LMY RS R, BT R EE R 17570 T AAME L, (5 4k 5 A3 58 738 5 PR T L4k
IRILE, AnAT BT IX ST v (¥ 4 B AL FE G T, A2 AR 78 1 — A S 1) .

(3) Y2 I LB Z WS AR w5 4 DU AR A IS SO 43 BT B P - 2 AR B BRI IO MR A 1 R 7 vk, AR 2
T P A 0 R A 2R 1 v 3 S R S PRI . IX B 2 R AT AT L IE R R I 82 B S . AL,
ATk — 5 X e Ty AR S P ARAIE, 2 o SR 5T G 5 — > S i) .

5 b e, DU A A AT RO TE R T, 0k e 4 DL AR R T R BOMLIE, S ERILTE LU LA T T

() 5Z B Ut Wit &, V82 BE 2R TR in 55 R DA 2 /N AH 5 4 1Y) SR bR B 24 B A R 00Tl 1
A e e F, 22 H AR DU S0 14 PR R R P B AR R FH 26T 2% 52 7 k. SR, ZRBL T4 48 BO, £ HAx BO [RIFETHI I =i 4
Peik. H i od — L TAEBB YD, WisCHk [105]. SCHk [106] FC#k [107] 43 304 TuRBO. SAASBO Fl LA-
MCTS ¥ & 212 Histhib . i — SRR 2 B s m4E BO MR, £ T BO B YK G,

(2) B TR AR 25 0. F 4k BO 3@ BB AE 2R 2% () f2 SR, (EVF 22 S 1) 0 1 N 2 (i) B OZE 8 0 s AR
FIR AT, W MILP 12145 P B Al o — L TAEREPIEEEE, WSCHk [83] ¥ TuRBO ¥ BIVR & 18 R &
[ SRR R M4 BO TEIR AR SN JE F R ¥ % BO B YW 1) 2 k42,

(3) 5Z AR S . 2 BRA AR B 2 VP4l B Ar s BT, AT 3R AR 15 20 /N I 25 SR, L mT A 2
IRARH AR 20 2 K WL 25 SR b, TENLER 2 SR ST S, WA I AR BB i /N I SRS R SR F S B AU TT A
B 18] A, EL 2 38 DRI 45 SRk . T — 2 TARKBELRS4E BO R T 2 A A6 B2, (BAR 4 TAR¥
£ BO Bi/& %8 BO M A T2 sliAu k. @ — Lk =4 BO 52 A Mib, 23058 BO M AHEBEIN EE IR R,

4) 5ZEERAmE. 2RSSR B K AT AT 5 IR I AT RS BT 55, LU 4b S #E. SC
ik [63] 2 T 24155 BO, X444 BO, £4T55 BO [ IH I = 4EBk k. Ak, STk [52] mi&BEHLEEYE BO 5%
1£5% BO, 3CHk [93] filA Rt BO 5 £ 4145 BO. #t— PR ZE Mgk BO 52 AE S MMALMEL G, 2465 BO A TEW; )
Ak,

10 2 44

DU LA A 9 RR S AR AL U SR B ROR, AR RS2 B2 SRVE S W T, =4k DU A4 o DU S e A )
KD RO, H 2 Kk 1 DU SO P i S Y37 55 AR SO 77 12k (R B e AR i, g vt e DL P S I A R 7 2
N3 F T MR BB (R T7 i BT AR 0 75 9 DA T JRy B R I 78, JF VR R Ao Br 1 4
DS ARAC BT FU Rt . A2 BRI R SR R B T v g DU AL R R B FE T ). 8 2, FE T R A EE R
JIE G TAAAEARLESS M B0 H bR R 3, SR BT 792 B3 4RO 22 8] 2 Tt e i 7 ik 2 2E M T B
AINEZE R 0 AR B B, SORE LT 4R S N 25 8] 3 JR) A4S 2R AN U i BE 6 i P 1 R H AR BR 2, SRR L4
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(o N2 8. 53 Ak e e DL eI A5 A AU Rl 7, 204098 1 DU S0 A (0 52 VS W, Dt ok B R D A
RS2 T8 ) T BEE.
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