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摘　要: 贝叶斯优化是一种优化黑盒函数的技术, 高效的样本利用率使其在众多科学和工程领域中得到了广泛应

用, 如深度模型调参、化合物设计、药物开发和材料设计等. 然而, 当输入空间维度较高时, 贝叶斯优化的性能会

显著下降. 为了克服这一限制, 许多研究对贝叶斯优化方法进行了高维扩展. 为了深入剖析高维贝叶斯优化的研究

方法, 根据不同工作的假设与特征将高维贝叶斯优化方法分为 3 类: 基于有效低维度假设的方法、基于加性假设

的方法以及基于局部搜索的方法, 并对这些方法进行阐述和分析. 首先着重分析这 3类方法的研究进展, 然后比较

各类方法在贝叶斯优化应用中的优劣势, 最后总结当前阶段高维贝叶斯优化的主要研究趋势, 并对未来发展方向

展开讨论.
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Abstract:  Bayesian  optimization  is  a  technique  for  optimizing  black-box  functions.  Due  to  its  high  sample  utilization  efficiency,  it  is
widely  applied  across  various  scientific  and  engineering  fields,  such  as  hyperparameters  tuning  of  deep  models,  compound  design,  drug
development,  and  material  design.  However,  the  performance  of  Bayesian  optimization  significantly  deteriorates  when  the  input  space  is  of
high  dimensionality.  To  overcome  this  limitation,  numerous  studies  carry  out  high-dimensional  extensions  on  Bayesian  optimization
methods.  To  deeply  analyze  research  methods  of  high-dimensional  Bayesian  optimization,  this  study  categorizes  these  methods  into  three
types  based  on  assumptions  and  characteristics  of  different  kinds  of  work:  methods  based  on  the  effective  low-dimensional  hypothesis,
methods  based  on  additive  assumptions,  and  methods  based  on  local  search.  Then,  this  study  elaborates  on  and  analyzes  these  methods.
This  study  first  focuses  on  analyzing  the  research  progress  of  these  three  types  of  methods.  Then,  the  advantages  and  disadvantages  of
each  method  in  the  application  of  Bayesian  optimization  are  compared.  Finally,  the  main  research  trends  in  high-dimensional  Bayesian
optimization at the current stage are summarized, and future development directions are discussed.
Key words:  high-dimensional  Bayesian  optimization;  Bayesian  optimization;  black-box  optimization;  dimensionality  reduction;  variable
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1   引　言

许多科学和工程问题可以抽象为黑盒优化问题, 而这些问题的目标函数评估成本通常是高昂的. 贝叶斯优化

(Bayesian optimization, BO)是一种能够高效求解此类问题的方法, 已在许多领域得到广泛应用, 例如模型选择 [1]、

自动机器学习 [2−4]、A/B测试 [5]、药物设计 [6]、神经网络结构搜索 (neural architecture search, NAS)[7,8]、分子设计 [9]、

拓扑设计 [10]、广告攻击 [11]、机器人技术 [12−14]、自然语言处理 [15]、强化学习 [16,17]等.

尽管贝叶斯优化在许多领域取得了成功, 但其应用通常局限于低维问题. 应用维度界限通常是 20维 [18], 当输

入空间维度升高时, 贝叶斯优化的性能会显著下降 [19]. 然而, 许多实际问题的输入空间是高维的, 例如混合整数规

划算法 (mixed integer programming, MIP)[20]、深度学习模型 [21]以及基因设计 [22]的参数均可达上百个. 为了进一步

扩展贝叶斯优化的应用范围, 许多工作致力于解决贝叶斯优化在高维空间中面临的挑战. 为了克服维度诅咒

(curse of dimensionality), 通常需要引入额外的假设: 一些方法引入了有效低维度假设 [23]; 另一些方法引入了加性

假设 [19]. 还有一些方法并不引入额外假设, 而是基于局部搜索来避免过度探索 [24].
贝叶斯优化作为一种成熟的黑盒优化技术, 已有许多文献对其进行回顾和分析 [18,25], 然而, 高维贝叶斯优化作

为贝叶斯优化的一个分支, 仍缺乏充分的回顾和分析, 通常仅作为贝叶斯优化综述的一个章节 [25]. 近年来, 高维贝

叶斯优化领域取得了一些重要进展, 有些工作提出了新方法, 有些则对现有方法进行了扩展、改进和深入分析. 此
外, 神经网络的发展也推动高维贝叶斯优化应用于更广泛的场景.

基于上述认识, 本文聚焦于高维贝叶斯优化研究, 以各种工作的假设和特征为主要出发点, 将它们分为

3类: 基于有效低维度的方法、基于加性假设的方法、基于局部搜索的方法, 并对这 3类方法进行剖析与解读.
第 2节介绍贝叶斯优化的基本概念和核心原理. 第 3节分析贝叶斯优化在高维问题中面临的挑战. 第 4节详细

介绍基于有效低维度假设的方法, 分类总结随机降维、变量选择、基于学习的降维及 VAE降维与贝叶斯优化

结合的特点, 并分析其优劣势. 第 5节详细介绍基于加性假设的方法, 总结各类分组方法与贝叶斯优化结合的特

点, 并分析其优劣势. 第 6 节阐述基于局部搜索的方法并分析其优劣势. 第 7 节概述高维贝叶斯优化的应用领

域. 第 8节介绍高维贝叶斯优化的测试场景和代码库. 第 9节分析并展望高维贝叶斯优化的未来方向. 最后总结

全文. 

2   贝叶斯优化

f与所有优化问题类似, 贝叶斯优化的目标是找到目标函数   的最优解, 即: 

max
x∈X

f (x),

X
X f

其中,    是可行集. 与其他优化问题不同的是, 贝叶斯优化面向的优化问题具有一些特殊的限制, 具体而言, 可行集

 和目标函数   通常具有以下性质 [18].
f f(1)    的具体形式和结构未知, 即   是一个黑盒 (black box), 且一般认为函数是多峰的.
f(2)    的评估开销很高, 可能是评估次数有限 (几十次或者几百次), 或者评估时间很久 (几小时).
X x X(3)    一般是一个简单的集合, 如凸集, 使得判断点   是否包含于   中是比较容易的.

贝叶斯优化由两个组件组成, 分别是代理模型 (surrogate model)和采集函数 (acquisition function). 代理模型用

于对目标函数进行建模, 它可以给出未知点所在函数的预测值和方差. 采集函数则通过权衡预测值和方差来度量

未知点的采样价值. 最后, 采集函数的最优解即为下一个采样点. 其中, 代理模型的主要作用是提高算法的采样效

率. 算法伪代码见算法 1.

算法 1. 贝叶斯优化过程.

f , n0, N输入: 优化函数   初始采样点个数   总采样次数   ;
f输出: 函数   的最优解.
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α(x;Dn)1. 确定 GPR的先验信息, 选择采集函数   .
n0 Dn0 =

{
(x1,y1), . . . , (xn0 ,yn0 )

}
, yi = f (xi).2. 初始时采集   个样本, 即   其中 

n← n0.3.  
n ⩽ N4. while     do

Dn = {(x1,y1), . . . , (xn,yn)} ,5. 　使用数据集   构建 GPR模型.
α(x;Dn) xn+1,6. 　通过最大化采集函数   来选取下一个点   即: 

xn+1 = argmax
x∈X

α(x;Dn).

xn+1 yn+1← f (xn+1).7. 　评估   的函数值 

Dn+1←Dn∪{(xn+1,yn+1)}.8. 　更新数据集 

9. end while
DN10. 返回   中函数值最大的点

常用的代理模型包括高斯过程回归 (Gaussian process regression, GPR)[26]、随机森林 [3]、核密度估计 (kernel
density estimation)[27,28]、深度模型等 [29−31]. 由于 GPR高效的样本利用率和对不确定性良好的建模能力, 大多数贝

叶斯优化算法使用 GPR作为代理模型.
在后面章节中, 我们将在第 2.1节对 GPR进行简要介绍, 在第 2.2节对采集函数进行简要介绍. 

2.1   高斯过程回归

f (x) = x⊤w f (x) = ϕ(x)⊤w w
w w ∼ N(0,Σ) f (x)

f (x)

高斯过程回归是一种用于建模目标函数的回归模型. 它可视为线性回归或岭回归的扩展模型. 通常, 线性回归

或岭回归分别表示为   , 或者   , 其中, 参数   是一个确定的向量. GPR 则扩展这一概念, 视
参数   为随机变量 (如   ), 使得   也成为随机变量, 增强了模型的灵活性和表达能力. 另一种更为普

遍的表述形式是直接将函数值   视为随机变量, 并在函数空间中推理其形式. 接下来, 我们将介绍高斯过程的定

义及其在回归问题中的应用.
x, f (x) f

∀n,∀x1, . . . ,xn, n

定义 1. 见文献 [32]的定义 3.1. 若对于任意固定的   其函数值   是一个随机变量, 则称   是一个随机函数.
若进一步满足   元随机变量 

f = ( f (x1), . . . , f (xn))⊤

n f (x)服从   元高斯分布, 则称   为一个高斯过程.
f n

m(x) k(x,x′)

其次, GPR基于两个基本假设: (1) 目标函数   在可行域上是一个高斯过程; (2)    元高斯变量的均值和协方差

分别由均值函数   和协方差函数   来决定, 即:  E[ f (x)] := m(x)

E
[
( f (x)−m(x)) ( f (x′)−m(x′))

]
:= k(x,x′)

,

m(x) k(x,x′)其中, 均值函数   和协方差函数   通常根据先验知识由研究者手动指定.
y y = f (x)+ ϵ, ϵ

ϵ ∼ N(0,σ2).

另外, 考虑到在现实场景中观测值一般带有噪音, 因此观测值   建模为   其中   是服从高斯分布的

噪音, 即   而建模噪音还能避免 GPR过拟合. 类似地, 观测值的均值和协方差为:   E[y] = E[ f (x)]+E[ϵ] = m(x)

cov(yp,yq) = k(xp,xq)+σ2δpq

,

δpq p = q δpq = 1 δpq = 0.其中,    是 Kronecker记号, 当   时,    ; 否则 

Dn = {x1:n,y1:n} x⋆, n+1基于上述假设, 给定训练集   和测试点   有   元高斯分布:   y1:n

f (x⋆)

 ∼ N  K(x1:n,x1:n)+σ2
nI k(x1:n,x⋆)

k(x⋆,x1:n) k(x⋆,x⋆)

 .
f (x⋆)由 Sherman-Morrison-Woodbury定理 [26]得,    的后验分布为: 
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f (x⋆)|Dn,x⋆ ∼ N
(
µn(x),σ2

n(x)
)
,

其中, 

µn(x⋆) := m(x⋆)+k(x⋆,x1:n)
(
K(x1:n,x1:n)+σ2

nI
)−1

(y1:n−m(x1:n)) (1)
 

σ2
n(x⋆) := k(x⋆,x⋆)−k(x⋆,x1:n)

(
K(x1:n,x1:n)+σ2

nI
)−1

k(x1:n,x⋆) (2)

Dn x⋆ µn(x⋆) σ2
n(x⋆)综上所述, GPR可根据训练集   来预测   上的目标函数值, 其中   表示预测值均值, 而   表示预测

误差.
O(N3), O(N2).

O(MN2), M≪ N.

O(N log N), O(N).

GPR目前难以扩展到大数据场景, 这是因为其时间复杂度为   空间复杂度为   因此, 有一些工作致

力于提高 GPR的扩展性, 如稀疏高斯过程 (sparse GP)[33−35]的时间复杂度为   且   高斯-马尔可夫过

程 (Gauss-Markov processes)[36]的时间复杂度为   空间复杂度为 

k m.

GPR 的优势是能够充分利用先验信息提高样本利用率, 但若指定了错误的先验信息, 则其性能将大打折扣.
第 2.1.1节我们简要介绍如何选取先验信息: 协方差函数   与均值函数  

2.1.1    均值函数和协方差函数

建模数据之间的相关性尤为重要, 一个基本的假设是, 距离相近的两点可能有相似的函数值. 而 GPR使用协

方差函数来建模数据的相关性, 其中协方差函数满足以下性质: 

∥x−x′∥ ⩽ ∥x−x′′∥ ⇒ k(x,x′) ⩾ k(x,x′′).

此外, 协方差函数必须是半正定函数, 以保证协方差矩阵为半正定矩阵. 下面, 我们分别介绍 3种协方差函数:
平稳协方差函数、非平稳协方差函数, 以及高维协方差函数.

k(x,x′) x−x′ k(x,x′) k(x−x′).● 平稳协方差函数. 平稳协方差函数是指协方差函数   只由   决定, 即   可以简写为 

最常用的平稳协方差函数是高斯核函数, 其形式为: 

k(r) := α0 exp
(
− r2

2ℓ2

)
,

r = ∥x−x′∥2. r k(r)

ℓ k(r) r x⋆
f̂⋆ x⋆ f̂⋆ ℓ

其中,     从高斯核函数的形式可以看出, 当两个点的距离   增加时,    呈指数级下降, 即它们的协方差

(或者相关性)呈指数级下降. 此外, 超参数   越大,    随   增大下降得越缓慢. 故当 GPR预测某个点   的目标函

数值   时, 训练集中的点离   越近对预测值   的影响越大, 并且影响范围与超参数   有关.

另一个常用的协方差函数是马氏核函数 [26]: 

kMatern(r) :=
21−v

Γ(v)

 √2vr
ℓ

v

Kv

 √2vr
ℓ

 ,
v, ℓ Kv v→∞其中,    是非负的超参数,    是修改的贝塞尔函数. 马氏核函数可以看作是高斯核函数的推广, 这是因为当 

时, 马氏核函数退化为高斯核函数. 故马氏核函数可以拟合种类更丰富的代理模型.
● 非平稳协方差函数. 平稳协方差函数的一个局限是, 它使得代理模型的函数变化率在所有区域都是相同的.

实际上, 平稳协方差函数可以转化为非平稳协方差函数, 最常用的方法是作输入变换, 即: 

kwarp(x,x′) := ks(w(x),w(x′)),

w ks其中, 输入变换   为单调函数 (如贝塔分布的累积分布函数 [37]),    为平稳协方差函数.
● 高维协方差函数. 在高维空间中, 优化算法很难用有限的样本来充分探索整个空间. 因此, BOCK[38]设计圆

柱形的高维协方差函数, 旨在鼓励优化算法更多地探索可行集的中心位置而不是边界 (BOCK假设最优解在中心

附近的概率更大).
x首先, 将输入   从球内映射到圆柱中, 即: 

T (x) :=

 (∥x∥2,x/∥x∥2), if ∥x∥2 > 0

(0,aarbitrary), if ∥x∥2 = 0
,

 

T −1(r,a) := ra,
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aarbitrary其中,    是单位球中任意的向量. 该输入变换可以扩展中心附近的区域, 收缩靠近边界的区域. 圆柱协方差函

数的形式为: 

kcyl(x1,x2) := kwarp(r1,r2) · kpoly(a1,a2),

kwarp(r1,r2) kwarp w

kwarp kwarp(r1,r2) kpoly(a1,a2)

其中,    衡量数据点的半径相似性. 因为非平稳核函数   的扭曲函数   是单调非减的, 即输入越接近 0,
 越大, 所以   会鼓励算法探索原点附近的区域.    衡量数据点的角度相似性, 故 GPR的预测

方差主要取决于数据点的角度.
m(x) ≡ µ.均值函数通常定义为常量, 即   上述协方差函数的超参数以及均值函数的常量都属于 GPR模型的超

参数. 这些超参数通常可以基于训练数据确定, 方法包括最大似然估计 (maximum likelihood estimate, MLE)[18]、最

大后验估计 (maximum a posteriori, MAP)[18]以及完全贝叶斯方法 [25]. 然而, 基于数据的方法也往往使得优化方法陷

入局部最优解 [39], 故也有工作采用不基于学习的超参数调整方法 [40]. 

2.2   采集函数

µn(x)

α(x),

x

给定 GPR的后验分布, 尽管可直接选择均值   最大的点作为候选解, 但这容易使算法陷入局部最优解. 为
了权衡算法的局部搜索和全局搜索, 在采样时同时考虑均值和方差. 因此, 人们设计了不同的采集函数   以度

量点   的采样价值. 由此, 确定下一轮采样位置成为一个优化问题, 即: 

xn+1 = argmax
x∈X

α(x).

下面介绍 3 种最常用的采集函数, 分别为期望提升 (expected improvement, EI)[41]、概率提升 (probability
improvement, PI)[42]和置信度上界 (upper confidence bound, UCB)[43].

xEI的思想是考虑采样   能带来多大的提升. 提升值定义为: 

I(x) :=max{ f (x)− ymax,0},
ymax =maxy1:n I f (x) < ymax,

ymax. f (x) I(x)

其中,    表示当前训练集中最大的观测值.    总是非负的, 这是因为若   则数据集中最大的观

测值仍为   值得注意的是, 因为   是随机变量, 所以提升值   也是随机变量, 故需要求其期望值, 即: 

αEI(x) := E[I(x)] = (µn(x)− ymax)
[
1−Φ

(
ymax−µn(x)

σ(x)

)]
+σ(x)ϕ

(
ymax−µn(x)

σ(x)

)
,

Φ ϕ其中,    是标准正态分布,    是标准正态分布的密度函数.
f (x) > ymaxPI的思想与 EI类似, 但它考虑的是   的概率, 即: 

αPI(x) := Pr( f (x) > ymax) = 1−Φ
(

ymax−µn(x)
σ(x)

)
.

σn(x) µn(x)UCB 的思想是直接将误差    加入均值    中, 从而增加采样的探索性, 避免搜索算法陷入局部最优

解, 即: 

αUCB(x) := µn(x)+β1/2
n+1σn(x),

βn+1 βn+1其中,    是一个常数, 用于控制置信水平, 若   越大, 则探索性越强. 

3   高维挑战

贝叶斯优化的输入维度通常不超过 20维; 当维度过高时, 算法的性能将急剧下降. 该问题主要是由两个因素

导致 [19]: 样本距离增大导致代理模型精度下降以及高维采集函数难以优化. 

3.1   高维代理模型精度下降

X = {x1, . . . ,xn} x∗
[0,1]D, x∗ X

高维空间中的点之间的距离存在下界, 即使样本容量非常大, 也不可能用有限的样本点密集地填充可行域, 使
得代理模型仅在非常局部的空间有效. 事实上, 假设训练集   和测试点   独立同分布 (均匀分布) 地
采样自   则测试点   到训练集   的最近距离为: 

d∞(x∗,X) := E [min1⩽i⩽n∥x∗−xi∥∞] .
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该距离存在下界 (证明见文献 [44]), 即: 

d∞(x∗,X) ⩾
D

2(D+1)
· 1

n1/D
.

x∗ X σn(x∗)

如表 1所示, 当维度为 10以上时, 即使样本数量很大, 也很难让该下界逼近 0. 此外, 由公式 (2)可得, 当测试

点   远离训练集   时, 方差   增大, 故在高维下很难得到与在低维同样有效的代理模型.
 
 

d∞(x⋆,X)表 1　   的下界
 

D n = 100 n = 1000 n = 10000 n = 100000
1 d∞ ⩾ 0.0025 d∞ ⩾ 0.00025 d∞ ⩾ 0.000025 d∞ ⩾ 0.0000025
10 d∞ ⩾ 0.28 d∞ ⩾ 0.22 d∞ ⩾ 0.18 d∞ ⩾ 0.14
20 d∞ ⩾ 0.37 d∞ ⩾ 0.34 d∞ ⩾ 0.30 d∞ ⩾ 0.26

  

3.2   高维采集函数难以优化

在最大化采集函数时, 计算开销随维度增加呈指数级增长. 最大化采集函数最常用的两类方法是全局优化和

多起点的局部搜索.

O(ζ−D), ζ

全局优化以矩形切割法 (dividing rectangles, DIRECT)[45]为例, DIRECT将搜索空间划分为多个超矩形, 利用

Lipschitz连续性选择最有潜力的区域, 并继续将其划分为更小的超矩形, 重复此过程. DIRECT对采集函数的查询

次数为   其中   为误差 [46]. 可以看到 DIRECT的计算开销随维度增加而指数增长, 故它在维度不超过 10时

才表现出较好性能.

多起点的局部搜索以基于梯度的局部搜索为例, 该方法在给定起点后, 每个起始点根据梯度迭代若干步直到

收敛到局部最优解, 最终在多个局部最优解中选择最优者. 然而, 许多实际高维采集函数在大部分区域较为平坦,

只有少数区域存在尖锐的峰 [47]. 只有当起点靠近这些尖峰时, 局部搜索才能收敛至峰顶, 否则局部最优解只能停

留在平坦区域. 在高维空间中, 即使有大量起点, 也很难保证它们落在尖峰附近.

ℓ ℓ

α(x|ℓτ), ℓ

针对高维采集函数, EGP[47]提出了一种指定起点的方案, 以改善多起点局部搜索的性能. 具体而言, 当核函数

的超参数   较小时, 采集函数比较平坦; 反之, 采集函数会有明显的梯度. 另外, 采集函数在不同超参数   下的最优

解都是相近的. 因此, 设采集函数为   则 EGP首先最大化一个   足够大的采集函数, 即: 

x⋆ℓ =max
x∈X

α(x|ℓ),

ℓ > ℓτ, x⋆ℓ α(x|ℓτ).其中,    然后将   作为起点来优化采集函数  

3.3   分　类

为了克服维度诅咒, 通常需要引入额外的假设, 根据方法的假设及其特点, 我们将高维贝叶斯优化的工作分为

以下 3类.
(1) 基于有效低维度假设的方法. 这类方法假设输入空间中存在一个有效的低维子空间, 该子空间足以支持预

测目标函数值. 故这类方法设法寻找该低维子空间, 然后在子空间上进行贝叶斯优化, 从而克服维度诅咒. 然而, 有
效维度是未知的, 如何确定子空间的维度仍是开放的问题, 该限制了这类方法的应用范围.

(2) 基于加性假设的方法. 这类方法假设高维函数可分解为若干个低维函数之和. 所以, 这类方法设法将高

维变量分为若干组, 每组变量对应一个低维目标函数, 然后用贝叶斯优化来求解低维的目标函数, 从而克服维

度诅咒. 但是, 该方法的假设也限制了其应用范围. 此外, 因为加性结构是未知的, 如何确定加性结构仍是开放

问题.
(3) 基于局部搜索的方法. 这类方法不需要额外的假设. 因为充分探索高维空间是不可能的, 所以这类方法认

为应该着重探索更有潜力的局部区域. 相比于前两种方法, 这类方法的应用维度较低.
我们在表 2 中对上述高维贝叶斯优化方法的优劣势进行对比与总结.
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表 2　高维贝叶斯优化方法的优劣势对比
 

方法 优势 劣势

基于有效低维度假设的方法 能有效地优化具有低维子空间的高维函数
(1) 应用范围限制于具有低维子空间的任务
(2) 难以确定子空间的维度

基于加性假设的方法 能有效地优化具有加性结构的高维函数
(1) 应用范围限制于具有加性结构的任务
(2) 难以确定真实的加性结构

基于局部搜索的方法 不需要额外的假设, 能广泛应用于各种高维函数 应用范围限制于较低维度的任务
  

4   基于有效低维度假设的高维贝叶斯优化

X ⊂ RD这类方法假设输入空间   中存在一个有效的低维子空间, 该子空间足以预测数据的目标函数值. 基于这

一假设, 我们可以在低维子空间中执行贝叶斯优化, 从而规避维度诅咒. 具体而言, 基于有效低维度假设的方法可

概括为 3个关键步骤.
X Z x1, . . . ,xn z1, . . . ,zn(1)建立输入空间   到低维子空间   的映射, 将样本   映射为隐变量   ;

{(zi,yi)}ni=1 Z z∗(2)利用数据集   在低维子空间   中执行贝叶斯优化, 确定下一轮采样点   ;

Z X z∗ x∗, f (x∗).(3)构建从低维子空间   到输入空间   的逆映射, 将隐变量   映射为   并采样 

h X Z f Z
Y g Z X

这一过程的示意图如图 1所示. 其中,    为从输入空间   到隐空间   的变换函数,    为隐空间   到输出空间

 的回归模型,    为从隐空间   到输入空间   的重构函数.
 
 

X Z X

Y

输入变换 h 输入变换 g

回归模型 f

图 1　基于有效低维度方法的示意图
 

根据映射方法的不同, 基于有效低维度假设的方法可进一步细分为多个子类: 基于随机降维的方法、基于变

量选择的方法、基于学习的方法以及基于变分自编码器 (variational auto-encoder, VAE)降维的方法等. 

4.1   基于随机降维的方法

这类方法基于一个核心假设: 有效的低维子空间是一个线性空间. 然而, 这种假设也带来了局限性, 即这类方

法只能识别线性流形 [48]. 为了更深入地理解这一概念, 我们首先介绍有效维度的定义.

T (dimT = de), x ∈ RD f (x) = f (xT ), f : RD→ R
de (de < D). xT x T T

定义 2. 有效维度. 若存在线性子空间   使得对于所有   都有   则称函数 

具有有效维度   其中   是   在   上的投影. 子空间   则称为有效低维子空间.

T RD T T⊥ RD = T ⊕T⊥.

x ∈ RD x = xT +x⊥, xT ∈ T, x⊥ ∈ T⊥. T

f (xT +x⊥) = f (xT )

具体而言, 任一线性空间   可将输入空间   分解为   与其正交补空间   的直和, 即   于是任意

向量   可唯一地分解为   其中   而有效子空间意味着函数值只与   上的投影有关, 即
 .

T f (x) = f (xT ).

f (x) f (xT )

然而, 对于许多函数, 可能无法找到一个线性子空间   严格满足   为此, 有工作提出了一个更为灵

活的概念: ϵ-有效维度. 这一定义允许   与   存在一定误差, 具体如下.

ϵ > 0, Vϵ ⊂ RD, x ∈ RD | f (x)− f (xϵ)| ⩽ ϵ,
f : RD→ R xϵ x Vϵ

定义 3. ϵ-有效维度 [49]. 对于任意   若存在线性子空间   使得对于所有   都有 

则称函数   具有 ϵ-有效维度. 其中   是   在子空间   的投影.
满足 ϵ-有效维度的子空间可能不唯一. 我们通常希望选择维度尽可能小的子空间, 故最优的 ϵ-有效维度定义为: 

dϵ :=min
Vϵ

dim(Vϵ).

ϵ dϵ ϵ dϵ
ϵ, Vϵ .

若能容忍的误差   较小, 则   往往较大; 反之, 若   较大, 则   较小. 这一观察表明, 尽管某些函数可能不存在

严格意义上的有效维度, 但只要选取足够大的   总能找到一个满足 ϵ-有效维度的线性子空间  
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4.1.1    随机降维

在寻找上述线性子空间的过程中, 随机降维技术通常采用两种主要形式: 随机嵌入和 sketching. 这两种方法各

有特点, 为高维贝叶斯优化问题提供了不同的解决思路.
随机嵌入: REMBO (random embeddings Bayesian optimization)[23]表明通过随机矩阵即可找到上述的子空间,

而不需要进行学习, 具体如下.

de f : RD→ R A ∈ RD×d

d > de x ∈ RD, z ∈ Rd, f (x) = f (Az).

定理 1. 见 REMBO的定理 2. 给定一个有效维度为   的函数   和一个随机矩阵    (A 中的元

素独立地采样于标准正态分布且   ), 则对于任意   以 1的概率存在一个   使得 

x∗ ∈ RD, z∗ ∈ Rd f (x∗) = f (Az∗).

g(z) := f (Az).

ϵ-

这个定理的重要性在于, 它保证了对于最优值点   必然存在   使得   这使得我们可

以直接优化一个低维的函数   此外, 随机矩阵还具有 Johnson-Lindenstrauss transform性质 [50], 保证了

数据点之间的距离在高维空间上和在低维空间上是近似相等的. 对于   有效维度假设, 也有类似定理成立, 即定

理 2.

f : RD→ R A ∈ RD×d (d > de),

x ∈ RD, z ∈ Rd, | f (x)− f (Az)| ⩽ 2ϵ. A

定理 2. 见文献 [49]的引理 1. 给定一个函数   和一个随机矩阵   则以 1的概率, 对于

任意   都存在   使得   其中   中的元素独立地采样于标准正态分布.
在嵌入空间上的优化策略主要有两种: 一是像 REMBO一样直接搜索最优解, 二是不断地缩小残差 (sequential

random embeddings, SRE[49]). SRE的核心思想是将优化目标定义为: 

g(z) := f (xi+A(i)z),

A(i)其中,    是当前步骤产生的随机矩阵. 若 

zi = argmax
z

g(z),

xi+1 := xi+A(i)zi. ∥x∗−xi+1∥,则当前解更新为   此时残差则为   下一轮的优化目标则为: 

g(z) := f (xi+1+A(i+1)z).

这种方法的有效性可以通过性质 1得到支持.

S i = {A(i)z|z ∈ Rd} A(i) x∗−xi S i x̂i.性质 1. 见 SRE 的性质 1. 令   表示随机矩阵   定义的子空间, 记   在   上的投影为 

若满足: 

∥x̂i−A(i)zi∥
∥x̂i∥

⩽
1
5
∥x̂i∥
∥x∗−xi∥

,

∥x∗−xi∥ > ∥x∗−xi+1∥.则 

g(z) := f (Az)

然而, 值得注意的是, 虽然性质 1 保证了残差会不断减少, 但序列化地减少残差并不一定会比直接优化函数

 更有效.
● Sketching实现降维. 除了随机嵌入外, sketching技术也是实现降维的有效方法, 特别是它可以避免“边界问

题 (hashing-enhanced subspace BO, HeSBO[51])”, 具体如下.

1, . . . ,D

x1, . . . , xD d 1, . . . ,D

Sketching技术的作用是在一个数据流中找到出现次数最多的元素. 在这里, 下标   视为数据流, 对应的

数值   视为相应数据的频率. 现在考虑这样一个问题: 仅用   个存储单位, 找到数据流   中出现次数

最多的数据. 为了实现这一点, 首先引入两个均匀哈希函数: 

uniform hash function h : [D]→ [d],
uniform hash function σ : [D]→ {−1,1},

[D] := {1, . . . ,D}. h [D] [d] [d] h

i = j⇒ h(i) = h( j). σ [D] {−1,1} d z1:d.

j j

其中,    函数   将集合   映射到集合   中, 并且函数值在   上服从均匀分布. 又因为   是函数, 故
满足   类似地, 函数   将   映射到集合   中. 现有   个计数器, 记为   若遇到哈希值等于

 的数据, 则第   个计数器记录该数据, 即: 

z j+ = σ(i) · xi, if h(i) = j.

故对于任意计数器有: 
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z j =
∑

i:h(i)= j

σ(i) · xi, ∀ j ∈ [d].

E[σ(i)yh(i)] = xi, i σ(i)yh(i),注意到   所以第   个元素频率的估计值为   其方差为: 

Var[σ(i)zh(i)] =
1
d

D∑
j=1, j,i

x2
j .

这种用少量存储单元来统计大量数据的技术称为 sketching.
z1:d, z∗

z∗ x∗. X = [−1,1]D, Z = [−1,1]d,

基于上述讨论, HeSBO的优化过程可概括为两个步骤: (1)使用 BO优化低维变量   并得到最优解   ; (2)利
用 sketching 技术将最优解    恢复为高维数据    此外, 若可行集    则低维约束集为    故

HeSBO不会产生“边界问题”.
然而, HeSBO包含最优解的概率较低 (见文献 [52]), 其概率为: 

pH(Z∗; D,d,de) :=
d!

(d−de)!dde
.

S ∈ {0,±1}d×D

D/d

为提高包含最优解的概率, BAXUS (BO with adaptively expanding subspaces)[53]使用稀疏矩阵   作

为投影矩阵, 其中每列有且仅有一个非零元素, 每行有   个非零元素. 这时成功概率提升为: 

pB(Z∗; D,d,de) :=

de∑
i=0

(
d(1+βsmall)−D

i

)(
D−dβsmall

de− i

)
βi
smallβ

i
large(

D
de

) ,

βsmall = ⌊D/d⌋ , βlarge = ⌈D/d⌉ . limD→∞pB = pH , D pB pH .其中,    此外,    故随着   逐渐增加,    会越来越接近  

4.1.2    边界问题

Z⊂ Rd. X ⊂ RD RD.

Rd z∗, Z
z∗.

另一个亟待解决的关键问题是: 如何选择低维空间的约束集   注意到可行集   通常远小于   尽

管定理 1表明低维空间   必定包含最优解   但若约束集   太大, 优化难度将显著增加; 反之, 若约束集太小, 则
可能无法包含最优解 

Z x0 := Az0 X x0 X事实上, 若约束集   过大, 采集点   可能会落在约束集   外. 此时, 需要将   投影到凸集   上, 即: 

PX(x0) := argmin
x∈X

∥x−x0∥.

ϕ : z 7→ PX(Az), E := ϕ(Rd). E
Z ∂X

X x2, x∗2 Y
Ran(A) A AY AY1

AY2 PA(X) X Ran(A) E ϕ

因此, 实际上的重构函数为   低维空间所能覆盖的高维区域至多为   在能覆盖   的情

况下, 过大的约束集   只会导致大量冗余点映射到边界   上, 从而加大了优化难度. 这种现象称为“边界问题”,
如图 2所示. 其中, 填充的水平线是定义在   上的函数, 仅依赖于第 2个变量      是函数的最优解.    是低维空

间的约束集,    是矩阵   的列空间,    是低维约束集在高维空间的值域.   表示低维约束集选得过大, 而
 表示低维约束集选得过小.   是可行集   在   上的投影.    是低维空间在映射   下的值域.

  
1.0

0.5

0

−0.5

−3 −2 −1 0
x1

x*2 ε
pA()

x 2

1 2 3

−1.0

A2

A1

γ
ϕ

A *
Ran(A)



图 2　边界问题的示意图 [54]

 

∂X x1, {z : ϕ(z) = x1}.
kZ(z,z′)

kX(ϕ(z),ϕ(z′))

边界问题对核函数的影响可从以下几个方面观察: (1)在边界   上任取一点   其原像为   尽管

这些点在高维空间中都对应同一个点, 但低维核函数   将它们视为不同的点, 这导致贝叶斯优化会浪费采样

次数去采样这些冗余点. (2)虽然用高维点来建模核函数更为准确, 但高维核函数   会受到维度诅咒.
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∂X
Ran(A), ψ : z 7→ PA(ϕ(z)). kX(ψ(z),ψ(z′)) Ran(A)

kX(ψ(z),ψ(z′))

为了在使用高维距离来建模核函数的同时保持空间是低维的, REMBO-ϕ[55]将边界    上的点再次映射到

 即   这使得核函数   能够在使用高维距离的同时避免受到维度诅咒, 因为 

是低维子空间. 然而,    并不能有效地阻止采集函数去探索冗余区域.

de基于有效维数来选择约束集: 定理 3 阐明, 仅基于有效为数   来选择约束集, 可以使约束集包含最优解的概

率保持为一个常数.

de f : RD→ R A ∈ RD×d (d > de),

1− ϵ z⋆ ∈ Rd,

定理 3. 见 REMBO的定理 3. 给定一个有效维度为   的函数   和一个随机矩阵   则

以至少   的概率存在一个   使得: 

f (x⋆T ) = f (Az⋆)∧ ∥z⋆∥2 ⩽ (
√

de/ϵ)∥x⋆T ∥2.

X = [−1,1]D, 1− ϵ例如, 若原问题的可行集为   则根据定理 3, 至少   的概率有: 

∥z⋆∥2 ⩽ (
√

de/ϵ)∥x⋆T ∥2 ⩽ (
√

de/ϵ)
√

de.

Z (0,de/ϵ).因此, 所选择的   应确保包含球   然而, 这种方法存在一些局限性.
Z(1)若要达到很高的成功率, 则   需要变得相当大. 即便如此, 也无法确保成功概率为 1.

(2)该定理给出的上界并不是一个紧的上界.
总之, 这种方法并不能有效地解决边界问题. 尽管它提供了一个理论基础, 但难以应用于实际问题.

Z,
E,

求解最小的约束集以解决边界问题: 为解决边界问题, 理想的方法是寻找最小的约束集   同时保证其能覆盖

 即:   inf
Z⊂Rd

Vol(Z)

s.t. ϕ(Z) = E
.

U
ϕ, γ.

然而, 该问题的最优解   是一个星形集 (非凸集), 且求解过程计算成本高昂 (见文献 [54]定理 1). 故 REMBO-γ[54]

提出了一种替代方法, 不直接考虑映射   而是引入一个性质更优的映射   其核心思想包括以下几个步骤.

PA(E) ⊂ Ran(A) E PX : PA(E)→E, PA : E→ PA(E).(1)建立   与   之间的双射, 即 

BPA(E) ⊂ Rd PA(E) B⊤ : BPA(E)→ PA(E), B : PA(E)→ BPA(E).(2)构造   与   之间的双射, 即 

BPA(E) E γ : BPA(E)→E.(3)定义   到   的双射 

B Ran(A) γ其中矩阵   的行向量由   的正交基组成. 综上,    的具体形式为: 

γ(z) := PX∩P−1
A (B⊤z)(B⊤z).

Z∗ := BPA(E) E因为   和   能建立双射, 所以原优化问题可简化为: 

inf
Z⊂Rd ,γ(Z)=E

Vol(Z).

Z∗, U, Z∗该问题的解即为   它是 Zonotope (一种多面体). 相比星形集      结构更简单, 便于快速判断点是否在

其中.
以带约束的采集函数解决边界问题: ALEBO (re-examining linear embeddings BO)[52]为采集函数添加约束以解

决边界问题, 即:  max
z∈Rd

α(z)

s.t. −1 ⩽ Az ⩽ 1
,

−1 ⩽ Az ⩽ 1 X其中,    形成的环绕空间为多面体, 包含于可行集   中, 因此不会产生边界问题; 然而, 因为该环绕空间

是可行集的真子集, 所以它包含最优解的概率小于 1. 

4.2   基于变量选择的方法

h D

d Z d f Z Y g D−d

这类方法隐式地假设了有效子空间是轴对齐的, 从而允许我们直接舍弃无关维度, 保留有效的维度, 整体流程

如图 3所示. 变量的选择方式主要包括两种策略: 随机选择变量和基于梯度选择变量. 其中,    表示从   个变量中

选择   个变量,    表示   个变量形成的空间,    表示空间   到输出空间   的回归模型,    表示填充   个变量.
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选择变量 h 填充变量 g

回归模型 f

X Z X

Y

图 3　基于变量选择的示意图
 

d d

D−d

D−d

随机选择变量: DropoutUCB[46]每一轮随机选择   个维度进行贝叶斯优化, 从而避免了维度诅咒. 在得到一个 

维的最优解后, 还需要考虑如何填充其他   个变量. 一种方法是直接使用当前最优的样本作为填充值, 保证填

充值质量. 但是该方案很可能会导致算法陷入局部最优解, 为此需要加入一些扰动, 即以一个小概率从约束集中随

机采样   个值作为填充值.
这类算法的性能瓶颈在于填充算法, 这一点可从遗憾界观察到. 具体而言, 假设目标函数是 L-Lipschitz 连续

的, 算法的遗憾界为:  √
C1β

d
TγT T +2T L(D−d)+2,

C1, βT , γT , L 2T L(D−d) D−d其中,    为常数. 遗憾界的主要部分   代表丢弃   个变量带来的损失上界.
xi

∂ f /∂xi

基于梯度选择变量: VS-BO (variable selection BO)[56]基于以下观察选择变量: 目标函数关于变量   的偏导

 越大, 该变量越重要. 由于无法直接获得黑盒函数的导数, VS-BO对 GPR的均值求偏导, 即: 

∇x f ≈ IS := Ex∼Unif (X)

[
∇xµ(x|D)
σ(x|D)

]
.

d根据重要度 IS将变量从大到小排列, 选择前   个变量进行贝叶斯优化, 从而避免维度诅咒.
p(x|D), xd

D−d xD−d p(xD−d |xd,D),

VS-BO还提出一种新的填充算法: 假设样本点采样于一个多元高斯分布   当贝叶斯优化得到   后, 其
余的   个变量   采样于条件分布   这类似于演化算法 CMA-ES[57]的思想. 

4.3   基于学习的方法

f : RD→ R A ∈ Rd×D

上述方法均不基于机器学习, 本节将介绍基于学习的方法. 与随机降维类似, 这类方法也假设目标函数具有低

维结构, 即函数   可由一个行满秩矩阵   定义: 

f (x) = g(Ax) (3)

g其中,    属于一类受限的函数.
A A.

g,

将投影矩阵作为超参数: ActiveGP[58]将矩阵   视为 GPR 的超参数, 通过优化超参数求得矩阵   具体而言,
GPR旨在拟合函数   假设使用高斯核函数: 

k(u,u′) := γ2 exp
[
−1

2
(u−u′)⊤(u−u′)

]
,

则它对应高维核函数为: 

kX(x,x′) := γ2 exp
[
(x−x′)⊤A⊤A(x−x′)

]
.

A kX(x,x′) A p(y|A,X),

A p(A|y,X). A Â g(Âx)

可见矩阵   是核函数   的超参数. 假设   的先验分布服从多元高斯分布, 结合 GPR的似然分布 

利用 Laplace逼近可求得矩阵   的后验分布   采样该后验分布可得   的估计值   最后在函数   上进

行贝叶斯优化, 从而避免维度诅咒.
A

∇ f (x) = A⊤∇g(Ax). f

利用低秩矩阵恢复算法来求解 A: SI-BO (subspace identification BO)[59]将求解   转化为低秩矩阵恢复问题

(low-rank matrix recovery). 具体而言, 由链式法则和公式 (3)可得,    函数   的泰勒展开为: 

f (x+ ϵϕ) = f (x)+ ϵ⟨ϕ,∇ f (x)⟩+ ϵE(x, ϵ,φ),

ϵE(x, ϵ,ϕ) ∇ f (x) A⊤∇g(Ax)其中,    为泰勒余项. 将   替换为   可得: 

⟨ϕ,A⊤∇g(Ax)⟩ = ( f (x+ ϵϕ)− f (x))/ϵ −E(x, ϵ,ϕ).

m {(xi, fi)}mi=1当有   个样本   时, 上式可向量化为: 
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y = Φ(X)+E(X, ϵ,Φ),yi = (1/ϵ)
m∑

j=1

[
f (x j+ ϵϕi j)− f (x j)

]
(4)

X := A⊤G, G :=
[∇g(Ax1), . . . ,∇g(Axm)

]
. X̂, Â = SVD(X̂)

g(Âx)

其中,    公式 (4)是一个低秩矩阵恢复问题, 若其解为   则   即为

所求. 最后在函数   上进行贝叶斯优化, 从而避免维度诅咒.

A, g(Ax)KSIR-BO[60]使用逆向回归方法 (sliced inverse regression, SIR)[61]来求得投影矩阵   然后在函数   上进行

优化, 从而避免维度诅咒.
MGPC-BO[62]则使用神经网络寻找低维子空间, 因为神经网络的逆映射是未知的, 所以其逆映射通过多输出

GPR[63]学习. 这样, 在低维子空间上搜索到的最优解通过多输出 GPR重构. 

4.4   基于 VAE 降维的方法

在优化现实中的对象 (如分子结构、拓扑结构或表达式) 时, 这些对象通常缺乏直接的数值表示. 因此, 需要

首先对其进行编码, 然后才能进行优化. VAE-BO是一类专门用于优化离散结构化对象的贝叶斯优化方法.
优化过程: 以分子设计为例, 其目标是发现具有更优化学属性的新分子, 即: 

max
m∈M

f (m),

f :M→ R M
M m ∈M.

其中,    是形式未知的目标函数,    表示所有分子组成的集合. 这类优化问题面临两个主要挑战: (1) 可
行集   是离散的, 这使得我们很难产生一个候选解   (2)目标函数是黑盒的且评估代价高昂, 这是因为评估

分子的化学属性需要进行湿实验或者耗时一天的计算机模拟 [64].

Enc :M→ RD Dec : RD→M,

Dec(Enc(m)) ≈ m, ∀m ∈M.

CVAE (character variational autoencoder)[9]结合 VAE与 BO以解决上述两个问题. 对于第 1个问题, CVAE将

离散问题转换为连续问题. 具体而言, 训练一个 VAE, 包括编码器    和解码器    使得

 这样, 优化问题转换为: 

max
z∈RD

f (Dec(z)).

{Enc(mi),yi)}ni=1 zn+1 mn+1 = Dec(zn+1)

yn+1 = f (mn+1).

第 2 个问题则通过 BO 来解决, 因为 BO 是一种样本利用率高的黑盒优化技术. 具体而言, (1) 使用训练集

 来构建 GPR模型; (2)通过最大化采集函数得到候选点   ; (3)生成新分子   ; (4)评

估新分子的化学属性 

EncS :M→ Σ∗,
DecS : Σ∗→M,

EncC : Σ∗→ RD, DecC : RD→ Σ∗.
(EncS ,DecS ) (EncC ,DecC)

g :Z→Y

编码与解码过程: (1)基于 SMILES表示法, 将分子结构编码为字符串   同时 SMILES字符串也

可以解码为相应的分子   (2)字符自动编码器 (character variational autoencoder)将 SMILES字符串

编码成低维的向量   以及将低维向量解码为 SMILES字符串   整体结构如图 4所示.
其中,    分别为 SMILES 编码器与解码器,    分别为 CVAE 的编码器和解码器. 回归模型

 用于建模目标函数.
 
 

X Z X

Y

编码器 解码器

回归模型 g

EncC ° DecS DecC ° DecS

图 4　VAE-BO的示意图
  

4.4.1    “死区”

Z尽管 CVAE在优化结构化对象方面取得了显著进展, 但仍存在一些挑战. 其中最突出的问题是隐空间   中存

在“死区”——这些区域中的点解码后会产生无效的分子结构. 若 BO 的采集函数选择了“死区”中的点, 这些点解

码后会产生无效解. 文献 [65]总结了隐空间中出现“死区”的 3种情况.

Z p(z),(1) VAE会在隐空间   上有一个先验分布   那些概率很低的点很可能是无效解.
(2) 隐空间维度较高时, 更容易产生“死区”.
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(3) 当训练数据不均匀时, 原数据空间中的欠采样区域映射到隐空间后往往会变成“死区”.

Z
带约束的采集函数: 为解决“死区”问题, 文献 [65]额外训练一个二分类网络, 以隐空间的变量为输入, 输出隐

变量成功解码的概率. 这将隐空间   上的优化问题转化为一个带约束的优化问题: 

max
z∈Z

f (z), s.t. Pr(C(z)) ⩾ 1−δ,

f (z) Pr(C(z)) z 1−δ其中,    是目标函数,    表示点   成功解码的概率 (由二分类网络给出),    表示可接受的成功概率下界.
在贝叶斯优化中, 通过带约束的采集函数来实现这种带约束优化: 

EIC(z) :=
{

Pr(C(z))EI(z), if ∃z,Pr(C(z)) ⩾ 1−δ
Pr(C(z)), otherwise .

Z Z
EI(z)

若隐空间   不存在满足约束的点, 则 EIC函数的最优解为解码成功率最高的点; 若隐空间   存在满足约束的

点, 则 EIC同时考虑提升值   和解码成功率的大小.
尽管带约束的采集函数降低了采样“死区”的概率, 但二分类网络的训练仍然依赖于实际解码和测试结果, 这

使得该方法难以与现实场景完全解耦.
使用编译文法来约束解码过程: GVAE (grammar VAE)[66]开发一种基于 SMILES 字符串的上下文无关文法

(context-free grammar, CFG), CFG用于引导 VAE始终生成有效的 SMILES字符串. 具体而言, CFG将 SMILES字

符串映射为解析序列 (或解析树), VAE 则对解析序列进行编码和解码, 其中解码器只生成合乎文法的解析序列.
整个模型的编码器和解码器分解为:  Enc = EncS ◦EncN

Dec = DecN ◦DecS
,

EncS DecS EncN DecN其中,    和   分别将分子编码为 SMILES字符串以及将 SMILES字符串解码为分子,    和   分别将

SMILES字符串编码为解析序列以及将解析序列解码为 SMILES字符串.
类似地, SD-VAE (syntax-directed VAE)[67]开发一种基于 SMILES字符串的属性文法. 属性文法在 CFG的基础

上增加了语义信息, 使得解码器能够考虑语义约束.
然而, 使用编译文法也带来了新的局限性. 这些方法假设 SMILES字符串是合乎上下文无关文法的, 但实际上

并非如此, 这限制了方法的适用范围.

[zG,zT ] zT

使用图来约束解码过程: JT-VAE (junction tree, VAE)[68]使用连接树 (junction tree)来表示分子, 其主要流程分

为 3步: (1)将分子表示为图, 再将图分解为连接树, 每个树节点为图中的一个最大团. JT-VAE分别将图和连接树

编码为   ; (2)解码时,    会生成一棵连接树, 其中树节点解码为分子片段; (3)最后枚举这些片段有效的组合

方式, 从而保证生成有效的分子.
但 JT-VAE存在一些局限性: (1)网络结构复杂, 导致训练开销大; (2)只能表征片段之间的连接, 无法表征原

子间的连接.
MHG-VAE (molecular hypergraph grammar VAE)[64]针对 JT-VAE的不足, 基于简单的 GVAE开发一种图文法

(molecular hypergraph grammar, MHG)来编码化学约束. 这使得 VAE能够表征原子间的连接, 并引导 VAE始终生

成有效分子. 具体而言, (1) MHG-VAE将分子建模为超图, 其中原子建模为超边, 共价键建模为节点; (2)图文法的

作用类似于编译文法, 将超图映射为解析树 (或解析序列); (3) GVAE对解析序列进行编码和解码. 整个模型的编

码器和解码器可分解为:  Enc = EncH ◦EncG ◦EncN

Dec = DecN ◦DecG ◦DecH
,

EncH DecH EncG DecG

EncN DecN DecN

其中,    和   分别将分子编码为超图以及将超图解码为分子,    和   基于图文法分别将超图编码为

解析序列以及将解析序列解码为超图,    和   构成 GVAE, 其中   始终生成有效的解析序列.
与场景解耦的方法: 上述缓解“死区”的方法往往都与场景强耦合, 为了实现更通用的解决方案, 一些研究提出

了与场景解耦的方法, 如 COLD (constrained optimization with latent distribution)[69]和 BVAE (Bayesian VAE)[70]. 然
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而, 这些方法的局限在于其解码的成功率不高.

η Z = {z : p(z) > η},

COLD 在隐空间上采样与训练集相似的点, 这是因为与训练集相似的数据更可能是有效的数据. 具体而言,
VAE 的隐空间可视为一个混合高斯模型 (GMM), 高概率密度区域的点更有可能产生与训练集相似的样本, 所以

COLD设置一个阈值   来构建一个可行集   并在该可行集上执行优化.
p∗,

x∗ p∗, x∗ x∗
BVAE将“死区”问题归因于“分布外 (out of distribution, OoD)”的数据. 假设训练数据服从某个分布   若某个

数据点   也服从分布   则称   是“分布内 (in-distribution)”, 否则称   是 OoD. 类似地, 在 VAE的隐空间上, 若候

选点是 OoD数据, 这时解码器大概率生成一个错误的结果, 且具有高置信度. 而 BVAE认为, 使用MLE来确定超

参数导致生成模型对预测结果过于自信 (尤其对 OoD数据). 因此, BVAE使用全贝叶斯法来确定超参数, 以提高

模型的鲁棒性, 即: 

p(x|D) =
∫

p(x|D, θ)p(θ|D)dθ.
 

4.4.2    利用标签信息来构建隐空间

除了上述的“死区”问题, CVAE还面临另一个挑战: 作为无监督降维方法, CVAE未能充分利用样本的标签信

息. 以下简要介绍几种利用有标签数据构建更适合优化任务的隐空间的方法.
pΘ(y|z)

p(x,y|z), g :Z→Y.
半监督 VAE-BO: VAE-guided-BO[71]提出一种半监督的 VAE, 通过增加一个解码器   来推断条件分布

 从而更容易构建回归模型   具体如下.

X pΨ(x). log pΨ(x)

无监督的 VAE 图模型如图 5(a) 所示, 其中, 实线表示生成模型, 虚线表示后验分布的变分逼近. 其学习目标

是最大化重建   的概率   因为   有下确界: 

log pΨ(x) ⩾ Ez∼qΦ(z|x)
[
log pΨ(x|z)

]−DKL (qΦ(z|x) ∥ p(z)) .

故损失函数为: 

Lu := −Ez∼qΦ(z|x)
[
log pΨ(x|z)

]
+DKL (qΦ(z|x) ∥ p(z)) .

  

X Z X

Y

解码器 pΘ(y|z)

解码器 pΨ(x|z)编码器 qΦ(z|x)

(a) 无监督 VAE 的概率图模型 (b) 半监督 VAE 的概率图模型

X Z X
解码器 pΨ(x|z)编码器 qΦ(z|x)

图 5　无监督 VAE和半监督 VAE的概率图模型
 

Z→Y
X,Y p(x,y). log p(x,y)

半监督 VAE 图模型如图 5(b) 所示, 新增的实线   表示似然分布. 其学习目标更改为最大化同时重建

 的概率   类似地, 因为   有下确界: 

log p(x,y) ⩾ Ez∼qΦ(z|x)
[
log pΨ(x|z)+ log pΘ(y|z)

]−DKL (qΦ(z|x) ∥ p(z)) .

故有标签数据的损失函数为: 

Lℓ := −Ez∼qΦ(z|x)
[
log pΨ(x|z)+ log pΘ(y|z)

]
+DKL (qΦ(z|x) ∥ p(z)) .

Lu+Lℓ.因此, 半监督学习的损失函数为 

“加权再训练”[72]: 该方法认为原始 VAE-BO有两个不足.
(1) 生成模型的学习目标与优化目标不匹配, 生成模型的学习目标是使隐空间上的先验分布尽可能接近原数

据的分布, 而优化目标是在隐空间中找到最优值点. 若训练数据的目标函数值不高, 隐空间中可行域通常只包含次

优解, 最优解可能不在可行域中.
(2) 生成模型未充分利用新采样点的信息, 而新采样点可能比其他点更靠近最优解.
针对这些不足, 该方法对训练数据进行加权, 目标函数值越高的数据拥有更高的权值, 故损失函数为:  ∑

xi∈D
wiL(xi),

其中, 训练数据的权值定义为: 
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w(x;D,k) ∝ 1/
(
kN + rank f ,D(x)

)
, where rank f ,D(x) = |{xi : f (xi) > f (x),xi ∈ D}| .

从而隐空间会向更有潜力的区域扩展. 此外, 每次采样新样本后, VAE再训练一次, 以充分利用新样本信息.
“可判别”的隐空间: 在分类任务中, 所谓“可判别”隐空间要使得同类样本在隐空间上距离较小, 异类样本在隐

空间上距离较大, 从而更适合下游的分类任务. 在优化场景下, 同类样本指函数值相近的样本, 而异类样本指函数

值相差较大的样本, 即: 

D+ := {x+ ∈ D : | f (x)− f (x+)| < η} , D− := {x− ∈ D : | f (x)− f (x−)| ⩾ η} .
T-LBO (triplet latent BO)[10]引入深度度量学习, 来构建“可判别”的隐空间, 使其更适合下游优化任务. 

4.5   其　他

在直线上执行贝叶斯优化: 针对高维采集函数难以优化的问题, LineBO[73]在定义域中选择一条直线, 在该直

线上搜索采集函数的最优解. 具体而言, 仿射子空间 (直线)定义为: 

L(x,d) := {x+αd : α ∈ R}∩X,
x ∈ X d ∈ RD其中,    为偏移量,    为方向, 则最大化采集函数表示为: 

max
x∈L(x⋆t ,dt)

α(x|Dt).

t x⋆t
∇xµ(x⋆t ).

通常选择前   轮的最优解   作为偏移量, 而方向的选择方式有 3种策略: 随机地选择一个方向; 选择一个与坐

标轴对齐的方向; 选择当前最优解的梯度方向 

X稀疏化核函数以避免维度诅咒: SAASBO (sparse axis-aligned subspaces)[74]基于一个关键假设: 输入空间   中

的各维度是相关的且具有层次结构, 比如某些维度是重要的特征, 另一些维度是中等重要特征, 其余则为不重要的

特征. SAASBO 精心设计核函数超参数的先验分布, 使核函数各维度变得稀疏, 从而使大部分维度成为不重要特

征, 具体如下.
SAASBO的径向核函数的形式为: 

kη(x,y) := σ2
k exp

−1
2

D∑
i=1

ρi(xi− yi)2

 ,
σ2

k ∼ LN(0,100), ρi ∼HC(τ), τ ∼HC(α). LN HC
ρi

ρi

其中, 超参数的先验分布为   其中   表示对数正态分布,    表示半柯西

分布. 柯西分布和正态分布形状相似, 都是中间高, 两边低, 左右对称, 故   的取值集中在 0附近, 这导致大部分维

度对核函数贡献很小; 另一方面, 与正态分布的细尾不同, 柯西分布具有粗尾特性, 使   有不小概率逃离 0, 从而使

对应维度成为重要特征. 最后结合样本信息, 通过最大化后验估计来确定超参数: 

η̂ = argmax
η

Pr(y|X,η)p(η).

ρi kη(x,y)那些   逃离 0的维度构成一个轴对齐的子空间, 采集函数是关于   的函数, 因此会倾向于探索这样的轴

对齐子空间, 从而避免维度诅咒.
根据以上讨论, 我们总结基于有效低维度假设方法的优缺点, 如表 3所示. 

 

表 3　基于有效低维度假设的方法小结
 

类别 代表工作 特点 不足

基于随机
降维的
方法

REMBO
假设目标函数存在有效维度, 使用随机矩阵将高维空间映射
到低维子空间

低维结构仅限于线性流形; 存在边
界问题

SRE 放松了有效维度假设 仍然存在边界问题

REMBO-ϕ 提出更健壮的核函数以缓解边界问题 未完全解决边界问题

REMBO-γ 求解最小的低维约束集以解决边界问题 增加了计算开销

ALEBO 使用带约束的采集函数解决边界问题 低维可行集不一定包含最优解

HeSBO 使用count-sketch实现降维, 且不会产生边界问题 子空间包含最优解的概率低

BAXUS 使用稀疏矩阵来实现降维, 以提高子空间包含最优解的概率 －
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5   基于加性假设的高维贝叶斯优化

f为避免维度诅咒, 一些方法引入了加性假设, 这一假设指目标函数   可分解为加性形式.
假设 1. 加性假设, 见 Add-GP-UCB[19]的定理 1. 

f (x) = f (1)(x(1))+ . . .+ f (M)(x(M)),

x(i) x x(i)∩x( j) = ∅,∀i, j.其中,    是向量   某些维度的集合, 且每个变量至多出现在一个集合中, 即 

M f (i)(x(i)), M x(i)
⋆

x⋆.

基于加性假设, 我们可分别优化   个低维函数   从而避免维度诅咒. 最终, 拼接   个函数的最优解 

即可得高维函数的最优解 

以下简要介绍如何基于加性假设来构建 GPR, 以及如何对高维变量进行分组. 

5.1   加性高斯过程回归

M M f (i),基于加性假设, Add-GP-UCB用   个的 GPR分别拟合   个低维的函数   即: 

f (i) ∼ GP
(
m(i)(x(i)),k(i)(x(i),x(i)′ )

)
.

f根据文献 [19]的观察 1, 这等价于一个高维 GPR拟合高维函数   : 

f ∼ GP (m(x),k(x,x′)) (5)

其中, 

m(x) =
∑

i
m(i)(x(i)), k(x,x′) =

∑
i
k(i)(x(i),x(i)′ ).

基于加性假设, 采集函数也是加性函数, 以 UCB为例, 

αUCB(x) =
∑

i

µ(i)
n (x(i))+β1/2

n+1σ
(i)
n (x(i)).

M M x(i)
n+1 xn+1.

M M

优化采集函数时, 可分别优化   个低维采集函数, 并拼接   个函数的最优解   即可得下一个采样点 

关于如何选择   个均值函数和   个核函数以及如何确定超参数, 这些方法与原始 GPR相同.

表 3    基于有效低维度假设的方法小结 (续) 
类别 代表工作 特点 不足

基于变量
选择的
方法

DropoutUCB 随机地从D个变量中选择d个变量
性能受限于填充策略, 而最优填充
测略尚不明确

VS-BO 基于梯度大小选择d个变量, 并提出新的填充策略 未改善DropoutUCB的遗憾界

基于学习
的方法

ActiveGP
将线性嵌入作为超参数的一部分, 使用Laplace逼近求解超参
数

计算开销随维度增加而平方增大

SI-BO 利用低秩矩阵恢复算法求解投影矩阵 －

KSIR-BO 将KSIR与BO结合, 其中KSIR是有监督的非线性降维方法 BO数据分布不满足KSIR的假设

MGPC-BO
利用神经网络实现非线性的输入映射, 通过多输出GPR构造
逆映射

需要大量数据以确保学习结果准确

VAE-BO

CVAE 利用VAE实现非线性输入映射以及输出映射
未充分利用数据的标签信息; 候选
点解码失败概率高

GVAE和 SD-VAE 结合上下文无关文法提高候选点的解码成功概率
并非所有SMILES字符串都符合上
下文无关文法

JT-VAE
和MHG-VAE

结合图来约束解码过程, 以提高候选点的解码成功概率 增加了模型复杂度

COLD和BVAE 缓解“死区”问题, 并与实际场景解耦 解码成功率低于场景耦合的方法

VAE-guided-BO
和T-LBO

利用标签信息构建更适合优化的隐空间 未缓解“死区”问题

其他
LineBO 只在某直线上优化采集函数, 以降低采集函数的优化开销 收敛速度慢

SAASBO 稀疏化核函数以避免维度诅咒 计算开销大
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x D M

Md

Md

然而, 仍有一个问题需要解决: 如何将   中的   个变量分配进   个集合里面. 一个分配方案的优劣可通过似

然概率来评估: 优秀的分配方案更利于 GPR的拟合, 故 GPR的似然概率更高. 尽管如此, 要在   种分配方案中选

择最优者仍是一个挑战. 比如 Add-GP-UCB仅在   个分配方案中随机选择若干个候选方案, 在候选方案中选择

似然概率最大的方案. 显然, 这无法保证得到的分配方案是足够好的.
上述分配问题是一个组合优化问题 (属于 NP难问题), 为了高效地优化该问题, 通常需要引入一些特殊结构,

将该问题转化为连续优化问题. 

5.2   基于 MCMC 采样分组方案

G, G p(G),

Add-BO-MH[75]首先给每个分组方案赋予一个先验分布, 结合 GPR的似然分布, 最后得到每个分组的后验分

布, 所需的方案则从该后验分布中采样. 具体而言, 假设所有方案组成集合   给定   一个先验分布   由贝叶斯

定理, 每个分组的后验概率为: 

p(gi|D) =
p(y|X,gi)p(gi)∑

j
p(y|X,g j)p(g j)

.

该后验概率可量化集合中每个方案对数据的解释能力. 然而, 穷举所有方案的后验概率在计算上是不可行的,
故使用马氏链蒙特卡罗 (Markov chain Monte Carlo, MCMC)方法来采样后验分布.

{g0,g1, . . .}, gt gt+1.

基于MCMC采样后验分布: 这里选用的MCMC方法是Metropolis-Hastings (简称MH算法)[76]. MCMC方法

的核心是构造适当的马氏链, 使其平稳分布为待采样的后验分布. 而MH算法的主要任务是生成满足上述要求的

马氏链   即给定方案   下, 转移到下一个方案   MH算法的构造过程如下.

q(·|gt).(1) 构造合适的建议分布 (proposal distribution)  

q(·|gt) g′. 1/2(2) 从   产生下一个方案   具体而言, 分别以   的概率选择“拆分”或“合并”操作. 若选择“拆分”, 则随机

选择一组变量, 将其平分为两组. 若选择“合并”, 则随机选择两组变量, 将其合并为一组.

g′, g′, gt+1 = g′; gt+1 = g′.(3) 按一定的概率接受   若接受   则令   否则令   其中接受概率定义为: 

A(g′|gt) :=min
(
1,

p(y|X,g′)q(gt |g′)
p(y|X,gt)q(g′|gt)

)
.

 

5.3   基于 Dirichlet 过程的分组方法

D M D i

θi. z j = i j i Pr(z j = i) = θi. M

(n1, . . . ,nM)

Add-BO-SKL[77]假设分组方案采样自多项分布, 则后验分布为 Dirichlet分布, 而所需的方案从该 Dirichlet分
布中采样. 具体而言,    个变量被分配到   个集合可视为   次独立重复试验, 每次试验中变量被分配到第   组的

概率为   用随机变量   来表示第   维变量被分配第   个集合, 则   根据假设,    个集合的元素数量

 满足多项分布: 

(n1, . . . ,nM) ∼ Multi(θ1, . . . , θM),

n1+ . . .+nM = D. θ

θ

其中,    由于 Dirichlet 分布是多项分布的共轭先验 (即当   的先验分布是 Dirichlet 分布时, 其后验

分布也是 Dirichlet分布), 为简化计算, 令多元变量   的先验分布为 Dirichlet分布, 即: 

(θ1, . . . , θM) ∼ DIR(α1, . . . ,αM).

DIR(α1+n1, . . . ,αM +nM) = D.可得后验分布   最后对后验分布进行采样即可得所需的方案, 在实践中, 通常使

用MCMC方法采样后验分布. 整体结构如图 6所示. 其中, η是核函数的超参数, z控制输入空间的分解.

 
 

α θ z d f y

xη

图 6　GPR的图模型 [77]
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5.4   基于概率图模型的分组方法

x(i)∩x( j) = ∅,∀i, j.以上分组方法都假设每一维度的变量至多出现在一个集合中, 即    G-Add-GP-UCB (graph
Add-GP-UCB)[78]放松了该假设, 允许一个变量可以同时出现在不同的集合中.

假设 2. 扩展的加性假设: 

f (x) = f (1)(x(1))+ . . .+ f (M)(x(M)),

x(i) x x(i)∩x( j) , ∅,∃i, j.其中,    是向量   某些维度的集合, 一个变量可以同时出现在不同的集合中, 即 

G-Add-GP-UCB的核心思想是将相关变量放入同一个集合, 从而将变量分配问题转化为检测变量间相关性的

问题. 为此, 该方法使用图模型来建模变量间的关系: 变量建模为顶点, 变量间的相关性用边来表示, 变量集合对应

图中的最大团 (maximal clique).
Z zi j = 1 xi x j zi j = 0 zi j

zi j p(zi j|Dn). zi j

使用邻接矩阵   来表示图,    表示变量   和   相关,    则两变量无关. 选择伯努利分布作为   的先

验, 结合 GPR的似然分布, 可得   的后验分布   最终利用MCMC方法采样后验分布即可确定   的取值.
此外, 采集函数是每个低维采集函数的总和: 

α(x) =
M∑

i=1

α(i)(x(i)).

然而, 集合之间存在部分重叠变量, 因此不能独立地优化各个低维采集函数. 为此, G-Add-GP-UCB使用消息

传递算法来优化采集函数.

zi j zi j = 1,

zi j = 0,

值得注意的是, 消息传递算法的计算开销随最大团增大而指数级增长. 为降低其计算开销, Tree-GP-UCB[79]使

用树模型来建模变量间的关系, 以简化图模型. 具体而言, 每次从后验分布采样邻接矩阵   时, 若   则检查新

增的边是否形成回路, 若形成回路则令   以保证图模型始终是一棵树. 

5.5   基于随机分组的方法

以上分组方法都基于学习, 它们容易为局部分解结构所误导, 而这种局部的分解结构往往难以推广到全局. 为
此, RDUCB (random decompositions UCB)[80]提出一种数据无关的分组方法, 其核心是构建一棵随机树作为分解结

构. 该随机分组方法不仅克服了前述缺陷, 还提供了更为可靠的理论保证, 即可分析的遗憾界. 具体而言, 分解结构

所引入的错配误差定义为: 

ϵt :=min ft∈Ht | ft − f |∞,

Ht kgt (x,x′) gt t其中,     是    的再生希尔伯特空间,     是第    轮的分解结构. 在随机分组方法中, 这种错配误差存在上

界, 即: 

E

 T∑
t=1

ϵt

 < TM
(
1− 2E

D(D−1)

)
,

M :=
∑

c
| fc|∞, E其中,       为树的边数. 相比之下, 基于学习的分组方法难以确定错配误差的上界.

 

5.6   其他方法

投影加性假设: “投影加性假设”推广了“加性假设”, 即: 

f (x) = f (1)(W(1)x)+ f (2)(W(2)x)+ . . .+ f (M)(W(M)x),

W(i) ∈ Rd×D, W = [W(1), . . . ,W(M)] ∈ RD×D W = I其中,    是投影矩阵. 当投影矩阵   时, “投影加性假设”便退化为“加性假

设”, 故“加性假设”可视为“投影加性假设”的特例.
Z =WX.

W

在处理流程上, RPP-GP-UCB (restricted projection pursuit GP-UCB)[81]引入了输入变换   除此之外, 其
余步骤与 Add-GP-UCB 保持一致. 而投影矩阵   则通过以下方法求解: 将投影矩阵视为 GPR 模型的超参数, 由
EM算法优化超参数即可得投影矩阵 [82].

根据以上讨论, 我们对基于加性假设的方法的优缺点总结如表 4所示.
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表 4　基于加性假设方法的小结
 

代表工作 特点 不足

Add-GP-UCB 提出加性结构的GPR模型 未能充分优化分组方案

Add-BO-MH
令分组方案服从一个先验分布, 结合GPR模型的似然分布, 构
建后验分布, 并用MH算法采样该后验分布

要预先定义方案子集; 有效性验证仅限于
10维以下的问题空间

Add-BO-SKL
假设分组方案服从多项分布, 构建Dirichlet后验分布, 并用Gibss
算法采样该后验分布

采用多项分布作为先验, 忽略了变量间的
相关性

G-Add-GP-UCB
扩展了加性假设, 允许分组间存在重叠变量, 并引入概率图模
型刻画变量间的关系

优化采集函数的计算开销大

Tree-GP-UCB 为降低优化采集函数的开销, 引入树结构建模变量间的关系
分组方法受局部分解结构所误导, 容易陷
入局部次优解

RDUCB
为避免受局部分解结构误导, 提出随机分组方法, 并推导出可
分析的遗憾界

－

RPP-GP-UCB 扩展了加性假设, 引入投影加性假设 引入过多假设, 难以应用于现实问题
  

6   基于局部搜索的高维贝叶斯优化

与以上方法不同, 基于局部搜索的方法无需要引入额外假设, 它们建立在两个关键观察之上: (1) GPR中的平

稳核函数使得代理模型的函数变化率在所有区域保持一致; (2) 采集函数过度探索整个高维空间. 基于这些观察,

此类方法专注于采样最有潜力的局部区域. 

6.1   基于信任域的贝叶斯优化

基于信任域的贝叶斯优化 (trust-region BO, TuRBO)[24]将上述局部区域称为信任域 (trust region, TR), 并自适

应地调整其大小. 具体而言, TR呈超矩形, 其调整要平衡两个方面因素: (1) TR应该足够大以包含优质解; (2) TR

也应适度小以确保代理模型的有效性. 故在优化过程中若发现更优解, 则扩充 TR, 反之则缩小 TR.

m fℓ ∼ GP(t)
ℓ (µℓ(x),kℓ(x,x′)), ℓ ℓ

t t

TRℓ TRℓ TR′ℓ,

TR′ℓ

TuRBO 同时维持   个 TR, 每个 TR 构建独立的代理模型, 即   其中下标   表示第   个

TR, 上标   表示第   次迭代. 这允许不同区域使用不同代理模型, 实现了异构的代理模型. 此外, 采集函数限制在各

个 TR中, 有效避免了过度探索. 具体而言, 首先将   离散化: 从   中随机选择若干个点, 记为   然后根据采

集函数从   中选择候选点, 即: 

x(t)
i = argmax

ℓ

argmax
x∈TR′ℓ

α(x).

q x(t)
i , i = 1, . . . ,q.重复此过程 q次, 即可得   个候选点 

基于信任域的方法不仅适用于连续输入空间, 也可扩展到混合的输入空间 [83] (即某些维度的变量为离散型).

这是因为 TuRBO在最大化采集函数时会离散化为 TR, 使其同样适用于离散空间. 

6.2   基于划分搜索空间的贝叶斯优化

X,
TuRBO构建了多个局部模型, 而未分割整个搜索空间, 这导致局部区域之间存在未考虑的区域. 相比之下, 以

下方法则考虑划分搜索空间    并集中采样最有潜力的区域. 例如, BaMSOO 将搜索空间划分为若干超矩形,

VOOT将搜索空间划分为 Voronoi图, LA-MTCS则更灵活地将搜索空间划分为不规则区域.

X,
k h m {(h+1,km+ i)}0⩽i<k−1. Xh,m

k

层次地将搜索空间划分为超矩形: DOO (deterministic optimistic optimization)[84]和 SOO (simultaneous
optimistic optimization)[84]层次地分割可行集   若将局部区域视为节点, 则层次分割过程相当于构建一棵树. 具体

而言, 每个节点有   个子节点, 比如第   层第   个节点的子节点为   这意味着区域   被等分为

 个区域: 

{Xh+1,km+i : 0 ⩽ i < k−1}.

ℓ f (x∗)− f (x) ⩽ ℓ(x,x∗). Xh,mDOO假设存在一个半度量   使得   局部区域   的半径定义为: 
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δ(h,m) := supxℓ(xh,m,x).

xh,m Xh,m f (xh,m)+δ(h,m)其中,    是   的中点. 在每次扩展叶节点时, 选择   最大的叶节点: 

xh⋆ ,m⋆
= argmax

(h,m)∈Lea f
f (xh,m)+δ(h,m),

δ(h,m)其中,    量化该区域的探索价值, 从而权衡“探索”与“利用”.
ℓ

f (xh,m)

f (xh,m)

SOO放松了 DOO的假设, 它仅假设半度量   存在而无需知道其具体形式, 也无需定义局部区域半径. 为权衡

“探索”与“利用”, SOO在每轮遍历树时, 一层至多扩展一个叶节点, 且该叶节点的值   要大于比同层和浅层的

所有叶节点. 故一个叶节点被选中的情况有两种: (1)当浅层和同层已没有其他叶节点时, 该叶节点将被选中, 这体

现了“探索”; (2)该叶节点的值   大于同层和浅层的所有叶节点, 这体现了“利用”.

(h,m)

BaMSOO (Bayesian multi-scale optimistic optimization)[85]通过在 SOO的基础上引入 GPR模型. 与 SOO相比,
它降低了采样复杂度; 与 BO相比, 它无需最大化采集函数. 尤其对于传统 BO, 其收敛性需要假设总能找到采集函

数的最优解, 而 BaMSOO的收敛则不需要该假设. 具体而言, 当扩展叶节点   时, 其子节点的值定义为: 

g(xh+1,km+i) :=

 f (xh+1,km+i), if UCB(xh+1,km+i) > fmax

LCB(xh+1,km+i), otherwise
.

不像 SOO 会采样所有子节点, BaMSOO 只采样 UCB大于当前最优值的节点, 其他子节点则用 LCB作为标

记, 从而降低了采样复杂度以及确保候选解的 UCB单调上升.

ℓ,

f (xh,m)

与 BaMSOO类似, IMGPO (infinite-metric GP optimization)[86]也在 SOO上增加 GPR模型, 但它利用 UCB来

估计半度量   以达到指数级遗憾界, 而 BaMSOO的遗憾界为多项式级. 具体而言, IMGPO扩展叶子节点要同时满

足两个条件: (1)该叶节点的值   大于同层和浅层的所有叶节点; (2)该叶节点的 UCB大于深层的叶节点.
将搜索空间划分为不规则区域: VOOT (Voronoi optimistic optimization)[87]利用已有样本构建 Voronoi图, 然后

集中采样当前最优解所在的区域, 从而得到新的候选解.
LA-MTCS[88]则使用 SVM分类器构建不规则的局部区域, 并基于 UCB选择局部区域, 以权衡“探索”与“利用”.

具体步骤如下.
(1) 初始化. 开始时, 根据“划分操作”和已有样本构建一棵蒙特卡洛搜索树. 然后根据“选择操作”选择一个叶

节点, 并在该叶节点所代表的局部区域内进行贝叶斯优化.
(2) 划分操作. 当划分一个叶节点时, 首先在该叶节点代表的区域中聚类, 将样本划分为好坏两簇, 然后训练

SVM分类器, 从而二分该区域, 并生成两个子节点分别代表两个更小的区域.
(3) 选择操作. 类似于多臂赌博机 (multi-arm bandits)[89]问题, 从根节点开始, 计算其子节点的 UCB并选择较大

的节点, 然后从该节点开始, 继续重复上述操作直到叶节点为止.
然而, VOOT和 LA-MTCS更灵活的划分方式也使其缺乏遗憾界, 即缺乏收敛性保证.
根据以上讨论, 我们总结了基于局部搜索方法的优缺点, 如表 5所示.

 
 

表 5　基于局部搜索方法的小结
 

代表工作 特点 不足

EBO[90] 对输入空间进行划分, 在每个区域内拟合独立的加性GPR, 并进行
贝叶斯优化

在局部区域中引入过强的加性假设

TuRBO
在多个局部区域建立代理模型, 在局部区域中采样候选点以避免
过度探索

由于未划分搜索空间, 存在未被考虑的局部
区域

BaMSOO
层次地将搜索空间划分为超矩形, 并在最具潜力的局部区域中采
样候选点

仅达到多项式级的遗憾界

IMGPO 在BaMSOO基础上, 利用UCB估计半度量, 以达到指数级遗憾界 －

VOOT 采用Voronoi图实现更灵活的空间划分 算法缺乏收敛性保证

LA-MCTS 采用SVM分类器将搜索空间划分为不规则区域 算法缺乏收敛性保证
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7   高维贝叶斯优化的应用领域

本节将概述高维贝叶斯优化在当前主要应用领域的发展. 

7.1   强化学习

πθ : RD→ Rm, πθ(s) = As+b, θ = (A,b) ∈ Rp×m+m.

高维贝叶斯优化在强化学习的策略搜索中取得了显著成果. GIBO[91]和 BO-MPD[92]研究了线性策略的情况,
即   参数空间为   它们在 CartPole、Swimmer及 Hopper等强化学习环

境中使用局部 BO搜索策略以最大化收益函数, 结果表明高维 BO比随机搜索方法更快达到收益阈值.
若已知初始策略, 局部优化往往足以取得令人满意的性能. 比如, 文献 [91] 使用局部 BO 微调模仿学习的策

略, 以快速优化机器人控制策略; CRBO[93]使用局部 BO微调强化学习策略, 使得智能体快速适应新的收益信号. 

7.2   机器人

高维贝叶斯优化在机器人领域也有成功应用. 比如, 文献 [52]将高维 BO用于控制六足机器人行走, 使其能够

到达目标位置, 同时避免关节速度和高度偏差过大. 文献 [77]利用高维 BO配置三连杆平面双足机器人的参数, 以

提高其行走速度. 文献 [90]将高维 BO用于配置两个机器手臂的参数, 使其能够将物体推至目标位置. 

7.3   混合整数求解器

高维贝叶斯优化在配置混合整数规划 (mixed integer linear programming, MILP)求解器的超参数方面表现出

色. 不同的求解器具有不同的超参数空间, 比如 LPSolve (https://lpsolve.sourceforge.net/5.5/)有 74维超参数空间,
而 SCIP[94]则有 136维超参数空间. 文献 [23]使用随即嵌入 BO优化 LPSolve的超参数, 文献 [79]则使用加性 BO
优化 LPSolve的超参数. 

7.4   工程系统

高维贝叶斯优化在配置工程系统参数方面也有广泛应用. 比如, 文献 [73]使用高维 BO配置电子激光器的参

数, 以最大化激光能量; 文献 [74]使用高维 BO配置汽车设计的参数, 以最小化汽车质量; 文献 [95]使用变量选择

BO配置天线参数, 以降低天线传输损耗; 文献 [96]使用变量选择 BO优化焊接梁结构和燃气管道输送系统, 以及

配置合金设计参数以最大化合金性能. 

7.5   自动机器学习

在自动机器学习领域, 高维贝叶斯优化同样发挥重要作用. 比如, 文献 [80]使用高维 BO优化神经网络的 9种

超参数, 包括学习率、丢弃率、隐藏层单元数及激活函数种类等; 文献 [52]使用高维 BO搜索卷积神经网络的结

构; 文献 [97]使用高维 BO优化线性回归模型的正则化超参数; 文献 [19]使用加性 BO优化级联分类器的超参数,

以提高人脸识别准确率; 文献 [75]使用加性 BO配置矩阵补全算法的参数, 以减小图像的重构误差; 文献 [74]则

使用高维 BO优化核支持向量机 (kernel support vector machine, KSVM)的超参数. 

7.6   生物、化学

高维贝叶斯优化也成功应用于生物和化学领域. 比如, 文献 [98]使用变量选择 BO配置微藻动态代谢模型的

参数, 以提高模型的预测精度; 文献 [9]使用 VAE-BO生成新分子, 以提高分子的水-辛醇分配系数. 

7.7   线性二次型调节器

x(t+1) = Ax(t)+Bu(t)+w(t),

高维贝叶斯优化也成功应用于线性二次型调节器 (linear quadratic regulator, LQR). LQR是控制理论中的一个

基本问题, 旨在控制动力系统并最小化二次代价. 令动力系统为   代价函数为: 

J := lim
T→∞

1
T
E
[∑T−1

t=0
x⊤(t)Qx(t)+u⊤(t)Ru(t)

]
,

x(t), u(t), w(t) t Q R其中,    分别为   时刻的系统状态、控制输入和高斯噪声, 加权矩阵   和   为正定矩阵.

A B当动力系统已知时, LQR问题存在可高效求解的最优解. 然而, 当动力系统未知时 (即矩阵   和   未知), LQR
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成为极具挑战性的黑盒优化问题. GIBO使用局部 BO求解该问题, 其样本复杂度与 LSPI[99]相当, 但小于 ARS[100].

Q R此外, 若代价函数的加权矩阵   和   未知, LQR 则成为另一种黑盒优化问题. 文献 [101] 使用基于熵搜索的

BO求解该问题. 

8   软件实现

高维贝叶斯优化领域存在多种测试场景和软件库, 本节将介绍几个代表性的测试场景和常用软件库. 

8.1   测试场景
 

8.1.1    基于数学函数的测试场景

这类实验通常采用数学函数作为测试场景, 不同类型的贝叶斯优化方法会选择与其基本假设相契合的数学函

数. 例如, 基于加性假设的方法倾向于选择加性数学函数, 基于有效低维度的方法则倾向于选择稀疏维度的数学函

数, 具体如下.
加性数学函数: 加性高维函数由若干个子函数相加构成. 例如, 首先构造低维子函数: 

fd(x) = log
(
0.1

1
hd

d

exp
(
∥x−v1∥2

2h2
d

)
+0.1

1
hd

d

exp
(
∥x−v2∥2

2h2
d

)
+0.8

1
hd

d

exp
(
∥x−v3∥2

2h2
d

))
,

v1,v2,v3 d hd = 0.01d0.1, x ∈ [−1,1]d, x∗ = v3. M

x(i) fd(x(i)),

其中,    是固定的   维向量,    可行集限制在   最优解为   若创建   组变量, 每组

变量   独立使用一个低维子函数   则高维的函数可表示为: 

f (x) = fd(x(1))+ . . .+ fd(x(M)).

fd(x) f (x) 3M值得注意的是, 函数   有 3个峰, 故   总共有   个峰.

x一些测试场景则直接使用加性 GPR (见公式 (5))作为测试函数 [77], 当评估某点   的目标函数值时, 只需采样

该 GPR的后验分布. G-Add-GP-UCB进一步扩展了该测试函数, 其加性 GPR允许不同组间存在重叠变量.

D−2 D d (d ⩽ 10)

稀疏维度的数学函数: 基于有效低维度假设的贝叶斯优化则通常使用稀疏维度的数学函数, 例如, 为 2 维的

Branin函数加入   个无关维度, 即可将其扩展为   维的 Branin函数. 类似地, 6维的 Hartmann函数或者 

维的 Ackley函数都可以加入无关维度来扩展为高维的函数. 

8.1.2    仿真实验

贝叶斯优化在实际应用中通常用于机器学习算法或工程系统的参数调优. 例如:
(1) SVM调参任务: SVM的核函数的超参数数量约等于数据的维度, 若分类或回归任务的数据维度较高, SVM

调参任务则成为高维黑盒优化问题 [74].
(2) 神经网络结构搜索任务 (neural architecture search, NAS): NAS任务可转化为具有 36个设计参数的拓扑优

化问题 [52].
(3) 车辆设计任务 MOPTA08: 该任务具有 124 个设计参数, 用于描述材料、仪表和车辆形状, 且不具有明显

的低维结构 [74].
(4) 六足机器人的控制任务: 该任务有 72个参数, 旨在学习最佳策略参数, 使机器人能到达目标位置, 同时避

免关节速度过快和各关节高度偏差过大 [52].
除了以上具有数值含义的优化对象, 还有一些结构化的输入对象, 如分子、表达式、拓扑等, 这些数据往往用

于 VAE-BO的仿真实验 [10]. 

8.2   软件库

本节将介绍几个常用软件库.
(1) BoTorch[102]是基于 PyTorch 的贝叶斯优化编程框架, 集成了常用的采集函数和经典的 BO 算法. 此外,

BoTorch提供了一些高维贝叶斯优化算法 (如 TuRBO、SAASBO、BAXUS)和多目标贝叶斯优化算法的实现.
(2) Ax-platform (https://github.com/facebook/Ax)是关于贝叶斯优化以及多臂赌博机的代码库. 其贝叶斯优化的
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框架基于 BoTorch开发, 包含了一些高维贝叶斯优化算法 (如 ALEBO、SAASBO)和多目标贝叶斯优化算法的实现.
(3) HEBO (https://github.com/huawei-noah/HEBO)是关于贝叶斯优化的代码库, 实现了多种高维贝叶斯优化算

法 (如 RDUCB、T-LBO). 此外, 它还包含了前沿的采集函数优化方法 (如 HEBO[103]、CompBO[104]). 

9   未来研究方向

随着高维贝叶斯优化的持续发展, 它已广泛应用于各类科学和工程领域, 为多种高维黑盒优化问题提供了一

种样本高效的求解技术. 高维贝叶斯优化的研究工作主要围绕 3种高维扩展思路展开: 基于有效低维度假设的方

法主要适用于存在低维结构的目标函数, 可处理上千乃至上万维的输入空间; 基于加性假设的方法主要适用于存

在加性结构的目标函数, 可处理几十维的输入空间; 基于局部搜索的方法广泛适用于各种目标函数, 可处理几十维

的输入空间.
尽管高维贝叶斯优化研究已取得显著进展, 但仍有许多问题亟待解决, 主要表现为以下几个方面.
(1) 假设的局限性. 许多方法基于较强的假设, 如要求目标函数存在低维结构或加性结构, 然而这在现实场景

中并不总是成立. 因此, 如何放宽这些假设并降低违反假设带来的误差, 是未来研究的重点问题.
(2) 弱假设方法的扩展性不足. 虽然基于局部搜索的方法无需额外假设, 但其维度处理能力通常限于几十维.

因此, 如何提升这类方法的维度处理能力, 也是未来研究的一个关键问题.
(3) 许多方法缺乏收敛性保证. 高维贝叶斯优化的收敛性分析集中于基于变量选择和加性假设的方法, 然而基

于降维和局部搜索的方法普遍缺乏收敛性保证. 这导致许多方法的可行性、正确性和鲁棒性都受到质疑. 因此, 如
何进一步这些方法的收敛性保证, 是未来研究的另一个关键问题.

与此同时, 贝叶斯优化其他领域的迅速发展, 也为高维贝叶斯优化带来了新的机遇, 主要表现在以下几个方面.
(1) 与多目标贝叶斯优化融合. 许多科学和工程问题需同时优化多个相互竞争的黑盒函数. 当目标函数评估成

本高昂时, 多目标贝叶斯优化因其卓越的样本利用率而备受青睐. 然而, 类似于传统 BO, 多目标 BO同样面临高维

挑战. 目前已有一些工作取得初步进展, 如文献 [105]、文献 [106]和文献 [107]分别将 TuRBO、SAASBO和 LA-
MCTS扩展到多目标优化中. 进一步探索多目标优化与高维 BO的融合, 是拓宽 BO应用范畴的关键.

(2) 应用于混合搜索空间. 高维 BO通常假设搜索空间是连续的, 但许多实际问题的输入空间由连续和离散变

量混合而成, 如MILP的调参任务 [20]. 目前已有一些工作取得初步进展, 如文献 [83]将 TuRBO扩展到混合搜索空

间中. 深入探索高维 BO在混合搜索空间的扩展同样是拓宽 BO应用范畴的重要途径.
(3) 与多成本优化融合. 多成本优化假设当评估目标函数时, 可花费高代价得到噪音小的观测结果, 也可花费

低代价得到噪音大的观测结果. 比如, 在机器学习调参任务中, 减少迭代次数或缩小训练集和验证集的规模可降低

时间成本, 但会增加观测结果的噪声. 目前已有一些工作将随机降维 BO应用于多成本优化 [52], 但很少有工作将加

性 BO或局部 BO应用于多成本优化. 进一步融合高维 BO与多成本优化, 是拓宽 BO应用范畴的重要途径.
(4) 与多任务优化融合. 多任务优化旨在将先前优化任务中获得的知识迁移到新任务中, 以加快优化过程. 文

献 [63]提出了多任务 BO, 类似于传统 BO, 多任务 BO同样面临高维挑战. 为此, 文献 [52]融合随机降维 BO与多

任务 BO, 文献 [93]融合局部 BO与多任务 BO. 进一步探索高维 BO与多任务优化的融合, 是拓宽 BO应用范畴的

关键. 

10   总　结

贝叶斯优化作为黑盒优化领域的关键技术, 近年来受到广泛关注与研究. 高维贝叶斯优化作为贝叶斯优化的

关键扩展技术, 相当大地拓展了贝叶斯优化的应用场景. 本文根据方法的假设和特点, 将高维贝叶斯优化的研究分

为 3类: 基于有效低维度假设的方法、基于加性假设的方法以及基于局部搜索的方法, 并详细阐述和分析了高维

贝叶斯优化的研究进展. 在此基础上总结并展望了高维贝叶斯优化的未来研究方向. 总之, 基于有效低维度假设的

方法主要适用于存在低维结构的目标函数, 支持上千乃至上万维的输入空间; 基于加性假设的方法主要适用于具

有加性结构的目标函数, 支持几十维的输入空间; 基于局部搜索的方法能够普遍适用于各种目标函数, 支持几十维
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的输入空间. 另外高维贝叶斯优化与其他领域的融合, 进一步拓宽了贝叶斯优化的应用范畴, 为解决更复杂的优化

问题提供了新的可能性.
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