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Abstract: Speech emotion recognition is an important part of affective computing and plays an important role in human-computer
interaction. Accurately distinguishing emotions helps machines understand users’ intentions and provide better interactivity to enhance user
experience. This study reviews the theories and methods of speech emotion recognition focusing on discrete speech emotions. Firstly, the
study reviews the development of emotion recognition and presents an architecture of speech emotion recognition to summarize research
progress. Secondly, emotion representation models and commonly used corpora are introduced to provide basic support for speech emotion
recognition. Then, the process of speech emotion recognition is outlined, including feature extraction and recognition models, with a focus
on traditional classification models, classical deep models, and other advanced models. Meanwhile, commonly used evaluation indicators
are introduced and applied to provide a summary of models. Finally, the study discusses the challenges in speech emotion recognition and
suggests possible directions for future research.
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R NRA RS AR P T R R IE T N —, EA RS AR i E R L B . AR
Reli 1 ARILAE IR (132 R HE S AN A YL RE ) 2 A1, A 1 A BORIUBEAN BE ) . 1 R A A SRR R ) EE A4,
T2 TR BPEAT RN e S ke ) 23 00 EE B (AR . 1 ROIRAS AT r] 40 e A8 R T B 2 W63 1 LA B ) R A ke 7
A EE BRI, R IR T DL B AT B G B AR U 2 R, AT R A v . R SR 17 Bk R 35 B A S B8 U7 b 3
M, T2 BAAS ML R AR L A s ke g U

EHENNREIEAR ., ARMmE SR, &5+ 5 0GR G R B2 i AN B 5, W3R
Siriv #A M Cortana. ¥k Google Assistant %5, #/& LUEH L HoNE. titk, KRR AL TEEE
SHE. THE IR (speech emotion recognition, SER) £ ANLAE B H R 143z, X AATH TAEFIA Gk B
KA, 0, 75785 e AR P, JEIE SRS I 2 P 15 28 A0 4k, F48 38 24 [l R $ TR0 AR 45 B B, 460 1 F P
THHRE . PR, 7T DA T 22 B OF R i 9 N TS, iR BRAGH FARIEI E . FE 2R b, i i ki iR
W EANE I, ST 22 AR MR I, FHREAT 1 26 7B, LAASF 38058 40 0 B8R IR 2 52 B2 1) S T e A5t 338 T 4l B DR A
e PR BRYT b, B AR AT DL 1 I I 2R G R RS AT SIS 25 R S IR AL, TR 1 12 W R T
PR W LR Y G, B XS R R F R EMUES RN, AT LA R I R, 4
g 5% S E 95 B 25 3 sh I I A 4 DUBR R, R AT AE a8l G 50 @ Syt B Y. Ak, 8 S AR R A TR A A
THERRE T BILSE. EERE. a2 T RSEER, 4 0T NN, 7T, 8 E 15 ER A
BT HES T AN BB IT K. Sz, HEIEER IR T — AN EEE BN SR, T5ie WA AR TN
18, 3 M B B FH I S5 ) A B SR, 1 2 1 R N 20 B K AT A4 1.

HEERARANET T 30 ZEMKRE, B#isZ 20 T B N AMIF A )2 0. S PNEEIE AR IAEZL 1
SEAR U SRR SR 5 4 K SRR N B 40 AR e 5 1 SRR 1 (. LA 3 AR R T AU 3 T e R X
FROE (N4, Reid . ME/RINZEBIE RESE) RIT, Hh i H IR S 45 SR T KA (hidden Markov
model, HMM)"!, & iR A 47 (Gaussian mixture model, GMM)®, 37 5 &4 (support vector machine, SVM)™!
&5, AN, I — I T RS (decision tree, DT), K #2458 (K-nearest neighbor, KNN), K #J{ (K-means), £~25 Ul
Wi (naive Bayes) 1792 IEAE3R, BRI IR SHED, 1R T —Su BT IR 8 27 o) B EY, iR 5 o 28 I 2%
(deep neural network, DNN). ¥ #£2M%% (recurrent neural network, RNN). K FH I iC1ZM 4% (long short-term
memory, LSTM) &, BT A5 5 15 BOR T A AR A & BRI 1, B AR R R sURHEAR X R B R =F & A T R 7
E. 3T 1A T IR B AR AT (9 15 35 1% B R AT 0 R Rl JF4R T — 82 SR H T, R B AR 4%
(convolutional neural network, CNN) Mgl f ATUAFAIE 2 $E B BE 75 224 1 B 1 5 1 8GR ol 493 A 5 FH 1 7 32
Z# [10]

EHEHEEEEASESE S GBS 3 A EE 4. Hhah, &5 BRI e BT i
75 B AN HE A A (0 S, RIS 8% 2 R4 R R AR 2. BUAR D8 — SR LR R 1 SR 5 17 IR R (1 A
?@V\]?’:‘?J‘ﬁﬁ? F gt U1 AE L ) R 35 1 SRR I 45 AN AT, SRR AR OLAR SCHRAE A 2. b, 8 a4

TR I IR I A L4 R (1 e, e 2 X 28 LR S AR TR R EL S AR 1) S 2. O T 45 X0 o 1 IR T B R
E’J’ﬁn%%fﬁ*/\?ﬁj‘ FI4E T, AN SO B HOE S T BGRAEHT T 458, EETTEW T,

o ATHE S IEBARAEAT 72T T Z IR, JERH —DMERRHESE Q] 1 o, DOBEFEAE 5 1 1R ol 4otk
PRI FLdE . e R R AT A AR BRI PR At T IR SRR, FHERTAE v R A A (R 18 B 5 i R FE R
o FHUAEE B 18 BAR A SRR W SO L, ARLEIR AR T AHRLAH ICHRRAE, H5%3 F) P 4R 1 5 A0 A0 A5 2 EAM G5 1 s
UM AT T 4.
< AT EIFHIRFRIA 1 SER 43 FARAL, A SO T AL G 1¥ SER 4 S RO G HLIF IR FEASRY, 38 S 251
¥ 7SR ESR RISk SER AR n3EFAHAL{E B Transformer. P44 (graph convolutional network,
GCN) 7.
SRR B A EAT AT R 8T, FA T E T 2R TEEE 5 0BR8Pk R, JF R
TARRKIER) S A TT A

© TEBREEEEIEDT  htp/ www. jos. org. cn



W BRETHERATA AT ERE 5489

_______________________________________________

| ! |
. | et . .
DR 1 RS R tiiHa |
I
: :L_______________________________________J
: e e e e e e e e e § ____________ I [==—=
. ! I fe e A |
| i HMM. GMM. SVM I r%ﬁg I |
1 S ke (R
. H i R 5 IR A
Ui my N el o
! :: b R DNN. RNN. CNN | \ !
! ot SRy Lo
| 1 1
: l: AIBLREAE FETFAHALE B Transformer. GCN : : :
S | (P
| | gy
! ettt ettt 1
: ¥ MR A LR !
1 i Y !
| P BB A 2 L R !
PR TR |
i ' AR R P AR A3 \
e e e e

ATCE 1 A PP TR AR TT %, FEA A R AR R, 58 2 TR H 7S SR, LR R
RRAE WERRAERN & FURFAE, JE A A0 AH CLRFAE. B8 3 19 B85 R8T & 5 B0 h A% G 70 R L 22 LR E A R A
ot St A, RIS A3 R PP O Ra bR, JEXE S R R AT B 45, B 0 18 5 17 IR 0 I T s ) B e R e e a9
BATEA S RE.

1 BROESRTREBRBEIERE

X BRI B SCRIH A 2 SEBE B 1 BOR A R AT, AT 1 S5 B IR g T R S5, BN RS
T IR B L
1.1 BRSER A

KT R BOREH IR, R ERE T ZARM . 78 20 23R H 7 90 AN EGE . AT, T4 B
& X LW AT IE AR, EAIIR A DR AR b — N AR P ] A R — P R RO BDIRES, (RN AE T AR
AT R RNAZ LS5 T 43 AL U, 630 e 5 S, A R Pl o DL B 155 JRet 3R 7 v ol 8 17 A 3R 0 4 1 K
k.

FEUE BRI ARG E A AN S A R B AR B BTG B IRy JLZEM R IS, W =, AER
REE AR AR MR R R, XTI B B A s SRR KRR 1990 4F, SEEMZ 2R Oitony 5 A IR 3L A
URBUREAT T i gh. BT N5 ] LAor AWREE 25 7)), 410470 410, H AT, BF 708 M AR A 0002 28 B O 3 22 K
Ekman 321 6 KIEAEK " AHFERE (fear). 42K (anger). WK (disgust). =% (joy) 17T (surprise) F13E
15 (sadness) 1X 6 F. JATM0, 7ESEBR R, H i (neutral) ZEHIBEH BB, TR T H LI 7 FhEAE K. 554,
AT R LR A I — R AL A1 R, B RV 1 R iR B0 U0 R 2 300015 S T BORB RS R T HAN
TE BRI RE. 76 H 8 A TG, 17 BRI AR 25 B IR, A8 & {0 P iR SR AR 2R S 5 S AT i W 58 2 (1 15
JR AR LE B A I ISR I AN R g S H H AT OISR B ) — L B R IS 2R

IS B AN (), 7 4 P 1 IR B o R S A T R R — A 2 4 R 48 B 28 TR SR R 1, 1 ik TR R TR SR AL 1.
o 2 [R) B PR 20 T R R 1B R @ A, TR (valence), Ml (arousal), A (expectation), L34 ¥ (dominance)
& IEIXEEAERE RN T, 1 B A i 2 4 2 8] B — A A b o, T AR AR s RMELIR B T A IR 1 4 B IR
TEYE SRR T, 5 IR R A ST i, S mT UAH EL2RHER. BT, 3 K ACA T )32 A8 P 1 24 J88 2 ] 2 <néie it 5 -2

==
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W R 1) R U7 M, O P T80 U0 A SR S TR B, A4/ 2 DU TP A 08 3 A e 1 £
PERRFE. R T2 FE G R W] LS 1 B S PR AR A I B, T DLIZ A 5 77 V5 th 52 BRI 703 ) R

20 AR IR 248 P2 A7 BT 2% B B E FE 0L, 76 (DO SZSIZ D52 mT DUAR EL AL, F 703 5 AR B AR AR 55 e
A PRI AR 7 2. B IR 3 T S M R AN SR K R IR AR, X MO T BT, LA R AR AT e 1,
N & NSRRI EGEAH R, 5 ASEMTE 5 RIS SCHE. T4 BE 1 O B AN E S BN 2 BB R 2, A
% B, T b 7 TR AU ok bic U ST EL o LA R B, O ELBEZ — BOA T PR bRt L s, A 2k
TR E6 LR, A 2R ORI AR . MR R T 5, SO B R BN B vl S HE, AR T OT AR
(R FE AR, B, H A0 1 R BIIE FE 56 B9 O Il R 1 7 v o 4 SR Utz 1, A S DA B A R T
T RFATELRIR.
1.2 1FRBUIREE

G 1 R O PR AT 1 R B 6 S TR AR A Y, B PR R R T e T ORI R 5
T SRR . BRIk, REAZAF A0 BT AR i . o T IR A & (0 2 R, SRR IR B — i bs
. WO B R (0 H AR AN T i R AR ST R S HLT 5. A4 19 1B B A T QAN ), 30 8 15 e P AT LA 2>
3 R R AR P, 5 5 T AR AR 2R R 8 SR R NG SR .

R TR EHR S T AR P R A AL

R ANFISEREE AR 5 5 1 RGR ) BRI

Bt A Per R
RiE M prdE HEBERTEET. SRS THER B BB R, SRR BT BRI R
FHeR EWHE AR, AETFTXEER ETFCRANIS FFARTE R B AT

R SR F 1 T FLS P . M P A mﬁﬂﬁﬁ@@;ﬁ%%amﬁﬁ\ﬁﬁ¢§ﬁ%@ﬁﬁﬁi
AEEA G ES

AR HE 2 2256 = MO S5 2R 8 03 78 I8 5 AR = v sl 9, 958 03 B2 AS ) O 1 TR TR 46 4 8 1 )
T A AE L, X R R T A 1 A, SR A S, BN SR % i SR R A e B
W7k, IR S, AT LS B A A R, B MU0 B e, RS 1 A e R L AR A RN R 7 A i
3 A0 e ol R R LA A LR . — AR UL, AR 18 S A AT b B B A R B, A
DR 22 2 A R TP I (6, RS BE AR e (ELR, W TN DA Y, SR8 A0 17 AN B S RIS A 35 v B S I, B
ZEARERE R, T B N E L SER I W B 22 5, X 2 P fIOnS L S AR TR 1) 6.

5 I K UL N BT RS ORI A BLPREE ksl iy ), ik b A I il 2 i S 1
HUBEAT i 5 S ERACR, T THSEALITE 5 BRI ol A SAE 32 AN IR I 00 T #2315 52 108 15 AR AN ]
HIE SRS, AT A 52 3 EahRIE A A RIS, BIRX T ReA 2 EFTA BT 28, (He TRz AR
HARPREE T (LS 24, SRRt AR 5. 5 3R E AT b, I e P mT RESE EL AR, B T LSRR

5 UL PR B AN, B IR B e 2 NS A3 v et (0 15 SR ) Bt 017 1O AR HLECSE Ry,
FLSAE T A1 IR A FE B X SRR T RS H L RIS . A S PR S, S A LI E
FE, B IR AL Uil N ZE AR A7 D0 SRl 19, 2 36 A AS BRI AR (10 170 AL, TR B3P 19 2R A7 A0 O 3
TRt 2 A HE P ). A A SRV I A o, of 17 SR ) 3 4t B A0 B, S ) B bV 3 T BE e 28— R0 IR T A IR R bR 2%,
XA B B AR R SR . S, BT AL A AR MR . BB RN N 2 R 2 R R A S
L, LE VR 77 TH A7 TR A .

HE 2R (R E R PR B T R B AN SR B4, SRR TEI . URRT % R SRR AR AR T AR AL, 2 SR ARR
BRI T R AR e 6 & A RIS AT SR A5 2K, AL TEVE X At (T T 25 SR AT B L. B, 4K
FEA R R RN C A/ 7 VF2 s A P, R ARIE S 1.1 9 2 i ik 77 il BA 2y 9 B
Ko AAEFZ RO, A, 185 5 AR B 08 L B RS TR P B 2, 3R 2 Ml T S Y B IR
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W 5 BAE SRR AR E 5491
T2 HHABEEYEE LS
e Tk T Hid
o o IR Tl A% 300, 10 Veih A 5T 20) 4 B, el B moe. oo
Emo-DE™ R0 Fl RS, 1A 800E IR LN N e
o o PEEER AT IO R, HABIEA 2 Bl . DR, A
CASIA R WIEE 50 ) 3hs00f) s AHATICE, BARRO6006) . i Bk
2R (4TS L0) 6 ALk R/ U, JFIR S

T, HR, 2 N ,
eNTERFACEP" 55  36iF  JR49AN0 BTN 31 A (0 5 1 A Hh R R, 3t ng ‘;i =L
1 116B R 51 AV R

IEMOCAP™ &5t 173 bsessiont 35, i s e B SO0, M0 s
b DQKTHOGTRE (FREIGORL b % B

, . . SR LI SEASE B, AR
CHEAVDP) gy s gy LS LB RE140 minf z%&%m BT i T
VI mm BRI P, e B R . B

VHZE, 4100 minZidf F L
R N W 4, 5 18 A E Tumble, B LI, REE. WK,

HEU Emotion”™ B4 58 GoogleMgypsy, H2i /I B B g AR 2R, PR, wde. e, S0
L&A H B AR S5 10 45
FINEARFIEBAERE, H6% (P34 M&m Kk, =0, BR, 57,

135] B eFIE

o
&

A Bl BHURI

2 B IRRHE

RFAE A B 1 TR 00 P LA A8 2, il PR RFAIL o 2 2 0 A7 TR ) 0 i 2 85 R PR EL R . DAL L, e
MR B A2 55 R JEVRFALE A 15 IR B — PR AR [0 L. O 1 R JE 75 2245 5 R St A T LA st R AL
WM EORES, RN GESES % A% DEPEL A FRIEREEAT TR0 AR5 P A
FEAR B I, 2 S & R/ i B G 48 5 T R RS 25 JERmn. B, 4t N AU, R Ty 3
HOBR; AT, R RART. RSN, W ] LU 5 il 1 X BRI 252 s N R 2. iEJUE 2R T it 7
2B R URFAE, AT DU R A SRR R IO RIR. 2T, T 1A 1 AR P SRR 20 O 3 2 BIHRRAE
TR AN FURFAE. BUAb, S LA, WEFUE T AR TR A SRR AR I, JF CIRIEAR A A5 B R A 15 A e
R 3 RANFERN A B RHAEREAT TV, VR G e /N 7 T

R3 OEERELSS

LR NVEEN EAREEE
THRHIE i (duration). 385 (FO). & (energy)
Ny B T R (LFPC). £k T3]3 24k (LPCC).

/R RE (MFCC). N 3@ PRI 2381 8 2 4 (GFCC)
7 1134 (glottal parameter). ANRIYIN (jitter)~

e WA (shimmer). B0 75LE (HNR) %
HRASE HHAEIR (GD). SR AEIR 513 R (MGDCO),

HIXSAHIAL (RP) BASHIXAHAL (DRP) 4
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2.1 EIERHHIE

BIHERHIE (prosodic feature) HHRVEHE & BRI B SEIE 5 F4RHIE”, RIEESPRE TEXF T2 L&,
By P R B A AT AN BN AL, AR S R B R — U AR R RO — A T
P, SRS E R, X SRR A ARG R B A BB RRE AL 4G K (duration) . A0
(fundamental frequency, FO). B&&E (energy) SFAH G MAFAE. Horb, FO 2 HEAMNA, B 5 7 AR SN 7= AL (). 7E g i
T v AT AR A 27 AR AR R, FLGeTHE AT AR 75 2R RAE . B0 A T Uias I 22 A0, TEARORAR R Bk
TAEIE RS 0, 2435 VR e B 08 BRI I PT 2 e M B DA T 2 TR nT RE R R 2 A6 M. Re i
WK R T, T S 225 5 B B BE AT (A] A AR A0, B A R WA R AR R A5 v R B & 2 e SR i,
113 R 3B A 2 R B 7). SR AR SR RV PR G« B LA A G ) (R eE o). 335 35 R . DTBRIX ¥
SRISFIA] T B DR B XCRR R I [A) 55 A8 F S I IR AR D RFAIE.

KT WA VE 2 AR5 T (7T, W0 Frick 25 A CYBEAC T 3EHRHIE 515 BOIR S 195 &, Busso 2 A P04
T & Fh FO # BRI GE T B, TR B IR I %, Origlia 28 A UM LS BE AT DG I ROR . T/ P34,
PR 2GS R T —A 31 B ERIFIESE, £ — M A Z 1B BGERE ST 60% R 7 2.
Seppanen 25 N UG FIIEAR. figf. WHKMISCH 43 454 iR A HEAT 25 25 4 A 5 BRI, 78 318 AT (15 0
THUER T 60% IR Z. SCHR [42] 40 AP 360, BRI SF BV RRHE A T 285 R 00 i 1 AL (R 15 1 1)
RN W38V (14 VA5 NSRS (15 AR, 2 B3] T 51% A1 88% [ IR B %K. Luengo 25 A IE 1 GE 5 1
HAT T — RIVFIEIERFHE T J. S R EE 5 5 00T, s)a a0 0W5ME .. ReEE. W5 2. ARt
PIRIAS o HEAIUT B0 PR 2 785 Y0 R AN R o B R 7S VE T B R i ) e 7. B U W, 24058 P B AR AR I, 75
B BGR A R TT IR R 5 A KA Wb e B R B Y W 2B 2 TREREIIN AT, 3F B
2 FOHIIE S T LA 1 35 1 TR o P FE T AR R A (17 B ) B 0 T2 A — i ROBR ), B S TR D 3
ARURRAE 23 AR AR, AR TG IR X 45
2.2 TEYHE

TERFE (spectral feature) & 718 (vocal tract) IR P2 S AH R AR T, 29— DN AR H B S, 288
FEIE TR I, & H B 52 tH B TR P e 1. (R, 0 SR e A B AN TR AT A4S 21 7 38 AT = AR 1Y)
P RSB RS, W 0N B R B 75 3 1 R I A AR AR B T ARG R B L AR A LB (Fourier
transform, FT) ¥ B 3805 5 ¥ A0 A0S 5, 3517015 BB REAE. % AH DG IRARFAE I8 3 1T Doy 2R 1 R R AE AN (51 1S R 10E,
2 M RERFE A £ M T & 2L (linear prediction coefficient, LPC). XJ £ Ih Z R4 (log-frequency power
coefficient, LFPC) %%; {23 R AE 4G 2k ME T 213 R % (linear prediction cepstral coefficient, LPCC). /R A 23 R
# (Mel-frequency cepstral coefficient, MFCC)“%%. Hrf, MFCC J& 5% FH AT RRAE, ‘© AR T 7 23405 5 10 1 3h
ik I MFCC RIB %, &5 53T WmE . 4w, I b #, S8 5 R 56 8 4 B A8 4 (short-time
Fourier transform, STFT) ¥4 — Wii{5 5 55 e AT . B J5, ) M /R 3 2 40 THH P e i, IR S IX e oy
FIx . &5, FIH B EL4Y 7228 (discrete cosine transform, DCT) i+5 MFCC REB %1

Witk 2 Ah, BF U AT S AR AR R R T AR Z R 2R . Kim %5 U H — ol (0 B35 AT R4S AL 4
TSP 4H B 55 4500 A0 (R ELAE R AE (the ratio of a spectral flatness measure to a spectral center, RSS), J1-7E 15 &% & BN
S EAS T — 5 AL, PRHI AT (modulation spectral feature, MSF) /& Wu 25 A2 H i ¥, MSF 5 4EF FH /5 2
TR A8 ELUR R 1 T A A K A AT AR R, AT SR E BB TS . Bitouk %5 U H — BT I AFAE, AT
XF 3 FUBOGER ) R A, AV, JRE o A HET MFCC Suit, 1530 7 58 M . thab, B X Leefir
5 RRAE 25 ket mT DA =y v . B R B 22 R 5 8 A1 DR R AR B BINE S I I KR b, IR R T
15 R B RE 11 ©°. Sato 5 A P F 2 B MFCC B8k bRt A —Ml, #1755 A 20 BY MFCC $RAE3#E4T 15
THEGR A 5T KNN fEBEEEFEH HMM 1445 MFCC SIEAH LIS 7 5 R ee. WF A ERA TR
B SHEA O el B S L H . T2 MFCC 454 T35 AL 1035 S 15 AR B . SR TSR
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A 5 BHGEFERAR AR SR 5493

A\

A DI i NE s, TR RIS S5, S0 B 4R AR w, SBOT R & e 3 n. tah, W AE
o F I SRR AR AR BURK, B8 RS B T RETCVR IR I b S k.
2.3 BR¥FE

B RFHIE (voice quality feature) 4815 & 7 2\ SR I S24FHE, IS H0E A BI/NMEAGR I, 7T LA oy i
TEWE . REEZHHRNEWIEN RS, UATEIE SR TR 6 PR, SER R SRR, @i,
ity AT 5, X LS B 7 o B T AT AL, RS R S AR R AL PR R, I ELE A 8 I A W s
IESE TR AR e 2 B 035 AR 75 11388 (glottal parameter), SR AR (jitter), FRIFHMIL (shimmer), HARIE
A K oy %% (format frequency and bandwidth), 175 8 7 Lt (harmonics to noise ratio, HNR) 2. H /R, S G
R T SRR B TR A AR (AR A, 32 BRI P R R TR IR TR R I R IR IE A AR Ak, 32 BEAR I 75 )
FRFE; HINR &% M P AR 0] KPR £, 48 10 e 2 5 1 75 e = I LU AL

FEVRURE 5 1 A R oy, BT 70038 08 35 R AE 15 FL A AR ) 75 SRR 45 A 7 — 2 06, 9 tn, Li 2 A B
BRI AR B A AL, I 5845 4E MFCC 25448, 5L 7 3 @ iR 51 %, Zhang 25 A PR
ML PRIRRIE . HNR 55 JURHE S SRR E R A, 5 R AT AR AE AR LR T 2892/ T 10%; Kacheel %5
N BV 35 BRI R A R AR AR 45 A T8 35 15 R, 76 A T ROAAAR S R d JE Ik B T 88.97% HIT-H
WA, Lugger 2 N CTHREUS 1 A5 4 JLIRIGHTR K FOMI NG 58 1E 035 AR, -5 A 5 A A e & F T
Pl AT (38 3545 B Sun 25 A PIELBORHR ST T 75 1 TS 3CS I ERIE (NS0, BB RSE) 7015 AR b & 1%
(¥11% F. Borchert 25 A VR A AEHR UG . HINR. HRIGII S35 BT RAE 45 A B RAE 7E D018 AT 8 3 15 R ) o
BB T 70% T3R50 2. & FURFE & —Fh PPN Fa A, Toid e A iR — NG & 075 & &, 1ok, AR
(15 FURRAE T BE 2 25 AR R VTN 5 R, Bz — Bk,

DA 3 S 7 S A AE G DA B BB, 15 2K IR (low level descriptor, LLD). X1, 7F SEFrfd A i 2,
MATEH R X VR E O ZE T35, it e . Bl BoME . PREESRPE S REE. 5REHE I
Ll % )= E B ERARRAE 5 4 R B R AE AR 4G, RIS 1R, B E R — /MEHUL I . RIERHESREC TR
6 openSMILE"", FI R HEHUH FH 0 75 S AR 45 4. 0 138 325 1 BOR B 5 IE 42 1S09_emotion!®', 1S10_
paraling'®, emobase2010?, IS13_ComParE 145 RN N 45 AE 2 75 2400 5 BT b R ik, B8 EEER,
T A e P 1 R A T A .

2.4 HELIFEHE

HEE S EA A 5 S R AL, S B IR IR AR 2 38 40, B A7 A5 B AR P 2R I B — R 4
9T SR B A TR IR AIAR AL [ DG IR, HRIE R T T IR E N, AR E T A E, RA WS B FE 25 A RE R
FEAEA L R

ARG BT T — MR R Y, 7638 3 A B FUBAR A7 5 232 B ORI 22 0 70 19T, B
F 5 TR B2 5, A O B A T

6(w,t) = tan™! (

X, (w,t))
Xr (w,1)
HH, 0(w, 1) RARTEIRE o« B Z e BN, X (0,0 RRBEEESIEE, RF 15 5SS . H 1
16, FH T M V98 S5 55 10 R 5 34 R LS C AT A g A5 %), A1 S AR S RO SRR IE 7E VF 22 IS FH o 4 225

N g A ), — T AL AR SRR R B . SLrb, BEEEIR (group delay, GD) 2 I UM AL FAE 2 — ),
o SOMAE 5 (0 8 B AR 3k 7 (1) 67 5 4, TT LA SEBIOE FE V45 JEL 10 187 B4/ . Hegde %5 A\ 7 T B 1O B 4851
(modified group delay, MGD), BUf5 T BRI, (HAHOAE B 0(w, ) SHFH RN &5 5 10T 6 8 M ik, RIE
RAEAR R A, T e IRIZA I 8, Nakagawa 5 NFEH T — PR AL I3 — 0 J532%, BRONABXSABAL (relative phase,
RP), E M55 118 H AR rr g Y, RP a4 52 — AN LRI R Ak JLRI AL AR R AN, SR 5 LA A 1 3 fhAsi R
fARA, BARTHE IR

1
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B(w, 1) = 0(w, 1) + g (=6(wy, 1) )

Hrb, 00K RP, w, R E RIFERAIER. MW 7020 RP 7238 35 U0 0, B8 AR5 7R 5 4 o U254
% FAR B2 1E . Guo 25 N PHE T T HISLAE BT IX 20 5 IR B 1 P, 5 etk i 2838 503 2 % (MGDCC) M1
RP AHALAH JSRFAE FH T35 & 5 B0, 45 SR 3% B SR IEAFAEAH LL, SR AN AR AL (5 B064 {5 FH At 2 38 (I 3R -1 1R i)
2. Wb, N T DGR R AL GUAE AR X U B 7 AR i L, BF A X RP AT T o, R T BIASAH X AH
£ (dynamic relative phase, DRP) "), 3 F F-18 3% 15 BN BHIAT 55, BUAF T b RP B8 R RO RU 3 36 (ELAR 37 A AiF 52 3 e 75
S 5 2R TR 2R, A AL REE I 5 3 TE 5 10 AN R SRR, W T AR MG =, HnT S 2 3 IR ).
AREE AL AL AT g 2 3 BN LA (1 5038, 2 T s o) JHG v M A A

25 b, 72 R EIRIRAS SN, B RRAE AN SRR AE AT & 5 AR T 5B 8 L RS A SR A () — 3 4, AR
FEH AL B BB B TR, A& A A SRR K, 7R BB A IR IRRAIE DA R 56 5 1 kR 1k 2 1A]. 78 52 B
FE e 4 38R [ AR 2 75— JE2 B 3R T 4 O TR 28R 7,

3 BERRIRMIEE

AR NG T UL G5 S5 BOR BB AL, HVEN S T G S IR BEAR Y AR J5 o I e AR 4R HY ) S
REERERIT T B85S, 55, B4 T H AT FR s
3.1 1&5Ea

LGB S 1 IGR A ik T BTG RS D /R A AR (HMM). s iR AR (GMM). HEFREHL (SVM) 4.
30,1 BRE/RAT AR

[ L R A] RAE RS (HMM) 25 TR i iR RS B Markov 838 28111 5K, MK #ii+ Markov J& 1%, Bl RGR L ¢ i)
ZIH 2 ARAS BRI T A0 7E = 1 B ZIRPIRAS . HMM BRA 5504 M4 I HE 75 23245 5 (0 R i P R vk, B e vz B
FHF 18 PR AT, R BCAZ R B AR, B RS S 5 ABIRART A, HMM O BT 335 & 15 iR
Sl 4.

HMM ) — M U RE 0 6 175 25 R 1R Zh A5 R AT 5 Y. Nogueiras 25 A "I FI HMM X SE450RI A% fLRF1E
J G BRI T, BUS T 5 AN 3 PRI AR B A 5 B sk O SO R D 2 R4 (LFPC). MFCC Z5E N 2R,
HMM 1E 53258, B MAERR AR, B8, HMM 7615 3515 5 A BATUIS IS 1 R4S M pS:, (HILH ik T K
G ZR R U R 1Y) R 55, o B0 R A T SR K, I HLT SR IR sk
312 mEinR A

ETR G BA (GMM) & — RS J7 1%, A2 T RAE — SRS HIES: HMM IR, R4 158 (1) AR AR
I LA B> B2 B AT G, FLrh A B B8 — N RT R A SE0E 2, W W2 A . GMML B B RN B
JBT— AN, I 2R B HEWHE AL 9040 . GMM I 455 15 21 OB T2 A8 R0 R 46 BE LSS -+ 0 MR AL, a2
Ui GMM B 4% X T AT L T A F B 3 A AT 3R AE, 11 75 2445 5 3 & I 2210 0 A

Schuller & A V5631 T P MR BR B AL G HMM A1 GMM 31T 7 Le . GMM {4 FH 5245080 5 B 56 )30 10 4 =)
SRR, T HMM 8 (2 5 AT 40050 LLD 1, S & 45 1R W GMM 45 B 248 T HMM. Ververidis
2 N GMM B35 B B AT LR I 2 MUK L P SR HEAT 1 I 00 26, B T AN 45 1. DL PR A
RUIA SR A (45 R GEHH41E, Neiberg 25 N P HREUEE — Wi MFCC J94HE, 28 )5 K GMM 1E 7> 2588, 45 R BITE I 2%
B _EAf I GMM A& — B ] A7 (R 35 175 R 510 0L R, 415 BRI A48 FE K 2 1, GMM S RSE(ER 7, R HL
BB B AR IE 2 I ARt o R 12
3.1.3  LRFAEHL

LRFIAIEAL (SVM) & — Rl 2Rt ] i 2 F AR B AR T 0. ST 2100 SCHA 2848, SVM 43 K88
JE B Ul D I iR 25 DL R 20 36 R (AR 222, B4 s VIR B8, 76 R308RI R B BT B KT it
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N\

SPTHT. G0 SRk A AN 2R R T 43 1K, SVM R FH A bR 50K IR 06 R 1E 25 ) Wit 30— S8 i e S R kT 0 8. 55
HMM 1 GMM #itt, SVM BEA GBI R rE, HAEIRZME . /ANREA LUK s 4 iR ) il i = AT LA 2 3L
B AR SA, O G4t i A B8 5 5 BGR B .

Schuller 25 N Vi F§ 22 2 3745 [ B HL (ML-SVM) #4715 355 BRI, B T ELH B SVM, GMM 5 47 45 5.
Seehapoch %5 N\ VR FHFEAR. AEfE. MFCC 4% E, FEINIZ AR 1 SVM SR A HFAE, 75815 $df 1 E3 R K
4. HAT, SVM CU& BN B 5 17 R Bl A i 1) 20 2 8 U9 (B, B2 BRI 3E 35%2 SVML (1 — AN St il . 51
b, B RGN IR AL R AL, TR, A8 5 P RFAE (4 DX 2 B A2 N B LRAIE 1.

32 ZHRERR

JUE T 3R G B35 155 SRR R 7 AR A — BN o) L o 40 155 SRR 3 AU 1 3 S A7, (R 38 A7 7 A IR R BB
S5 1A IR . T, BT IR A S MR R T G NI S (R LT . <R X AN il SR B T B2 1 A, o e n] LK
FIEZ. SRS 8L, TR 2 S S BOR BB BRI T R AT MR, I XS 5 AR 0 2R K
KB, DR ATE 70 0 B A B 1) 1 R B 2 S Bk, LA P AT FEE 2 SY A A TR FE A 22 PR 2% (DNIN) i 3 i 42 )
2% (RNN) FIEFURRE 2% (CNN).

3.2.1 IRFEAREMN 4

Wt 5 R 2 ) (R AN T SR i 215, 5T 8 B 25 S 110 45 2 15 JRR U A1 T gt R 4 i ol R ol 8 IO
(DNN). DNN & —Fi i & ZANEIRZE R M4, KM% ZEEMNE . 2 FEGEZ X 3 Fh. DNN A8 M5 iH
AR 2 ) T R AR, JETT S R 7Y, BARAE 2 AT S5 h R B A % B Han 25 A\ B3R H T —FhIE T DNN FIR
FR %~ 3JHl (extreme learning machine, ELM) FI#5 %Y DNN-ELM. # DNN % H FIMEZR 73 A i N\ 21 43 25 8% ELM Hilt
1 I IZAALES T L HMM S SRR 6. Wang %5 A\ B SORHZ AR 04T T Sk, 1E & % DNN s — B
R (BT B AR JiR Sk Fr i e 7 B R A, o — D B v 17 1 o 1 R Al R G
322 JEIHMHEM LS

5 DNN AN[FE], fEHAAHZE LS (RNN) A& —Ff L 7] AL B I 7 3080 100 2 W 2% . 3854 P9 3877 6% 2, RNN 7] BA
TCAE B B N B, FEx B TR R AR S O . RNN SRS TiE5 (5 5 403 . ARE & A%
UK. SR, RNN ELA B AR B [A)I0 47, RS ST B 5 2 A K B oS R R T ARV IX AN I 18, $2 H 7 Keaa e
CAZ 4% (long short-term memory, LSTM)™, LSTM ] LA 1 & — USRI AR A 1 2 R 4%,

H AT, RNN MG R R CL28 78 35 15 AR B o 2 B, Eyben 28 A B LSTM 55 RNN 4545, #2117 — MR
BB RS Lee 22 N PR T —Flopr (IR & B8 RNN-ELM, HU#3 7t DNN-ELM H 47 (5 45 1. %
FEE] LSTM & X 85— J7 11 5 81 (¥ ] S A5 B EAT 9w, ¥ 2% 8 B T8 BERAR I AR SRAE B B, DR TR IR
FHSLJA ) LSTM 4% (BLSTM) Mo 7 2245 A 35 4T 465, BLSTM A 32 2 AR R A 1E 7] LSTM Al i) LSTM 25K
R SCRRRAS B R 2 B BLSTM A LUR A A A _E R SOf5 B, 130027 51 15 355 17 IR AE th 2 1R FE ).
41, Hsiao 25 A BB UK E B HLEEE A 2] BLSTM A7 18 35 15 R I8 I 51 \FE R AHLHI, {4 R 455 S i
HENEPIER NG T T R E s B Bk
323 BRFREM %

BRI N 4% (CNN) =22 B AL A2 T (receptive field) i & M3 HH A —Fhp 28 0 4% #5552 1%
A0, 5 FLBCAZ AT b JB 7 . AR SR, NN FETE 515 5 A FR 4TS Hh A 57 F B R A %2 . Huang 25 A PR
TIRA I CNN-SVM FEAL, K CNN I ATRFAE H ) S 42 B 75 SRR AE S N B SVM Hh 58 il K K iR 5. SVML A
N A o AR N BB 5 AT AP AEAR 22 SR BR A, B A0 A fe A Rt R S sl 45 BRI R XXE R JE R
T CNN I LSTM 45 A 57 U0 e CNN SR ER R HEA% S48 T LA 28R F I 345 2 0 LSTML H A, 2 T
g S ATURFAE ) CNIN-BLSTM AHE R 2 48 M 8 35 18 R BIAT 55 vh 5 FH 0 5 12— X R0 vk BUARREE 2 ) Bt
IR 27 RAE, (E R IR B 00— S Bk SR A 1 RO R, AR 9 — 26 15 25 15 JBRRE (W FO) IRIE . M
T T TR R 5 e AR X 5 T AR (1 5 1 SR AE 2 ST VR, B T 42 T R )8 e s i A
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IR FRF AT (3 5 47 R ) B PO %5 VR B ARAIE T AR A= 1, SCRT BASR Y FO S5 S 75 SRR I VE L, A
TR T 115 BERAE X 43 FE.

R LIRFETF CNN {77707 DLS 2] BE IR S5 6 R AE, (R 78R W5 5 1% 84S 5 AT BE[R] B H N 72 B[R] S
B P T R R I S L, e R L L 2 AN PR R T R AL R AR 2 S U, LA
CNN MR I ATRFAE 23 30 25 7 6F 160 448 B A0S 236 46 BE (RRFAE. Liu 25 A P22 i 456 B 46 M 4% (time-frequency
CNN, TFCNN), F| i CNN 43 5l 52 Hi I [6] AH S FH A 26 A0 5G R 2 AIE. SR 1K R o 77 Vo R IS0 A B b o ek ] /59 26 el
RFAIE (1) TR BIAH Xof 2 B AT AR, A, Ve % R A B P B TR AR 0 S, T S T AT P B AN [ Y,
I, Guo £ N PPHR H1 LTI 7] -4 %6 -3 3 (spectro-temporal-channel, STC) V1 2 1 IR B FAE % SR S 1e @
STC IRk R 15 IR R R A8 /. B A, 25T CNN 8 A HRIE B SRR A o 22 5] s B 18 IR A A O &
AR s TR —.

3.3 Stift SER #RE!

R VRS R MNIRE S 2 A B A 1 R T 2 T A LS S W R A 1 P AR R AE R A
BART R, ZUAHALE B HE BERIE T Re A e, 5T 25 i, WF 7038 M 75 AR A0 1 58 B v R, TR T i A
& PR ST R I B AE B R BRI SO L e A, — 253 T Transformer. BGFI 4% (GCN) B 5 3545 7Y 9 4H 2k B
.

3.3.1  FIHIRIE S5 AHAL L AMY SER BAY

A AR I 58 2% W 2 IR RS B AAR A5 B L F ARG, A£G 08 S 15 B ik, R R KL E T
PRI 75 ZEAFAE, T 208 T FHALE S 2 A A5 2 1 P SR IR0 58 2, AT I i R AE AN B 4l Ak L ik (H2
A YR Al B (S7 AREAAE 44 I FH T 175 B R ) AR BCEE S 56 B 1Y) 7 22 R AR V3 1R BRI BT T I i S — Bk ik, B
HEMFAE.

W T AR GRS T — LU REAE R FH IR IR AR A7 15 2 038 35 5 B B . Deng %5 A POVRI FTAH A5 AR 5% A RR A i3
ATHABE S EGR. AAT1H MFCC 55 T# AR (GD) MAHESS &, AR5 FIF SVM JEAT 432K, A8 T {1 T MFCC
A PR 22 S ARSI P SRR AR TR AR M A B B — BB T 2 OO SRR AIE, T B 15 R 31 AR 2. Guo 2 N PR I3
RS s ATUREAE AL SO B X IR (MGD) R AR FE TR 2 18 BRI R, R B AR 2 R 4% (CNN) MR AR AL (S
SHEAT A, SRR BB AEIRARAE (GD) M1 AURFE T 7 A5 — SRR A5 2 10T, AR T 52 B o M AL A B 5 15 R
BRI, T2, BF 788 i M AL (RP) RFAEFR FT T AALAS B 8 & 55 AR A A R A 72, B, 1 9 ddd o
FEALRFAEHEAT 78 B A AT R BA AR AL P B S T U R X A B IRI(E B, 9F BA— I T —Fhah &M% AH 6L (DRP) FF1IEEE
BT LM AE XS AR AL (RP) A7-7E 3 LU 8 it A A055 1) /R, AN T 18— 25 G2 R A% G AH 8 0 T itk B A7 2 1 2t 1)
A, SO R T R I TR AR 705 S5 R WL DA SR B B A S R 7 SRR . — el P S T AR Y
(SCM), BIE S IR MR AR AR AR A R AR AT Bf 42, 28 )5 S N BB EY S U EAMRRAE; 3 — P2 2 1 v = i Y
(MCMA), BJF 43 51 ) FR AL MR ARR 7 P B2 BURFAE, S8 )5 38 5k 3 25 0 2 4G P AR AE R 47 Rl 4. Prabhakar 25 ALY
B —FET MFCC FIMEIEREAEIR (modified group delay function, MODGD) [ £ i 1§ CNN-BLSTM HEZE, 4R )5
5 3] BIPRTB AL RAFLE A S5 AL B SVM AT 4328, BbAk, SCHF] IR #1858 43 M7 (deep canonical correlation
analysis, DCCA) {E RIS S AFHALE B 6] B AH S M dm KAk, M $ e R 1 . I T 72 3R AR AL A5 BXT
T U B A —E AR A, o7 ARG B A7 SR FE B B E kb,

3.3.2 #TF Transformer /) SER f57H

Transformer J& & #UAE 2017 4E42 I Seq2Seq #E A Y Je T35 3 WL M £, Transformer AR T4£ 4511
CNN Fl RNN, 5 45 44 1 H iR R A AT 2 P 245240 k. 5 RNN A L, Transformer H0 fT A5 B[] 35 (1 40048 #2 il
o BER A, X E SR FE T PLRAT UL 5 CNN AL, Transformer #4751 AT 2 PN E 2 (8] (1R
BN &, TR AN B 2 ) B ST 7 SR AR AN BE B K. Transformer TV 28 DR FH 2R 2410
B, G SRS S A P M A U OOV AT
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Al

FE1E 5 17 AR B AR, — L83 Transformer [T BE B HIAH 4k 52 H . Wang %5 A U0 H — o 210 15 35 175
AR BIHELR, HB B2 AEAE TF-AE 20 S PR VE 35 1 G R A 70 T 35 4% N HE B 1 Transformer /2. Andayani 25 A U'2g 57
T LSTM-Transformer #£81, )\ MFCC " 2% S B IR BAK I OC R, FAESiH) LSTM AHEL, FOKHIFE T T R0 4
fE. (EZAR AL AR08 AR T LSTM HRATIO I &, T AR A A5 — 532 Tt Gumelar 2 A U2 H Transformer-
CNN ALY XHE 25 R AIE (R a) A 2 (] (g Ab 2. BT Transformer 1] LAY AS [R5 (8] )7 51 (45 b AT 448, VR 2 AL
BB T RS HADBSE B 45 & TF 8 2B 15 BN AT 7. Huang S5 A U ] Transformer 4% SRR 51535 A1
RUE RS (175 TR AR R 25 Lian 25 N VOBt — ol P T b 175 SR 3 ) 2 STHEZR (CTNet), oA A 3£ T Transformer
F1 455 ) SRSl A P 2 S 2 R SC AR 25 2 1A R 22 T, Chien 28 N VOOVt — b I S 3 175 1805 JEL I SRS B Transformer
(KS-Transformer) #E8Y, 3 0 B AE XA B TR SEIE & I SCAME RS 2 (R IR BEAS L. hAb, B — S A5 &
R = R ASRR R B . Tran 25 N VOB T 58 1 AN3E T35 A5URTARA (1 T )11 45 22 B Transformer #5578, 5 75
TS5 RT 547 0 (0 EL Bl vh A 3R F 1 805 2. Wang 25 N VO 7 —Fh 2 B84 Transformer 338/ SER J7i%,
FITVER R ARG RN, &5 G R E Al G FIRE R 2 il -6 J7 23, TEARAS PO SR FIARAS 2 ) 3R A7 4 B S B2 HL. i
17 —ANH 3 A3 X Transformer 565 %% 20 B OB T @b & B B, BTG5 SRS BRl s, BARIET Transformer
AEZLAE SER R Hh T 2R, (HIUA 10 AR A PSR O NATRIZREE X T et R 12 ml, 3F B Xz 46
EhEth. A TR GEER. T2, Wagner 25 A U8 73T Transformer R4 R E KB RARCHIE LR
IR 453, £/ J5— > Transformer JZ FIBSFBUIRAS R P37k, 08 Bast)= Fl i 206 H 2 45 . Liu 55
N VORI R A o) S RS AR I B R, $R T — At B AUZ . Transformer AEHUAIXH K K 1 id 42
(BLSTM) # e 2H Jlé [ HF 1E il 5 A% 28 (Dual-TBNet). 5 I, 3& T Transformer {5884 7E 4 R AE 2% 5 DL R AR AL
A ER IR IF. BAR Transformer BERS SEIIFAT U1 8 LA R AT H 2 (B B 42 R o5 &R, (RLPE & 3B A BRIy T
411 RNN 1 CNN.

333 ETEEHIMZE SER B

FE G HE B IR 775K 2 L RNN 8 LSTM Ay Al ot B (8] 7 5 1R A7 AR, {EL I3k KA Y e DA 221 il 7 3 471 1]
K B B AR B 4 R AR, AR A2 IR E AR oC R B — R Rk . s BT R EdE R R 7 20, 7T RO
5] 7 5 VB B R 11 s, b R A 8 X 4% 30 AT . BROR ST 4R 11 Transformer A2 B4 28 9 25 (1) e 451, (L
A FE GAT R RS MEAT R B, BA — 2 1R BR . 7 BRI A (GON)! AT DA 0 2 18] iR AR A8 5% 2R AT R A,
TEACE) RN S50 LR B B EA/E . GON REfE IR A SZHE A MU E 88 1) R AR AU, S8 3R A N1 S48
FEAT RURHIE T SR 1% R B A RHIER R,

H i, EBBIML (GCN) T2 B T f vt SN SE R [ 4R35 & A0 30 #8501 /1, fnah R iRm0 1 B s
PREEUDL AR IR g b R, BIF T R AR B AT T R TR 7E GON I . Shirian 25 A U g — MBS
55 5oy — AR B [, FErh 2 B0 8 B e AT, BB f R A A, AR G T 1B B
BRERE, BUS T HARIE GON AT HIRAIER. N T Refixd al 25K B ) A 384T 2455, Liu 25 A U992 H GraphSAGE
BT W15 5 18 B R ) 1) R 4Ry — AN TR 43 2 1) R g T AR K ) i 4 o 11, DU 3B R BB, R VR

BT R R B A HEAT R, D T R A A (KBS S, Liu 28 TR 1 5 AR AR A o N R 3 A
LR T 2 ) SR I MR AT R, AT 25 ) B4 2K B R SO S 2. Ghosal 25 A !B T DialogGCN 2, 4
FEEOFIEIN— AN, Hrp AN 15 A5 THIE. J5 820 — S R, i, Fu A DR Rl
T ICE A ETR I B B AR 45 (ConSK-GCN) (145 BRI 7732, FIH GCN #E4T b7 SO 28 ath B 51 N Zn it i
T X 1 A 2R HEAT RN o AR AN BN AR AR B R 2 A AR E ) BN F] GCN & .
Shen %5 A\ O H T HIA A0 JC 2R B4 ) 7 (9T AR i, DATE S b BSAUGHE 18 ) P M N ZE S5, IR T — AN )
T Z ML, FARHI M fE#E T T DialogGCN. Chandola 25 A MR T —FE T GON HIIE 35 060 15 15 AR B AR Y
(SERC-GCN), B e B 15 20 & (5 5 M I IERHIE,, 285 1 1 S iR T2 Bont 136 [, 3% 2siof 13 B 4 SR I 25 B A5 AR
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PR 28 SR AT 1 1
3.3.4 JiAt SER FEH

AT BRI AT BE R B e il . A 55 2 M3 I8 oF, X S8 P vT LME N 2 MR RAEEATWE. A T
FE IRV 2 AMBIEREAE 2 [T AE A28 B &, Hou 25 N PR HY T —Fiolr (4248 2 ML 6 R 4% (CMRN), FIH 2
P EE B RAE B N FERE I SR AT 15 & 1 IR ). FrE HE ) CMRN i 3 ASF ML %, BiRrE IR R ML, 20
Pl g P 2 R AR O RN 48 % AT LSRG R H 2 AN RAEIL = AR 2 MEIAE B, A TIEREEZ MK
AR A S5 R A5 5, JOEAT HE TR O IR . Liw 25 A V2B (9 2 70 i IR Zh S 0% (ATDA) Bt 5| N T Z K
BEER, 3T 22 AN B 7 AR PR AR Bk — 5 A DU R I B S AR D I B A RRAE . TN R AT 22 5, 2N R
SR A AR AR Li 25 N VP H I T 1 222 S A0 R R S 22 R 48 ) 22 B 285 35 17 TERAR A, 1 X 4% B8 1 3
b 2 ) A UG TR R 2 AT, TR AR 2 IE S5, BT DAMEZE R R EUM TN ZE, B8R
JEFRAE S ST H G BRAR. Fan %5 AU T — B AMABRUEIC N ZS (ISNet) T35 3 1 UM, DAZZ A 22 57 14 A
AN (B I TR VB T . LAk, Lu 55 AR W] REIRAD AN [R] Ui 1 N 18] 75 3 R ACREAE 20 A0 B 22 S 4 H 7 — it XA
ARRAE 2 > 713220 22 YR TG M S I F B R, R Y R AR T U X 51 A A DN R R R R 2 TR S R
SR ST UG N AR B AR AR X 280772 B LETH B UL E N 22 3 R s, AR T E — e iE SRAME IR 5 I AN ZE B
T .

H B TN ZREHIELE B 285 5 408 (NLP) SUgUR I 1 535 IRCR, £ SER U A Vi 2 AH S Sl .
Morais %5 A T H T —ANJEF B+ 2RV SR B (b 5 215 SER R 4L, 1% 5 4 J0 VEFeba i A /42 B 45 Fi B
B Dhee. @i B MBS S R AR R AT, W] DAZE TR S I AR (SER) AT 5% HR HUAS R UF BRI, ARLAE S PR Y
P ER B, AT38R 75 g HE B A 1 H FREA S, AU, Leem 28 A\ PSR 7 — Sk b 69 i A= 2% STHE 28 5k 22 371 25
— BB RE SRR O TR RGN B RN, Mb T R AE SER AR (1) i RN L5 B T I AR [
PR Z B ARR ZE. S0 T 3RAF H AR 75 2% (R 1 IR ) R, SR B AH LI IR NAE N IERE AR, B A A
A AR R 2 R 75 RN SURE AR, DASR/IMEAR K. O T 7820 R AS R Rh 2 10 75 SR AE, Li 25 N U4 7 3%
F LR SRR 0 G VR E 2 5] X 4% Chen 5 N PO T —Fh 36 T3S REE B HLHIM 2 R SER FH4T %%
(AMSNet), AMSNet @& T 4IHELEE 1M 2% T SRR AE AR BE 1006 V8 SRR FERFE, TR AR 8815 & 15 5 B ZSREE, K
FAASTR] 1) 15 5 A7 SR AR A SR B, =8 T HRAIE, 38 T RAERE
3.4 TFiEtR

BT A5 30 2 B DL RS HUE BONAZ O R TT 4538, BT DAASTT 32 B4 40 70 AR Y (1 8 VR F 4. — ACHh, JEURS 26
(precision, P)~ A [HIZE (recall, R) K WiE WIHAUE F1 1E VTN H6 br R iy sAs 2L 45 215 R U M R, P HEAf %6
(accuracy) VAl 1 AR AR PERE. F1 2R 00 2 R0 3 [B] 2 1T AN P I, (RO RN BRI P Re k4. F1AH
B F R R A [ AT T IR R R (accuracy) A& 7r FAT S B — AN F TR IR, 20 A IMBLHE#% (weighted
accuracy, WA) FIHEIIAHERS R (unweighted accuracy, UA). WA #& 38 FT A5 FEAS o T 16 86 7 EL 31, 3 TP i $i s
i, ANIE F T A4 5005 e, RN WA SEREAR B BRI IS T 7 B 2 BUE, Migh T/MEAR L R H b,
1M UA & 5at 58— R NE 2R B A B2, S8 )5 BUP B, UA 1R 500 AN P4 (015 BT AT DA B 20— 47 1 o7
FIER.

N EARN B EAVENFEAR, Hop TP RN IE, B SN IE; FP RRTINIE, BN TN R T A
B, BSEA, FN SRR T 4, BSTNIE.

OFitES
FE et 0l A vk e, FE IR R TR IE R A (TP) o5 BT T A IR AR A LA, 1154 500k
TP
T TP+FP )
(2) HIml

Al A A SR i B TN A IE AR A B AT B SeOp IEREA R g BB, 2 — R S E M IER R, 24 20
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HREFERH F1 REEATIEN.
(3)F1 14
F1 & F5H0 R0 A [0 2R g8 AP ME, R R AR R A M RE R AT . F1AH 25T X RS 80 R A0 A 8 R 34T 1
B, HARF AT
2XPXR
Fl=
P+R

(&)

(4) HERR
A2 (accuracy) A&7 AT 5 B — AN R 48R, AT LU R A 5 T A5 28 ) ) 84 R 0 350 3R, SURT B4y N IR v

R (WA) FEAEIMBAETRZR (UA). WA =248 FrA B Hh 350 1E w7 L, BT PAR IR A
TP+TN
T TP+TN+FP+FN ©)

WA & T P8 12, A& T AP0 %, N WA SREAR RS R RS T T H L IMRE, TS T
ANFEARZE AL BB T UA & ettt B8 — 20 1 IEF R BN A B, SR FBCF IS, UA fEEEE A R ol N
AL LUK Y A BIAR 57 BV R .

3.5 RBIRLE
GEA WA, UA, F1 SPN TR R, 2 4 SHEGRR . QR RERR . Jaidt SER BT T M 45 % .
F 4 HFEGEERA R

LT 2 1) SCHR T FHEEFE Kt e R IR 459 (%)
. » WA: 82.52
NogueirasZs A\ . IESSDB: 1i#&. K&, RH.
fl'ﬁ‘ PA=R | 7 = 7 N S .
(2001) HMM FA. REERRAE K LA BN AEf . S g,f 8822.25
Schuller& A7 HMM/GMM FH, Rem ISR IHEARH AR U RO, HE. w4 86.80
(2003) M I AR B, w6, Rt U4:86.80
fEGiHLEE  Ververidis@ N e e FHEHAEFEDES: BU&. mXé. WA: 55.6
) . AR AL IR I R
RSBCE(2009) GMM i BERADLR ik, A5, B UA: 55.20
5 WA: 71.75
AlbornozZE A" GMM., HMMFIMLP — EmoDB: 15i%&. FLHl. PRI,
2011) P WPRRRHE. MECC Dy Vg gt U471
F1:71.82
Seehapochi A7 EmoDB: 175, T, K&, w4:89.80
FAR. fef. MFCCZRMIE oy g
(2013) SVM AL TR I T B R 048915
Han’ AP IEMOCAP (5% 5H): & WA4: 54.3
- FAf. MFCC - e o
(2014) DNN-ELM = R g Ud: 482
Hsiao% A ¥ . FAfi. EFEHE, MFCC. FAU AIBO: f5t4&. k.
(2018) BLSTMrattention R RO e SR RES vA:ae3
Satt%: A1 b, , IEMOCAP (Rl 24 504%): 1594
2017) CNN-BLSTM PR e N AU AE 0. AE QI b WA: 68.8
£ R :
e Guo A p—— JEHL, Al MFCCAI  EmoDB: MR, M. Rk, /70 %5
(2018) PRI B ARURFAE wN. RAR. G 71005
Li%g AP e IEMOCAP (RPMH#): 0%, wa: 71.75
. = 1 et i 1 - N B DARTANEN : .
2018) CNN_TF_Att.pooling R B A5URFIE e AR g AR Ud: 68.06
Guois A1) B , IEMOCAP (2 8% R WA: 61.80
uo%A\ DSTCNet SR I A oca (Js%ﬁﬁ) W U 6178
(2023) B, ARG Pt
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R4 HTIESFHEORFEE S (20

RG] Sk it 7 EERHIE Hd e e R 453 (%)
NS . N WA: 94.02
GuoZs \[™ N PRGN AR AE FAR AL RFIE  EmoDB: f55% . T, K%,
i i 7 o : :

Comy  PIEHREMOM (MGD, DRP) e B Bl U936
Chen% A1) I EMOCAP (GE50d): & w4:74.3
(2022) KS-Transformer Wav2vec (JNSCAFIE) ELL AR Ud: 75 3
Liu& A\ e EMOCAP (5eB5): 0% WA4: 65.43

I 5 1 o~ ! 0o
(2022) GraphSAGE BRI SR RN Y Al UA: 66.40
%g;;fR LiuZ N[ ATDA MECC TEMOCAP (B X HH8): 585 Zj ;gi
(2022) %, A P
Liug A 10 Dual TBNet F, BEREFEE  IEMOCAP (RIMHIE): 5%, U4: 64.8
(2023) KR GHE . AR RI F1: 6525
ChenZ A1 ~ IEMOCAP (R X4 H0): 4. wA4: 69.22

= i et 4 : 4 - N P UASTIREY : .
(2023) AMSNet IR A B, ARg R UA: 7051
Chandola% A" IEMOCAP (R M 5#8): 5% WA4: 66.85
(2024) SER-GCN " BANL. A, PRI Ud: 67.55

M 4 HRT LU H, AR GEHLAS 2 SIRE AL F (10 75 SR KR I8 R SURFAE (0. A, MFCC %), iIX 284
E AR BE T N5 B 00 B iR U T 1, 0T DA U i R 1 RS R X A B A 5T 2 R B OGE IT R TH R EUA
] (4 i e FRRRAIE . FRATTIE TT LUK B, SRR A i B T A 3. 2 R R B0 (FO) BB s & 1 & 1, B
(energy) T FEL ULk 55 B2 R 7 55 R i, 3K A K] 3 40 2 i UK R JEL R O 1. B TR B2 2% S TR R, TR PR R TR 4
o 9 1 R B AT 32 G AT BT X R R FURFAE, H SR FH DNIN/RNN S5 R AT 3 R AR (12 5] . ks, s
SRFE T TS BT T ML ES E 302 o0 R . L R B ATURFAE 1) S 58 R 112, 32 B KA I SRR AE 2 75 22
JPAE BRI AT L FRIE, AT DA S IR I 25 & RAE, B8 N FEE 15 (S 2. ILRT, DNN [ISRAES X fg i 452 3
B, TR 240 3 P 0 45 5. 7 B T R I B AR AIE 1K) 7 vk CNIN (¥ B2 B R 0k, B2 A1) CNN £
B IR A8 RIBUE AL SR, T UM B il 3R 30 0 1 85 B T B4, P 22 R MR A A FH i 1) T 2 AL,
Bk T A GL I RIRAR SRR AE, AR LR AR A A 250F . I SR AiE 458 P B A BN R PR T e A e S B s F IS A
RS AN (R ARG AE AR, R SR 1 IR AT Bh T3 — 2D 5 M 5 IR AE. L Ab, &1 AN IR B RS AE 3R 47 2 40
AR KT
4 PRERE

RS BN RGO A IS TV 2 3R, (HAR SRS A R 50 175 B s IS B2 B, A5 — ik bl 75 A
Yo, FEATT p, FRATIAT TS I Lo Pkl A A SR AE (O IF 72 5 7.
4.1 BREEEENEZ

VB T KR S0 ) R AR AT O AT P SRR i, (E ER T IR B R R A 1, R SR AR AT
A7 PRI HME 1), 33 11 5 S50 R 9 7 00 5 9 KR 2 AR /N U, LA, 17 S 3 e v A A7 — 2 )
TEN TARTEF X8 S AR AT AR R, YRS SEbREE R ARG 4 5 N R R B TS T REAFAEZE R Anik
A SRR 405 U BAE B R SOBSER MBS LR, FRvE 222818 SN LAGIEAT . DR, el ik 1 A 1
HEATANFE LA B AT ROR FBIA 5 05 33 47 90 30 2 R A A R ) ST o i) .
4.2 FERIFEMIERL 2 8] H KB

W FL R SARE S5 IR AR, iR A R . SEHRAE . SRR MO (5 B
T IR, BARLRAIE 7 75 2R E 0 3 & M FLIR S M BB AR B T — s IR R B, (ELR (i = S5 5 R AIE
PSSR 12 B VRN 1 K L I 6 175 B (0 A 15 — 5 A Ak, T T 0Pk ikt 7 e

PR ATV
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AR O 5
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4. Banse 2 N VW TT R BN, A RV IR 46 (1015 35 78 75 AR AE B B A B X A k. DR, F R 1 BR BIAT 55 4
B IRAESE JIRA, S W42 38 -5 15 S S5 N 25 V) (R IR 2 15 2 175 BN AT 1 4 SR L M A
43 BEEEEMESEEMNHEEER

SR S RGN 25T, AREIE S a2 Ed ANE S E BAESE BRI FARIEER. AR
W TE 5 R IS 5 PO 5 SRR T 47 PR SRR B i 2 B B O L, T TR MR S A F EERIE SR R
G AN [7) R R 4, R, AR SRR 15 S FA N R A i i B AR TR e A4 P DR e, LA 25 iR
T ERIIBT i, 75545 5 R B IIE 55 B REA 2% a0 A 2508 FE 5 (5 B ENE 55 B2 0 BAE BAE A, 3REL
TN B 1 SRR AE,, o — A EL A PR 1 e R
44 FHEHRWIBRZE

HIF 5 T 6 35 (0 175 A L. R X648 2R 0 e N SR AT DA 2478 3 T i A kA, 5 R APLAS B, i
F 175 SR BT 8 K A A5 SR P OSSR SR T, e IR il R e AT e i 485 4 1. DA A 7 B R a1 7 7
B 2 A A TSN 3 S R T, MBS R RN B AN B R S, SeI E AR AN 1AM A |, I A2
PRALEE A AL RS BRIk, B 00T 456 00 136 R GUEEAT AN IR S L, 02 SRR BUE Rl M 0 R 50 ) R kb, A
(17 BRTE A L AR P A — A B AR AR, 56 T S AT EE K I PRt (43 901
4.5 FIERREMEIBRGRSI

B _LR Bk AN, BT RURAE 1 R TR B AR AR AT A AR SR 5T 3 A 5 1 R A K R R o A SR TR E Ao
ZM L, TREHE PG BE, S AR 0, 5 & Bk Rk, IR R T . 1012, ek
SRR ). PR, RS T B 1 R R AT 55, HARBERE )58 00 IR FE PP 28 N 444 7 BT 0 10 1 45 U B K
J&. UAh, BTN 1 A ER AL B, B R/ AE S R 1 R A A A B N iV 1 IR B R LR
e B A, K B T S 5 15 R S B 7 .

5 B %

ASORE B BT T — A R SRR, B AR NG SRR T U OB RN TV
FLAl. ASCE S TR R 75 B A SR S (R R AN A ). AR A, RS TR R SRR,
JEHREAETE T EOR B SR8 & AT TR SRR 0 M 5 2 45, B8, PRARIHE 15 S 1 IRGR 7 70 JAE R,
I ARSI | 20 i R PR R AN S PR EERR A IX 3 AN T3 1, EAT T AT Iml B LEARAn B gt Hrp R RS TR
FHAR AR A5 2 AN 1 15 3 15 R AR BRI R F Transformer. GCN 25 G HERBERRAY, 541, i BEHhRUR T
FIRIPFA R AR, e, 55T X0 2015 5 1 BRI B 45 5 70 Hr i 7 4000 A el g R ) X 5 A5k — B B T G
T7 1. BARASOANREW KA 56 T 5 15 R IR 5, (5 A5 BE AT 0T o 19 JE R AL AN TR 2R (1) i 45 e S 4 I
FH G R 0 E AT T R R e, b T E 5 15 R B AR AR
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