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Abstract: Database can provide efficient storage and access for massive data. However, it is nontrivial for non-experts to command
database query language like SQL, which is essential for querying databases. Hence, querying databases using natural language (i.e., text-to-
SQL) has received extensive attention in recent years. This study provides a holistic view of text-to-SQL technologies and elaborates on
current advancements. It first introduces the background of the research and describes the research problem. Then the study focuses on the
current text-to-SQL technologies, including pipeline-based methods, statistical-learning-based methods, as well as techniques developed for
multi-turn text-to-SQL task. The study goes further to discuss the field of semantic parsing to which text-to-SQL belongs. Afterward, it
introduces the benchmarks and evaluation metrics that are widely used in the research field. Moreover, it compares and analyzes the state-
of-the-art models from multiple perspectives. Finally, the study summarizes the potential challenges for text-to-SQL task, and gives some
suggestions for future research.
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TTAEFUE AR AR 73 B 001 THR, 8- B B e, kTS 50 R, 561 B ARG & S py £l 2 B BRIV iz T
Az X —HARAEF AT R FEZEAH] F 5 1 8 SRE  0nT LU el oA, W@ S B T IE S ME A LA, ]
DL RERTH L 73 B (026 RO R ARG T BAR TR 5 AL A0 A8 TR B 20 it C 4 i o b R e I i
FriaH 1T B AR S (Gartner) TTE, 2 2021 4F, FARTE T HAE 5 28 T o0 b A2 48 2 B8 i Mk 2800 70 b i) %
JHZE 35% HEINE] 50%.

ST AARIE T SR 2 0T OGS B R 2 — 5L T AR T M P A i R B0 AN e 4 A B AR
T A f (natural language query, NLQ), 7 0K HBE 0 4 S04 122 BTS2 F5I0VE 5, W1 SQL A, 1% — 1145 48 ik b —
FEREFR N text-to-SQL. NL2SQL (natural language to SQL) 5 £ s 42 1) H 4R 18 5 YL (natural language interface
to databases, NLIDB). [l 1 J&—/NHARISE0), 4552 b 8o PEAR G, DL 2 BARTE 5 & (i R 7R AL nt R 1Y
AHES), text-to-SQL LS5 A2 A2 Hons W (1) SQL 71 i1

Hodh FERE H AR = A

7 Wit fiZk

[HLAIRET b= figre w5 Give the flight numbers of flights
: — arriving in Beijing.
| HLI7 2 KL | o BT T 7R L ST T RS
| x| L ssns J H%x
[ ki ik LR E N
text-to-SQL
v
SQL #if] SELECT T1.fi%E5 FROM fi%f AS T1 JOIN #L3% AS T2 ON

T1.21kH13% = T2 413565 WHERE T2.38 17 = “Jb 50>

K1 BRI AR SQL Al — AL

text-to-SQL i AR L 5 S T WFFE A 5 i3 i U S0 text-to-SQL J7idi BE & T 4R 22 B4, DAl it AS 2 — k.
AT LU 5 PR AR AN B 1256 1 T RS AR, T I S A AR M A ) B A i P S St DR SE T NLQ
= NTAE, RAZ TP AT LI SQL £, JoAh ) NLQ H4ICik AL B, SCHR [S] WA — L8 H A 5
R Tgdok A i SQL Arify. U JLAE A, Bl [ AR TE 5 A8 B I 7 SRR N, DA BE 4 ST R [ AR 1 5 A B R (1)
BRI R SO 2 I BIF Y T text-to-SQL 1) J8, X Seiff 9% & WA ok A T 8o BE A, Aok A F HARTE S 4
FI(NLP) 4. WU Bt T — FRAVIRHT 5325, AW o HE 1 25 3 — AT (1t 0t e

AR text-to-SQL W FTHARIEAT T ARG M. ELERALRGE. AL, i85 text-to-SQL A1 % 18 XAt A ix
FI AT TAH, F 0S5 T HAT text-to-SQL W7 V2 R BARAE . VEINTF B AV &5 5. 55, X text-to-
SQL Tl BBk i ANEE— 20 (F 07 1 EAT T 45

1 #F &

1T FARTE 5 A SQL A PYB 58 AN TE 35, text-to-SQL HBEE AR K24 Y. BUAT I text-to-SQL HAH] LA
WA LREAT 7325, W 2 B,

MBLABR LI AL, text-to-SQL T2 PIFH K : — 24 text-to-SQL Ml 4 2 M Bralit D IR, RJe (40
PRV AN I SRR SE R 2 text-to-SQL ML — A SCAAE I, FH e vE 27 20 J5 ¥k B 31— b 21 i RO A
T BRATTHCIX P Foft S8 2 ol B by 2 T K R R 7 RN vt 2 R U5 .

MARGEAH L, 7T LK text-to-SQL AF:55 70 4 HUAEAE 55 M 2 AL S5. AT S5 i 38 A 5 RGTREAT — AT,
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HURI P Bt B AR & Bl ROEEE R SQL; 28R 55 M 25 RETHEAT 2 484 H.. 2 A1 55 SnT L2 i i

Bt: (1) A 18 RGUE R SQL TEA) i, AREUTT 7 ) B it AT 4 B SC - B0 2B i SQL AN IER 3¢5 (2) X

W S RGEREAT 2R RE, RGUERE RN AR WA b e B, e AT A R R SQL .
N ICREE S AR AT 55 A, T BB R BR e EAT IR IA, SR FEN 2 AR ST EAT A 4.

LT IRKE
Jiik

ST R TR T ik

ST AT 7T

NLQ 4wt

Bl PRI 4

Bt R NLQ 1%t 5%

o _J

SRR

text-to-
SQL

2t ) seq-to-seq

BT ARSI

— . _J_J

EISERTEN

seq-to-tree

XA

2 text-to-SQL L4573 2K

2 ETRKER text-to-SQL 753X

FETF UKL (pipeline) (K7 VEE0 3512005 — A~ NLQ #6454 SQL, 25 (1) H b A0 s B ik it 1 i FL At W1
{1 1, T O PR E . B SR AR TS NLP BA, SN [ AR TE AT
AT, PR SR R LG R, DABRAR P 0 A v I, R AR T A Ok TR R Rk, W OREE T, L
THE SRS E SRR ()15 5 45, 85 PRIGSLE O 10 SQL &S Fb B i . i T ARE T A 2, AL
AR 2 S, R )R] BT AR 2 R B, DRI R AR B S R [ A B S A S P A
HIGUE S W ZAMBEE T 73 I THEY, LA SNSRI R.

— 4 B () R AN S R ) [ SR TE A, 17 R A P A A A A o U %), i e R £ P A ) R
faitb ol e = i U0 Précis PRI A YL AND. OR A1 NOT H#HE 18t 5, REH LT BGE R, R
P N A BIHEZR 51, DS R AT I R fRE . 22/t B Al B AR AT T 2 ] (R 3 B e, BUE
A DRI R A i, dih e s A H 45 3. SODAM L VF P o6 T o0k 7 IS8 AR
PLsi g 5 % 3CH 0, T 0 IO PR v TR 50 28 5 LRI A A v 1) e B 28 5 | e A R DG B -, S AR BRI 22 A A v
FEREAT 4T 20 FHE R, &7 AT T 10 A SQL & iy, A A )/ iidee £ 20 A ocdlif & 3R Bofit P kAT ik 5.
SQAKP S FH A FH 37 2L (1) S B AT SR AR A, X R G Se T 7 A — AL I MARE, X B A e AR A i — AR
A T AT U 2% (simple query network, SQN) 4, SQN R LAME— %46y SQL 1), XX e SQN #4747 43 F1
HEJP. R T DGR 1 28 G e 1) 11 S 5 P A s e 2 A P, 5 DG BE  EAT VL, f  se 3 e |
A5 B M AT I, AT R AR A S R GO L N IR ) R R IR, BE AR I i) A FR.

Sh T REME AL B ST R R ) A, BRI TR T AT 0 R S, ARG AL S T S NLP BOA, b i
NIA)F, A2 n) IR S5 R (5 5., TR A, APEATT AR 15 1 T mT 5 B ) 15 i, R 20 BB S D (9 3
FEARSERE) TS B, FE T I R AT LK U SO 1) R = A SN, BRI 2628 22 4 mT LA S - b A ) (1 1
TERITE SC, AT A= RS S B bt 5 1A X 2R 5T e LA R 1) 2 B R 2% JF % () NaLIX A NaLIR %4t. NaLIX!"!
R A AT B K NLQ 45 0 XML B3 P32 (1 XQuery A1, T8I $2 081 S A5 250 a1, 28 HL Ut | 3 Y P 4 4
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FRGE T BRI A, L A5 K2 R G0 T I g il — 20 58 3%, TR SR [12,13] ik 77— AN TR R 80 R A8 1k
FIARIE T BB 11 NaLIR. RE050E NLQ 4 4 A b (RAKAZ UM, dependency parse trees), 28 Ji s £ i i 4%
24 SQL W), YA VAT AR SU, RGE Ik Ay b Sl b AT A RE, JF A vr P B0 AIE A v

USI Answers! i 56 A8 FH RIS L SPERRTE S iy 4 SEAR TR 25 NLP H A3 ) BT AR B, 4R 54
YRR TE AR e S ) AR, A4 R Ay TR 3 5 | FH (8 S A0t G, R T A A 6] I 2 5 1A T e A, T Aot
PRI AR Z R ATAE DGR, i MR 8 S A 28 AN [ 1) ) LA, A ) 1) R 30 A7 30 U AN /7. TR
Discover!! M I8 1 40 045 5 M1 Bl 1 P #6152 el R, o 4E 90 U ) 66 T3 4GE 1) B F SCJE 56 3092 (feature-based
context-free grammar, FCFG), REtHE LA i [ 2 #h ALl fiE. TR Discover 15848 FCFG ¥4 A il dt fig iy g — a2
H (FOL) B3, ARG A2 (1) FOL S 45 A AT B, a5 i R B AT A 186474 T i g, DK L 48 ok T AT 11 SQL 2%
SPARQL 7¥i#]. Singh 25 42 H1 1) NLTSQLC Z %8 ¥ 560 NLQ BEAT /NG e . 03] B4 U B B8 AN M v,
SR G K bR G B IR EE— 3 2RO R BRI 1), d5 T 5 G0 M B B A A ) 44 R 14l SO R LA AR R 25 1)
SQL /i, BioSmart! 7 LT 3 Fhr g2 AR, o0k aalidn &2, i, ir 2 27 ) i 20 1 A0 44 T B TR AL,
AT DU ik 5 T B 1 e v 2R TR R b 8 B AT I A i) . BioSmart 4G AL i KR AT AR, AR R I L R A i 2 T
FRBEAR 30547 T BC SR, - o2 T 75 PR 3R R 2 e 4, o Je s ) B 4 SQL 7 ). Sqlizer!™ 5 A5 (sketch) 1
i NLQ AT SQL ¥ [ 7w, @ LT > SQL A& 4, AE B SQL 11 FZAT- 55 2 T H P 1754 (slot), 1X
A7 v DA AR AR i) A B N & SQL 1B, B — A s il Wi 3 Jiw, 2B SQL 1 32 TEAT 254 Tt 54
TISAGG %N 7.

SELECT SAGG $SCOLUMN
WHERE SCOLUMN $OP $VALUE
(AND $COLUMN S$OP SVALUE)*

3 SQL HE/R

Sqlizer B 5645 HITE SO BT HOR A e A7 nl e ) A ) 55 ] o TR iy s ], S5l e NS SQL VA
Y. AT RE R SE R AR 1 SQL; AN, Sqlizer i B H b (1 IR KO A S8 2 5. Zheng S5 AR T
— P E i oracle” 1 7 VAR M2 AT B 1K NLQ, SV 7 46 FAR T 1) 1 50 IEBORIPE. SR T BARAS B SAR, AT
A8 T 0] BB 304k, IR T 0 S SR i v X AN W) . Deutch 25\ PO WIS T NLQ I (provenance). i
PR DA 2 S, 6 IR SR AR . AT T8t T RS S R K DA R sk i) 2 R I
YA BT BT, SRR A% (1 Baik 25 A E 56 T NLQ #4404 SQL I Fg 9 /AN 52 ) 75 S 7~ o B i
R B AT, ATV P S PE (¥ SQL ) H R SR e 35 57 W] fi 1) DG B - MU R B2 6 42 nQueery™ T S84 NLQ
HEAT SR R PR, R Gt vl 7 0 - B TR0 ), AR5 AT 0 e P (R S, AR R D) s g A o
PESTI L BRIUARRRBE, 5 M4 MySQL (115 VERIR 2 & SQL £ ifl. nQuery S FFR AR EL. 2 ASAEM
WHERE J-fJ. {5 W“Having” Al“Order by” ({5 2 2 1], Saha 25 A\ P HI[f) ATHENA REIET AR, 4141
HT AN B, BRSO NLQ S48k BT A I o ) A )15 5 OQL, R S B ILA 4y SQL. IXFfr iy By
BT AE SLRERE 1S OC R AT B (W FIA SR A T OIS, M (RIS . Ak, AR TR R, A
PRIRAE T 5T AOE A, B4k &R Bk 2356 &R, Sen %5 A/ ATHENA FIFERN B3 T ATHENA++, LUfi# ok
53R S A0 ) L 7 SR A AR AR S AT REA T WA, o NLQ 7324 5 & AN T A WA Y. 1) 22 N UE 4
2R BAEA AEH L RAE S5 SR B P OQL, TREHX £ OQL A I3 1 3 4 X HE 1 4 P IEA T3 2%, DAJE B 5 2 11
OQL A ify. s )i, W AN EHE i 2 M) LR OQL A %t  SQL #rifl. ATHENA-H5EHE KU /K 2k ] 4.

Erosina) o () o (e o (T o (e o () o (frn N
[I‘lﬂ%ﬂ .Lﬂiﬁ&iﬂ}. o "[ i "[ w3 ""#Mﬁ%& .[iﬁJff@E’.tOOL%%“ SQL]

B 4 ATHENA-++RESRI P K 25
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N EF 5 AT A RIET OB AT R A RITR EE 4111

FET ATHENA, Sen 25 NIBHE H T — Mo TE SCHEFIAE S B4, 4 e o B B R 7= A v SRR AT 55
A R HEBIAT 2%, FH T vl 45 1 B 2% BI Ay, 4 ATHENA [RHERIE T & T 30%. 1% 22 5814 e MR AT A 44 4
EHEELSIERPE (reasoning knowledge base, RKB), HI TR TE SUARRE (AU, 4 an 728 & CPIME. SURISE) HAE
N T 1, DA S — SOk i S 1 = SI2 (n I 45- 4tk Jie 5 2 Mt i A S B8 ). 6T\ NLQ AR s 3 20 2 4
fARRE, Al AR HERE S (ontology reasoner) K6 A M5 RKB HH S ARA U 1K) — S0HE, AS— B8 2 R H 58 11 Soc b4
RN B TE, M P2 AR v A B )R 9 4 1) 18 “List the traders who traded more stocks than trader X (#1)H Lk
X A5 WL SIS 2 )", RELHeHERL H “more than”il A T B0 8 P, DX BEASBE B2 T I S 2R (g s 1A,
M B 52 5 A B ANV 32 A8 S AR OGIBE, LA o B J& 2k vl LA, FH “more than”.

AT — e R T R R A AR LA S R A AR S T B ARTE S ARG, I H e K,
BN SR AT PRARHS . MRS B R A, IR S v DAL LR A R T DA R W Jira BY Github
REIAEAEPE P Lin 28 A2 1A A RE S B TiQi™, 1 1 T+ 10 35 H $d, ) Rl A3 20 W ANy e, B
T K+ SQL A AA s 45 SLIR M1 45 H 2 A, b A T 83315 B (traceability information model), 37T 5k 7 Ji J2 45
GRHEE. A5G ¢ R AR FEAR BRAL BERF S BE, W AZC T HUER A &, Wang S ANF&H T — M A0
B G B P () 1 ARAE T A NALMOP®, % R 40 14 2ot NLQ #EAT FRALEE, BEAT 201l A s AR U, 4R Ja R FH o7
FRPEFEI NLQ w47 B A5 B, HAE AT gt & 5| o 5 07 B AR E UL RCRCR, #6 R ok R G0 H W g i 28 7, €4
FARIS D AT R o YO P el A0S R AL £ 96 5 i MR S ) 1) A v 2 28, 561 R0 DUDIRE A A ) 10 I A iS5 38 4H 2 1)
P B, 1R S8y B SRR 4 B A B e 2 M A R A A A

FE T IR ER W 53 0 A R R F et e (R S5 R RN UM B, — e R ] DAAR 3853 2% 1R N [ il 2 F e 2
AR S R A 0. ST 2 BEAR AR AN T B S I 2 Bidls, mT LATE 25 5 b 4 A sk R, 9 an v 22 7 A8
T AR LY A, B2 51N A 8 SR AR e ) SCiA ), 41 DBpedial®’' ok WordNet!®®). H 28 5 i 4 4 4
NLQ [FZRRAT— %2 (M PR 1, 5 75 T 12 S 2Ty ), DR et NLQ 148 & A2 10 L sk, kA, R4
rRsE— 25 (RS R 0 T R I Sl BRIBOK, 945 A Td AT 5, B A 5 24 1 ) 0 2R 4 th G v v U,

3 ETFSHITFESIH text-to-SQL /53%

text-to-SQL 1] LLIA A A& LA RH 1 (1) — AR B3 10 4754 LLER 27 2 AR M GE T 2% 2] 7 EAE LA B8 4
A5 T 1R T, RO 22 R T A 4 BB m e vt 2% 20 Uik, AR IR IR T R, ST HBRIET text-to-
SQL MPERER I,

FETGEvt 2 2 (W O N 2R B, b R s EE A CRTK B () <NILQ, SQL>XF, M2 =) — /M it
B, SEHLA NLQ 3 SQL (145, X 3771 — B i B3 1), i Hoh iR DGR o o — AN R A2, AT 5 7K 2k
TTETE IR EE W T L. H Ry, 3 T80 122 S 1 text-to-SQL 77 7k KHR R i i 2315 %% (encoder-decoder) HEZY. X
BRI — N BT R W] S Fo. FEIXSEBET rh ) i 2% 4 B3 7= 212 NLQ FHE s e = (1 R0, 1) 245 DU 5 G
A3 B Rk AR B SQL. 5 — AL B PR AN [R] 1) 42, text-to-SQL [ AL IE H AR E 5 In) AT AL P AR =X, Bt
PR S R ) U B P (IR e R R A R AT At il T WIREE SQL #AE; Ak, AE R SQL Arif I BEARAUE AR )
TR AR VR VR R HLAE SCIEA. PRI T 8E 1h 24 2T 1 text-to-SQL J7 v 7 BEAR VR K I8 : (1) el %) NLQ Fl4k
P PERS AR NS D AT S, JEH i) R B PR AR QAT X0 555 (2) ol )RR B8 12 g 228 i SQL. T4y
T IX AN ] B FL R B AR EA T A 4.

3.1 HMANE R

3.1.1 NLQ If%ifid

NLQ 4l ) H B AL 5= 25— A M R R MG NLQ, 1% [l i b VR i 2% (i d . S5Rh 76 NLQ Ha4
77 VR LG AR, ol — P LK) 0 22 3 NLQ W3] ) 5 471 4%, 3 Ik X0 [ A SA i 42 I 4% (W1 Bi-LSTM, Bi-
GRU 2R S NLQ [4ifid %, & 6 Jis.
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4l 4% (Encoder)
Bk iR fitite
uatem e | o] -] as] | RS2 (Decoder)
SELECT s FROM

>

(
A A T

]

/—>I:I:I<\ o
T, o T {1 ]
| \,/f, 7 \,//, wae \//‘ A Stz
1 1 O 3 3 L s
t t t t t f
it e S S Mo S

Ko HMREF AWK

— SR 5T [ 3 B 44 fE (anonymization) F AR, RIPEE NLQ H 0 1 1 48 S e 1455 Sty Al o, B4
ERUIZRAERE . NSPP s NLQ H A SER A S TR 2SR 44, AR I 2R B 22 A S A8t i 5. DBPal™ Al o {0 7 %%
e NLQ iy i, i SR T 52 bR B4l 2. Dong 256 A PV T —Fh I T3 50 bR 10 W B BERE RS NLQ 3t
ATTRALEE, [ 42 A 1 RN 2% 3] NLQ 5 850im A 22 1) (138 SO WY OGFR . B (158 1 B AWl 4 (token) 15 75 22
B4k, MRS SEARER . FUBER T A G, 35 2 B BERE a1 15 060 N 30 RS e 34T 90 8. i Tk = E &k
2E AR RAE, (EF R T P T 22 AL s i B i B¢ (implicit supervision) TTEAT IR, BE 44 A 4 R AE
Shy SR REL A PR BRI N, e S A5 FH A5 AR 0 AT 400 55 NLQ (11 SR IA R
3.1.2 BRI s

WA= A SQL i ) 75 T HR MR A P IR A X 4t . B3 R B 2 g i 1) ) AR 7 A A ) s RS 4
i e PRI IR, Bt 2% 1 Fo th 2V A AR el 4 (0 i N M s AR S PR AR [+, 4 B 01 50 5 S AN [ (1.

(1) BRIt o AN R (b — R PR Tk, 55 1 Rl R 25 MR M 31 4 10 541, SR 0 12 i (4 5
okgifi, 41 SQLNet™ b5 51 4 ¥4k B il Fe 471, 48 ] GloVe #EAT 1 Bk A G 3% N\ Bi-LSTM HEAT4w . 45 2 o7k
Ser EREAN ARG, ARG A H B D BERE . BNl Rt AN 2 4ok AR R 1 4i . Wl TypeSQLP?
B SR 44 BRI N IBCT38, DOSRAFREAN IR, 2R S5 0 2 5 T A1 ik N Ji i Bi-LSTM 4afidh. STk [34]
i, AR R o VI GREE RN IR A, B —ANE 2 (K BT A7 ) L AE [R]— 5 43 v, ) SQLNet [¥151 4w Jy vk
LT TypeSQL; A5 [F)— £ 22 11 1) it ] LA [A) B tH BRAE DI R AR Rk A2 v, D &5 S AR . 1] 7 2 X A 5 i I 1
R R AT g R B .

(2) ZR MG, X T 23, 70 gmht I b 75 224 3K 42 dn it >k, 5 1 MeE R e AN B IR 4, R 5K T
A YN AR IR R EAT i, S5 A5 FH VR X 4 25 K 2 BUIAR R S22 I 4% (W1 Bi-LSTM. Bi-GRU), A I A
T BN T R gD, BUAS T AN RUR, 1 RCSQLP 45 711K ¢ 44 M1 44 F 23 B F7 HEAT 3% 3%, 7 Bi-LSTM
HIEEAL Lok B = ML et 51 ) 1) fe 2R, bl o7 2 A R A S 2 ) fi e S — 28O0 R, s 5502
T T AMEEE 56 2R, T A R R 2 G RE IO, PRI Bogin 45\ BT R A8 ISk s R SR I 2 TR 6 &R,
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o gt SRR R, AR R FNFN 2 B E R DL S AN G R, JE T KA E W 4% (graph neural network,
GNN) F=A A~ g6 ki BB T R R

wi wst wii wii wii
~~~~~~
(a) SQLNet H 51 4 it (b) TypeSQL 1 1l {14 i

(SIS TR LTIV

3.1.3  NLQ F¥udfs e s 5

AL IEAGY SQL 75 B0k NLQ Kt FEAF 20 55, BRIV TR ) 5 P ] T (SEAAR) A2 U AT 5 5080 J20 1) R 456 1
1. WAE B L BRI 7 b, JR 2200 NLQ KRB 5% S e 2 (R i B 591, <Ak 50 % e p Lz e vy
U, B R HLEE R T R < BA RIS AR R i S R, <Pkl T BRI X, X W 41 #E
WA ALE ) A AR A, U g BOMERE. 5 MG AR AR S5 HH AT NLQ I =27 A 7 2K (1) 23 it
NLQ FVECH AT gm, SR ) A F & 1T RS b AT BE B I 555 (2) BB NLQ 55 8 a8 — gt i
ERIDEEI R — AN e ]

551 POy U M RAR R TRNet®™, FoA Al 7 —AMBEURE R (schema linking) ABER, T8 3o 57 7% R UG P A2 9 01
PSR NLQ HH 2K 44 141 4, it NLQ FIE i 1R R 42, H9 i NLQ A B 7R, =45 o
VE RS T~ 18 SCRHALR ) SCI AL BRASCRANEE, W] 1 179 hre Bevi > 5 < BB ML IR R G 2R, Jim 210 LA 58 23
BEA R AL, (ARG NLQ AL A I 25 N [l 1] 4 5 1) AR [ A3 3 ), 10 Ryansql™ 4w g I, 8
I 1) -2 %6 55 )2 (question-column alignment) 1 i) @ - 26 X 55 )2 (question-table alignment), $ NLQ 1 [f]_E T 3015
S I B R s b Ak, BT NLQ W 2118 41 44 B 44 A — 8 S5 508 e v (1 42 Bk 56 4241 [, Ryansql
A8 A5 BN B 5 91 44 TR VR e D, R B s 2 11 5 R 28 ) 48 o) NLQ A1 o (R A A F 1) i, DA 3R ) 3
7 &,

XF T NLQ 45 5408 PR 2 10 48— G fich, 572 3055 FH 11 X 4% 45 g 2 00 1 08 3 4o 28 W 2%, 1 Seq2SQLM Mg 471 42
NLQ Fll SQL 554 K —AN P Fli i Bi-LSTM . J5 2L 1) TAEAE A Transformer BLTIN AR, A T 547 1)
RH. RAT-SQL™ ] LU 15 B M 4% GNNPTJ5 4 14, GNN AT I B dodst TR A3 (16 R, RAT-SQL 7E BLIE itk

ESOIMAZEZR NLQ FI45 A1, £ . FIFI NLQ =& Z i) LT B2 Ry (3L 33 Fh), #5235 s AL -l an 1] 8.
RAT-SQL 21 TG MHESE, R BT R USRS BB IR O &R, I 22 20 20 NLQ 1467, JEOGHE
J&—FhEET Transformer™ ) 5¢ 22 840 H VE & JIHLH] (relation-aware self-attention), ‘& HEFT LAZw A 45 s 2 [ T g X
BB R (B AMNE X R AN R), (A A DL ST P AN G5 5 2 T 151 OC & (9 ] 9]
Z I HE X5 FR). X-SQLMEE T MT-DNNMIRI 26458, 75 NLQ RV N [CXT] ARic H T4 4 515 B, 3% NLQ
M54 1 [SEP] B RFH, 5IN T — MRS [EMPTY] LLALHE where 141 4 25 (45 0, JFIEJ5 4G MT-DNN
IR o 1) B iy e 2R G, ]I 400 L SCHE )= (context enhanced schema encoder) A i JI AL 3R
A fa 1N SUE B Z 0 AR A R (BT AT 51 5 NLQ BTy, J5 820 T 138145 5 I3 75 BN
i 2 8 AL (pooling) 4k, %ttt HydraNet!™ ! — U B — 41, MRS 5] . FTEER S 51405 B4R SO
FINLQ SCA T N, 5 BERT/RoBERTa [ 4 A1) 1 X YIZRAT- 45 58 430 NLQ Il i rp i 7 B K A i) 4 A
M4 W 5 4 802 44, T 1 AP < db 504 s 1 81 4“3, BRIDGE Ve | 562 i A00FI B0 A2 P 25 Jon o 78 2 (1 %

© PEBEERKEFIFEU  hapy/ www. jos. org. cn



4114 HAFFIR 2022 55 33 A% 11 4

55 O 1 R PR S R RS, O NLQ FOEHe B N 28 BEAT RO U fC, DTG B VR A B SCAS (anchor text) Bftin
B0H I A R IR 2 5, TR GRS FRE) T4, it BERT BT 4nhl.
O£ db % B miES )
o O O o o 0O NLQ ##1: O

- 7’

N . 2
O U e AT il
- [] i <>
HLEHS > S
' ; yise Bt 2 ) “a——
S l S5k MNEKRFR: —
AL L Tpa—
O Z P >
fizEs gk IR R «—>

K18 RAT-SQL £ 4 FE R UM NLQ 4 Iy s 451

3.1.4  HARAE B Gihis

N T RS A R, L AR ISR g A R N T AR, Bl R (e EAEER A
AMEZI . NLQ HRSEAR SMANIRAE, IX S5 B AT BT Al O =5 2. S8 77 X 202 1 oA 5
VAR [ BN TN B BC, AR TR GG R AU N T AR5 B TypeSQLPE NLQ Ji i 15 i i sl 4 il
PR AR BIEAT A H VT D, 67T NLQ HR ARSI, # AR R SRR S8 B HobR i, B M biid MR A B i, 5
AL (10 3] [ B R DA A A (BTN . SyntaxSQLNet™ 5 TypeSQL Z{BL, £EXS S i hn_b T B f 27 4w 5 7
Frep. Bors FHEAIAMEE. Cai SN U B (K SCRRIE S N BU 4 35 b, 1 NLQ Hh M/ 745 sh ikl $R 3%k
ot B FH 2 () PLAR] . T LGB I0RFAE 5 B A 20 000 28 T U b 0 1 BRA 11 AR08 55 T IR ER AR S0, IFAR T SQL 1B
2 T AR, Liu %5 0K 8RR AR 1 R A3 S i 2 a2 9 B3 A5 R I G i v, AT S8 4 bt 2 g ) 5 A
Z IR HEIR O AR, 3K — 1 RN RE A8 TR ™ 2E LU O R AR, SR [50] B2 H T — i T Hi0dl 2 A 25 () 7 B i N
5, FUHEEE 8 N 589500 NLQ FIBs FE R (15 LK. Wang 25 A PSR b 28 k) 2% 23 2588 T T4 01 NLQ
R 4 R, RS SCAH LR E A S AT AL &, H NLQ Fhax S8 s 15l (1K) 358 20 A T B I I 4 B a2,
i), AT A Y S AT b BR AR NLQ (13818 T LA ).
3.2 SQL 4R

text-to-SQL A _Fe— PP SCAAE AT 55, H 2 ) — I SCAAE AT 25 (LR8I 35) AH EE, text-to-SQL A A LA
TNHRE R (1) SQL A S VAR TE LK, Wl FROM F R ANRe b %%, SELECT A )41 4 447>k H T FROM
TR — AN, A LA IE A 45 (2) SQL T IRR 4y SCACZ [R5 A EZE, W SELECT TR) 1 (151 4
WHERE 1) H1 (1353 45 {1 ] LAAZ e 55, FROM 1) (1) 5 s AN i — . S S8R G fdi 43 SQL BB /™ 4% SR 3%, 4
SQL AE a3t hn T 1R 2 WAk, 4145 SQL A= A B 1 4 FE AL 28 B0 2R A5 U 1Y) seq-to-seq J7¥E. BLE T SQL A=l /712
A LLE ST,
3.2.1 K3k seq-to-seq T ik

EHTTIHEA K seq-to-seq MRAGJ5 1%, HZERXS SQL [ AT T Bk, ZEAL L1 seq-to-seq T, fif1)
AT softmax Z3 JEESAETIUE SR 1] 28 A P B n], ELJG V2 AR BE R & 554 (out of vocabulary, OOV). 7E text-to-
SQL AF:45 1, A 4 N1 20 Kl b sl Bl 50, 700 25 T o I DK R 363 S v A% e LA T 3 7 Yk A T ) ) AR
K, AT 25 1) H BRE 5 /& SQL I, HABE M F55 A . 25T LU B AL, P2 3T seq-to-seq M LAFAE B it
Fe4t M (pointer network)™, ¥ SQL ST . NLQ H [ S il AR 128 70 245 A 3 AN 781, FIE 5 WL, £
e e e e <<t DU AL, AR AR 8 e 6 — 25 A J ) B3], LU gk OOV [] 8 1, -9 2 F9 00 2 1) (9 .

Wang 25\ B — A seq-to-seq 570, AR Ffa b L 70, figfith % sy 4 FH 2 13 7 0 (I S AIBLABIAA NLQ 42
A H A, BCE M R 2 AR B AT SCHR [S5] [FIRES FR AL I 28 BEAT 4 i, AN [H) 1 2 40 Sl 0k 371 44
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) AT . T SRR T RIA I 2 AR E, 1A P R T RE S 8 4 SR TR A AN B PR R 4 AR R
(11 SQL 75 T AREFAATILE S, XF 1k Sun 258 A PR T Rl SQL 111 A4 e aliE UM STAMP, £ 454l 14
LRINFEAE LA TG, STAMP [ Rd % 1 3 ANMUEAT 1 AT e 4. 3 ANMIUE %04 Column, Value. SQL i
T, A3 ST A 44 2 rp B TCAKARURT SQL S, T T 18R 70 D PN AN o [F] 1 pe I 12 32 B WAR A A0 17 o0l &
Kt Wang %5 NPT G A FHE T seq-to-seq AR IR G T2 4 25 (10 10 JBL 6 490 SQL £ if, 4R i P 3 -2
G SR G A I A, A RS AT A5 M A R D 4n 75 ). BRIDGEM s JIl 24k 454 SQL 1B A1) T
R AERC PR T B HE B, MRS T HE 2 S R TR O R B B AT % 3 2 ), R A L A
=LKL e
322 BTSRRI ik

— SBT3 K SQL 2t Sk N ] BRI 2, A T 6 P M BE T AN ] 1P AT 55, 16 B 26 R 2 10 1 2 )
TRk A B ) . Seq2SQLM AR EL 4> g 3 ANLAE: (1) BRA 70250 MBI A28, I sum. count 2%; (2) select 71| fi#
g BETHREE M 2 I PR I 1 (3) where S (AR AT : I T-F ik I 45 PR A 15 4. 11 Seq2SQL A7 AT vl
8L, A SQL TEE Hh S S ) ()] 4 2 1] JF B0 A7 WP 50K, Jim 8 DA A T ekcilE. SQLNet™hKt SQL 4E ik
R 6 TS, WATEFEFT Select-Column. JEF R & FREL Select-Aggregation, T ZAFAN 4L 1) Where-
Number. ¥l 41551 Where-Column. 1% 5452 4F 45 1 Where-Operator, B 7l 44141 #) Where-Value.
SQLNet K5 (sketch) 51\ T SQL A=l fe. 75 i WHERE 1-AJI, SQLNet 1 5G4 (824, SRt 4t &F
AT, R 5 2R TRV E 25N S {8, % T WHERE ) i 4 2R R il B 47 22 Ji5 8 vE A T B &)k
ik SQL 2. Dong % A P H T —Fh ACKDILIEE 241007 FE A ARADHE LS, e SELECT 1) Hh 1) 811 0 SR 42 o K 1) T
TURE A 53 ZAT45; X+ WHERE 74, 95 506 A FH 3 AR ER A Bk w0 F, 0 4 PF SR 4 PR IB ST, AR 4 o ]
T4 AEHIRI S AFA. Guo %5 A P1F1 SQLova'®"4k & T SQLNet 1145 fifthl (¥ L i, AN i) Z Ab 7T, Guo S NSRRI T
R LIRS B2 4% (CNN) AT Z R IR AR S 45 J, SQLova i T BERT 1E WAL ({4 A\ ik
J2, ARE T i ) . TypeSQLEKEFE T iR ity 8 BB AN SCA G | N5 SQL ZE il v, T8 3ok & B ) AN ) fO A 1047 43
YFFHIRE MEZ S5 R, 15 SQLNet A L I 25 Tyl HACR LS T4 3.5%. X-SQL™ MK SQL - 124 i 43
0y 6 S TATSS, SIAII AR R, FoAMBT 93 4E 4 % WHERE T )T T 17 24 402588, A28 sehr Al
b B AT 4 AN RE B2 LU, AN BB RCER AR A 2 IR O &R 1T X-SQL 42 Hh—Fh BT KL #U% 511K X4 RiHET
J71% (list-wise global ranking) £ 481 (1) H AR R EL, PR A TAT 55 308 2 AN, IS T 58 i I MERf R

R TAEY R SR B A ), b A 447 SELECT Al WHERE T-#J, H. SELECT T-f) P (L fu &
BN LA, HydraNet™ 6} 4 111 /2 24~ SELECT F1 WHERE -1 (£ £ AR E#), 1T H4wi0 2445 T BERT ¥%
B35 B NLQ SOt it N, 54758 FUAH G TAT 55 (W ZR A8 FAF) Wl Bk 43 AT Rl 24T 55 S e
T HI 4 FAT 4 (1 WHERE 452 %) Rl & HE P HLEIZE & B 8 45 5. M-SQL"X X-SQL #E4T T
Motk M-SQL 15 8 NFAT45, & 9F 7 X-SQL H ) W-NUM 5 W-OP #8417 3 A7 #i84: S-NUM, H X}
SELECT F-BeHdt 47 #itill; W-COL-VAL, fliH A i) - (1) Fr A7 {f; W-VAL-MATCH, X B il B (5 F0 26 7 B E AT 1L
Fit. F-SQL7E M-SQL fyJEA I, {8 FH I TH LA il A it 2 A R 28 A 2%, A R it T 400K, #2795 T SQL 75 i1
A2 P e

AT — SR ST T A4 e X Spider B4 b5 2 AT 45, SCHR [63] #2H T — B BNEN BT, 1 Se Ak
SQL ¥4, ¥ 305y 4 ANFAT S5 FHEA N Z A2 43S 1) SR JE ARG T F) 42 2 1 3R RN i =X 1, SR T 0 i 40
B (Steiner tree) 25T i i FROM 1) i 2 R H: 442, RCSQLEHE H 17— Pk T~ 1) (K AR A AR IR 1225 78 3
Ohy AL ] AR ORIV RL 7 AR, 1 A FH SO 43 8 S A SQL F R Tl — AN HE ], fr SELECT FA) 11 #E ] 4
“($AGG $ COLUMN)*”, WHERE T-fJ[{J %54 “$ AGG $ COLUMN $ OP VALUE(AND/OR $ AGG $ COLUMN
$ OP VALUE)*”, #R Ji5 HR4h 5 1] A e 41 AN HI N 138 5245 . RCSQL A4S SQL T-A) sl 25— ANEF 2 T T A (R il
%, WA TR 2 3 FIAS IR R RO B L (R L B IBSAT) G5 Aok N, 2 L0 T 21 ik 5 7 ), T
[SUB QUERY] ARic i AR A7 B, FE45 7 bR c (K SQL A5k b Indas A, 3 VA 3t 2 il ik 5 75 ). Ryansqlt™ 1 43

© PEFEERK IR s/ www. jos. org. cn



4116 HAFFIR 2022 55 33 5% 11 4

Pl A BRI A2 78 P Y B, (HOS [ (9 /2 RCSQL 4 5B A i 734 8 AN FAT:45, Ryansql #7404 11 AN, A6 FHkE
), Ryansql ¥ SQL i AJ#7 4> A ARk E SELECT B A3, 51 N h) {7 & 4afilh (statement position code, SPC) & X
BRI SC R, SRR B IA TN SPC A X} W SELECT i fi.
3.2.3  seq-to-tree [ 77k

ANEZ L SR VAR i 7= 2 R B 7 S0AR P REATAE TV 0, JCVAT, JUHZ 52 A 1) 0] i) SQL £ 1. seq-to-
tree [F1 /7722 R SQL T RITEAA, A8 FH U VR 24 SRR 2 21 pl A A 10 Y, DRIEZE AR SQL 7 vl BLAT IR Aff ¥ 40
FE SCHU. Yu 25 AN HEH ) SyntaxSQLNet K SQL i1 43 by 9 AMEER, AEANBELRXT Y. T SQL 5 1y i f)—Fif
By, SLARAT AR 455 SQL AR R 478 17 S T SQL VAR, A i b 791 L) SQL SCVEMf e 9 AT (1) 2E BRI,
IG5 B SE TR AL 244 SyntaxSQLNet fEUE AR M SQL 5723 VA b i FH AN IR (4B B, R &8 b 2 il ik
£, WK 9 FioR, “ROOT R A MIMIT4h, FR40 1 56 R TUEN BT & 75 4776 INTERSECT. UNION
o EXCEPT, “NONE" R /RAEAE, Z J5 i KW HLE A= st WHERE F1 SELECT JCHESE, DAL ISHE, 4 Vi T R
FEH A M I R P 4%, “none” 3% 7 Y A S8 4 B 8. SyntaxSQLNet K4 SELECT i5-f1) 1 51 B J& 19 26 ¥ it FROM 1
), ANHEAT T, R Pl R (KR 4T FROM. F4).

9  SyntaxSQLNet F1 5 T-H ] SQL )ik

SemtoSql+ HRGEIE R UK 2 4 4 AN, 5 SQL 1A E i i TE VAR IO RS 4% Lin 25 N 5T
TR TB A B B (abstract syntax tree, AST) [FASAY, 38 B V1 R 2 i by 2208 B A A5 E VA 5 i 7%
Gy 2] AT e T AN AR SQL TE B, XIS R TR AR 1K oy, 3B AR WA T N — S T At
JRREEFFRALBE, FEF Lin 25 AHE I ITEVE RN, Bogin 25 A\ PTEET GNN P74 R G 2 (1N, EMRRSIN A A
TR LIS R 8, A P A U e AR 2 4575, ZE 1 SQL i i2A. RAT-SQLM Al Wit 46 Ji AST SRk
A H) SQL #rif), AST Ml T sh ke #yid, shE 145 APPLYRULE. SELECTTABLE #1 SELECTCOLUMN, H:

I (RS RIBAE g I 5
324 HAhrik

B T L3R T vEAh, WRAY G 4R T ST om Ak 3T (10 75 1% Seq2 SQLUHE H I 3t Ak 27 31 oK 2B AT IE 0 ) 25 i)
A, TR — SQL AT it HA 2 NG 7 5T 3%, Seq2SQL AEMRNY % AE JVATART 45 R 2% I X AT 2 HEA T
SR AR T A T R T 55 W SRk 2 3T (15 72 MAPO SR AR ¥ text-to-SQL fT.45. 7 MAPO 1, 5k
2 ST IPIR A RN 1K) NLQ AL I (1 PR BT (R 45 B B8 ), Bh AE 23 M2 2 1 NLQ R A vl Ber= AL IR 4R
B, MR 450k 2% VI S 7 505 N A R — AN T RE AR S, MAPO B2 H 2 A il AN S R 4L, %R
Heh T 7R/ NLQ &4 N, SREE SN 8T 1 MEA o0 A1, AR L ME S 43 A, v RAA3 3 NLQ X B (1R 7.
MAPO A7 575 [FI R AR P v [l 1) R, 6 M SCR [67] 25T MAPO $& T Ho ek 7 % MAPOX, H Tl Y AEF
B TR BT = AR R FEA S )14 /) J, JF42 1 T MeRL (meta reward-learning) F Ak 3 R AR (1 5 [ 4R AE A
7.

AT A S R I, (R R (output beam) ML B fr L A TN SK B2 THAER . Bogin 25 A *I7E GNN

PR OO SERR 4R T — AN SURRAT 2%, 6 Bicdis 2 45 b R () BUREA T #E T, 314 R B HEAT R, AT ) 225 40
rF S A P IR e A 4 R e B Bertrand-DRE T ) 5 5 R 2, s T A o SR
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S BERT P4 288, 1875 GNN A BIE Spider $odli e b IUMEREMIN$E 5 T 12.9%.

SCHR [70] I T — MR I HATFE S (execution guidance) FUHTHLEI LAFIH] SQL [ X. ‘& LAFB 4 2B e I L I
(R FRAT 5 0k 2 A, A AT ek 2 G I - HE B B A2 . SQLoval® . BRIDGEM!, X-SQL™1 HydraNet™ ! {f FiI $k,
AP LS, S90S T S0 (¥ 4 . 2 B8 T A7 4E 22 A ELAT AR ) 3R AHAULE L IE ) SQL # i, IneSQL"!
FE AT AR 8 PE T B (oracle) YIZR)TF RIS, 35 TNEh1E 2 —Z P IH 8 SQL & s, 456 34T
LIRS 2R, MR8 0% B 45 20 85 S (R T & A543 SQL A
3.3 HpFFRIEIRE

BTGt 28 Sk, JEHRBE TR B 22 2 (R 7k, AN BERFAE LAY, 710 NLQ A8 A (1 8 H Py T b7 4
N BB AE AL, AH T B MU T i N et BRI e A e sl b R A, BRI S8 AR AT 0D REAS text-
to-SQL FNEH 3G 5 A% 1] 35, DUNIZEAT BRI FE A S A T R THEE B R

(1) ZDFEA text-to-SQL

Huang 25 A\ U5 B TS A0 R0 60 A 56 68 400, S8 104 SR 2% o) 1 BRIk few-shot JG2% 2375t A0 2 Jrik
HALL, FTRASEIL 1.1%-5.4% (40 HERFE4R T, Lee 2 N PH&HE T4 one-shot 22 X B, %M R IE TN FF
AL AR IR SQL KA. AR 43 A AN BE: SQL ARAR 73S FNEE T FR AL I 45 RS IEL A T ARAR 732, 15
P TR FR P 4%, AR T B HE A SETT I n AN SR AH DG SQL B LA i SCRF AR, Bifi i, BV FH DT TG 199 2%
(matching network) AR5 32 £ 44 BB EAT 4325, Chang %5 A VBETE T — ANl B E A 20 A0S0 B AT 45 F T A
(zero-shot) text-to-SQL 1T:45, (2 H A A [ AR VE 5 S5 M4 BB FE A 0 38 (W WIS . AT 45 nI A Db SRR DL K
A AT A5 P E A T, DASS IS (172 AL g

(2) text-to-SQL H [ Hi4h 44 i

WA S TARRFFY T 50 3 i A . SyntaxSQLNet™ 1 5678 Spider $udii 4 142 HUE FH (1) NLQ-SQL 4R, 41
o T PSR Ji 75 3] 280 AN AR FERE s AR, 7F WikiSQL s & b3t fpak R PENLAEH 10 AR T 7S, 7S
IR IE R 28 Y () — B0k, %2 T 25 98000 AMFEAS T VI 5. Guo S5 NP T ANIEF il A= Al [ 78 S B
YIGRAESE, B e P — AR F ) SQL KAE 8% 2F i SQL 154, Bl Ji F — AN E /AN U W £ Ll ) )
AR TR, AR B A v A IR e R, R T AR I B L N R R AT e O 5 G, SR IR o
Zhong S5 NH-H T GAZPY, A8 FH i i) 8 SUARHT 2% R 1) 30 8 25 o SR B S s, A I0AT 1)V SLA3 A 438 I 1)
s PEERE . 6B B 7, GAZP 1 56 3T B AN SQL B HETE A BT RAE, AR5 A 26 1 #s 2E il 5 1x 4L 2 A
T AR LKA 7, TRASE AT 2 A 22 i A0 77, DR B AT 25 2R 5 SR a0 s R B . B, SR a8
P RGBS B AL R H T I GRE SRR 25

(3) M7 text-to-SQL [Tl ZrAsi Y

TN Zih 5 A8 A T e} o 2% SJ T8 5 108 F 0, RORHR imy 1 B (R v i e, AR 8 Tl 2 7 e A
SETESCA EHEAT NGV, X & R A0 1R A Bl A T Gt I, S A7 AE TG 2N — B0 1) 8, DR 9] — 28 AR i
M TR I N2 B, Yin 25 A VP4 T T8 5 SR TaBert, LA 2600 J5 5K 3B RIS SLAHAR (K SCAAE Ay i
A, JLR) % ) NLQ ML LR MR IR, O T AL BRI A%, TaBert K15 i e AH OG0 Hicts 12 T 24 o A 2%
PRI, B Hrp R ATZVEAL, {3 55T Transformer /) BERT BEBYHEZY, IF4h &2 H A B 1ML, REARAT
FLICHE Z TR IS R, AL AL )23 B SR I A )R 7. TaBert Jh 27 ) FARTE 5 A5 B B R SCROR T T AN A
(TR ZRAT: 55, HT & A AR AE I HERS 1 548 (masked language model, MLM), i £ 1 15% [ Bl BEAT S,
Jii 3 A% HE i 41 T (masked column prediction, MCP) FHLIGHEAEPK L (cell value recovery, CVR) 1T:45, #E4T 4k
PRI R BEALIEE R 20% 1951 42 Pk B B S8 28, O B LB e A (L, DI RS B S0 ) 44 B LR, i id B e 6 1)
If) B N K AL A GG A JR AR 8. TaPas™ ™ i T BERT M5 K, MAESE B RHPHREL T 620 J7 48 BRI SCA T BEAT
TRINZR, F LM P8 B 0P AR RS NLQ 5, IR T A4MA4 ID kA AT ID IR SEH T 4ufid R I 45 1), it
NI T FFEUR N (rank embedding) 4ifis S AU, TaPas {4 FHHERLTE 55 BERLE 4 T00UI Sk H b, il SCACRI A
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) — L AT V5. TaPas PRS0 28)28, HI T8 000k PR S AR RT, AR R0A 5, B0l 2%
A1 1] . GraPPa" Al TaBert X K fk O W 75 2 HEAT TR 3 3 12 HLAR A v80 B, JE I text-to-SQL it 4
SRS B R SCE RS0 (SCFG), £E My i R b H sl A2 i) AT SQL . £ bs#fE MLM AT 45 1Y) Jk A I,
GraPPa 40 T — i (1 SCABE A EEH H AR & OB HEAT 0I5, 12 H AR 15000 512 A5 H BLAE SQL i ity o DL A
i A MR SE R, T o TR A H 195 . GRAPPA 7F 4 AME XU AT et 4 15U T Bt 4h L.

4) ZAT5%

SCHK [80] N T HARTE S T4 (decaNLP) HE5%, RS- E T 102, MLAS®Hi%. W2, 5 U 10
T NLP 4145, IR 1 T —ANB 24145 24 M 4% (MQAN), %48 7] LLEE &2 =] decaNLP H [ BT (145, s
FEATRR & TAE S MBI B S A 250 45 2R W R MQAN 1 5AE 55 BB P 1) WikiSQL 18 U AT 45 L3R4S T sk
SIEEEE

gE B RTIR, FE TG4 S A AT BT 8l Uk SQL RN, Xt F 4RV 5 (1R Ak s 4ot B s KR
T PE, 7E text-to-SQL AR5 T UM THRUF IBUR, K 1 XN IRI R B G AT T S S AT EL AL,

R PR Z T

ik b S A e o
SR ) e
oy BRI ST R R INLQUIZEAT SN R
Wk HOTHRE < FET T A
T E A LR R il ol
i K BN T
W1 WA B SR
TGS A R 213 ) AZ AL A ) 3 ATARREPE %
IINLQF AR P v IZMERER

4 %% text-to-SQL

IR AR AR R R ARG U, B s AN R, B G R AE O B 1) SQL A . 7R SE BN, iX g
FEAE SR 2 AR R B MR IE A, R R A A e R A, =
AR HMEVEAL A2 ) SQL S 15 IEAff. A PRIk 26 i A7 — AN [ 10 SEU B, ISt 2 38 I P R AR 8 1R A8 L, i i A8 R 58
St AR ], O AR BT R, BT — A, AR T 248 text-to-SQL AT-45. AR AR AL SQL AR A5 SRS B
RS, 258 text-to-SQL X nJ LA AT S £ 5 text-to-SQL AL T SCE AN 2 48 text-to-SQL.

4.1 ETRIBHZE text-to-SQL

T RUHIZ 5 text-to-SQL 1 RFEAT H.I1 H (K& SR I ;- i, 18 I Wit SOEE AT Y, sl 3 2 (e 45 P P Pt i
WL IEE S B IE WS, 2842 SQL I s AN Fe st i | T 3¢, HHE4R4n 18] 10 B,

O 1.NLQ
P 3 s S NLQ

' E

2. i 25 B B AT 1) A
K10 A2 AT AE AL
SCHR [29] 38 0 T — R R A8 LA S BV, T Se R AE D MR, SRS AT P R AR B A Rk
IEACHE R BFAE YN AR R R Pl H e 5 I At 2 T AS . SCHR [81] vl — AN 1l F 4, a2 v it 1)
J 25 T R 1) S 45 HROR 6 E 25 25 30 P 9 AR A% 5. Duoquest™ R GE4R T X AN Y 2 0 A R (dual-
specification query synthesis), f i NLQ F1AJ & )5 BL 5451 48 (programming-by-example, PBE) ¥R A4% & ] 25 1)
(table sketch query, TSQ) fE ¥, TSQ fVFHI /45 & A WL, B K828, b4 b2 2 TSQ. i HE
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T T 7 R0 2 IR TN U, AT RU1E BY 7 1 1A 98 28 A I SRk 3o A v 45 TR AN T TSRk, R T LS
NLQ i TSQ AINE 245 K, HEH AT H 0 A A 1k, Li 55 N U T — Rl sr FROR 3 1A%, 14
T3 28 AT NLQ HRR L sl LAER A (¥ 1], 28 RO BE R 5 P JEAT 28 B, AR T P 10 IR EE S NLQ, AT LAAEAT BRIAE H.
S I P B3 SIS IR () 1 B SR [84] 32 HH T — AN AR TE T BT SQL AR IE AT 55, B X HZAT S5 M T 3l
£ SPLASH, J-0Ig 7 —/MH AR5 SR SQL MIMELL, A AKEIE SQL ¥ I/ e #RA% SQL i if, Mk f 4t 2 it
DL IEAIESfT SQL.

42 ETMHEXM%EE SQL £/

Bl — 4 T AR FE T 2 LR SCAR SR RN 37 5. 76 S N R, P P 28 T 3o 1 ) — R B A 56 1) 5 R
BT 2 5028 FORSRIUE B WA A8 BT, FIPOE w2225 D) Sl e A DS A 2%, sl R R SR LU T
AW e A 1A B PR, RO R SO s R, bR SO S A ) R Ak A G 2, JF H RS
S0 T BRI AT [ A R 4 8. Suhr 2 N PR T AN 1R SCHIG R AR IR A8 B e A S 3 Al
PATIE AW, T B IHACH T, R YLD T — A BN D 35, %2 028 70 A el 5 5 S8, JF Ay A
FE AR ) 5] 42 54 5 B TR0 A 0 1K) T 4. SyntaxSQL-con™ il ik AT 2842 £t Fi— A il AP 4w A 4 B n BT S
5 K4 i SyntaxSQLNet™*”. Zhang 25 N BWFST T — bk TG B8R SO 6 text-to-SQL ZE 1% 77 : EditSQL,
WKl 11. EditSQL %) NLQ.  Hicdf FEb=UR [y s2 A% S AS B G hth, g Rt ) 2% LS Tk o) 15— € 1 1) N FH 52 51 FH 2 o 4 4
SR AR RS AT . I, K AT —Fe A B SQL A IR A — MR T A1), AR S A8 AR BT IR A B ] 45 200 T T
IEREN e

[ 11 (Utterance) 4ifid ] e [ LSTM F i 25 ]
t {
G A ML TR S A7 5. SELECT Mk % %K, 45 FROM fliiZk
[ 1 (Utterance) 4ifidh 4% ] - [ } ]
Bi-LSTM 4wl 4%
LAl THF IR T 35 2 |
( RO | R N e
I ]
ap——
sE [ mams | ALK | [ LST™ ﬁ;ﬁmgﬁ"%& ]
MipER fiZk ‘ HiHE S ‘ ‘ SI]?LE(JT JEJJ‘L;}/LZW, 45 FROM fiiZk WHERE
B &= kHE>
e | s | s |

Kl 11 EditSQL R 4 sy

EditSQL ™MW % [& T F 5 0 [ s 4 A F0 1 58 00 (0 75 ), 2008 T i A a0 i o s A L. AR B3E R I
IGSQLMH H T — Rl A o A T Pl G i, ok T 550l P e Mgt IR, R P 2 o ML, A PR i — 8 R4 e
AFAR (A% XI5 S 1 A 46 IR IR s, 6 23 1 1 5 P (085 e A o I AT R AT, (R 500 e 1 S — 35k ik
Ab, FERRRS I B, IGSQL 5T IHLHIR AU SQL AR BA-  Hicdle e A sQ IR 2 i %6 7 1) SQL 1Al 9 1) FE 224k 1S T-
SQLEZ 1 [ 4T-45 (X 1 R G0 X TR A PR ER AL ) A, 43 3l 3 TSR SQL e S T BIAh A8 IR A,
HBEE T A IR BN ZE LR — AN JE L 2R 20 5 B X AR R R R ELRAE R R HiTER R R
K SQL &5 B 454, FUJH A HIHLHINT 24 T4 (0 SQL A Wik AT ##AY. Liu 25 A UM 258 ) b 0 B R SC i 4ok
3R 1 X 5EA (W EFSCTER) . JRERAIE mE, 1E & 70 I — AR EIPAL T 13 MORE M B Sedmfis gk, ok
ALFRERSNT R S &% SQL B [ R SIS 3 Bhor ik, LURCEATT 7 B dlG 7 ik SR T — Rt
TEVEMRAD IR T ST S, ST 55 SQL. 28 ) (K4ih S v A toh I (VU 3 41, Hui 25 A PR T — B EIHESE,
B 28 R IR R RISE R A I R S A HL X b N SO AT A HE, 3175 120 48 B 7 0 04T I A7 R st |
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ICEEE B BlE R R R 2R A L. HEACR T B AL TR LR 45 A I A A, SR BT S K
SR> S AR, TR AE TR GO A 51 200 EAR R w I LN SO RS R, Il S At i A R

5 M text-to-SQL EiE M Rt

text-to-SQL ALK FH 7 1) ARG 5 38 1) B A0 v ST DR AR AT G SRR, A1 SRR BT
(semantic parsing) 43S K —ANFFG]. B X KIREER T SQL, A B HE A $UAT LR, W1 lambda-% %30 P2, 15 X
B P30, b3 A il 4 PSRN B, i 12 B, SUBAT BT IZ R, Ak F AR i 1 2 (KBQA)™
Yy st P IR IR PO LB A PV A 4 text-to-SQL Z AMIITE SUIRAT 7T

[ wtelomEmnss. |

TT was

lambda-FIAR: v, IHE (0) A H I (x, 65D
SQL: SELECT #ji#t*5 FROM #ji¥f WHERE 3 ili= “Jt 50"

A

Bl 12 i S HTAE S5 P it GRS AR C

(1) FT- 1] -2 & SOV T8 SR AT

STV SURPATT - ST, 2 33K 26 28 405 T K SR s AU P e, N A ), o e 2 22, DA
IR B HABAT K, Horh—AMURIE LUNAR R4 Y. Hlas s >) DOl 5 36T 4ot ik b A0 7 M 7572, o]
B SO IR ST 2 AR SR L I 28 5 e T am EAT SRl WS, SR R AT ) T, T SRR AL A T
SCHLIG, PEAEARIERNT AR, TS 2 ] VRO T AT 4% G i 21 & SRR AL & Tu g 3% (CCGYP A3
FARAF IO AL XS (DCS)! . JG 8V T ARG A 15 10 U F) e 8 2 ) it B o s F) ] L. SRR [1017] 47
FASIY CCG 30, 0 Il JEORA T VA W 3R L83 4y, RVl JP 284k A /i 44 I 55, (B A E B [ 4R &5 72 1k
Kwiatkowski 25 A M08 5 [N PR 74k il i, K 3 ¥ 20t A ) 2% DA e i) SR« e LA 2 3 ) i L., i) -4 A
SCYEIA TV I R I, PRSI o, R T B S R 2 SOV, MO A SR SOV R I T AR

(2) FE TP LR 118 AT

T ) AL, A 20 A Ao 28 00 296 1) i D - PR R A HE . 300 5 ¥ SCAAET P g A 28 AL 2 S5 A AL I, A T e 9 i
b 3% VA T VR G A TR BRI, PRIV 22 AR T 52 2 AR 3% Tia %5 N UM T 3 i 5216
HLENLEE OOV 1) B, 51N T —Fh s W5 5 vk, FUH DD bR SCOE A st I 2580 Dong 25 A U

Tl 2 T LSTM gt &, 0480 17 2 b 8 17 AR 28750 o, 6 TI0 45 2R AR 4T i, MDA FOPRAS A b g A Tt
IR — 205 P8, DL 20 A 15 08 1b. 207 0 RERS DRAIE AL BRI B4 DG TRE T, (ELAN RE PR AIE A R
SERTTIAT, W RE A A A B TS R SCRZ AR AL IR TE 2O A il R R AT B, BERS PRAIEZE B A XS 51
B ATHRAT Y. Xiao 2 A VOB IR L ARl 2I2E T RNN (/74 7l Rabinovich %5 A "5 AT il %18 24
%% (ASN), FIFIBEHAL A2, LA L R 7 2R el B Em. Yin S8 R H T — R ok sl ez AR 2k
JRAE IR, AZ AR TR il 52 VR 1) 2 BB A O N T Bl A 1) P 91, T e sl 4 0 S 2B B, 2 et i 155
DRI, 3 Ve UV 2 S Al P O RV VR S R v S B0 b 2 5 b 7T B B4 1 4 4. Krishnamurthy 25 A UM Y sz Ak
NRVERREG, s 1r R ) SR B E AT BT 5 T I SEAK, JURRES 28 A B 1F 22 18] i — AN R AU IR I TEVE R E X, PRiEZE
JRI IR I 2 R AL . Chen %5 N UMbt T — A3 51 B S 4 ISRk A pli i SCI, ARl P v I A\ S 4 24
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FORITE LI, LA A T T R 38 TEER P, R0 A A0 B E B 2 4 0 7 LI 3R. Dong %5 A PY 8 SUIR AT
TEFR A AN B, 15, g e N IR, AR R IR TE O SRR S ], e S FE R AR R (AR A A 2
H0); AR5, LA AR TE ORI A i NS T B AT ORI AT o I AR B, SR R S R A S,
AL JE SR iR 3 it H 5.

FEF L 0 2% 1) 7 VR T B b i s, AU, — S TR SR g9 B 22 2] L IR . TN g
SRR AR TR A, SCAR [110,111] R V8 SCR AN IRBAT 45 2, 2 o] 011 25 SR M B AR IR 1) 2% 205 SCiiR [112] ff
FH T KB R 4% SCAS AN R v SIEAARH PR S B R ke e 7 A TE RV 2 T R 5, IR T PR it A 3h 5
NG, 77 i g Berant %5 AU T B S IR 14 5 2R U P R A 7 1A SCAS. Herzig 25 N R
B o SRR [ A8 EL A 0 P, SRR 4 R R ] L, A A G 4 AN BT B 0 /K M 28 S B R AT
SUIRAT. Sun 2 A MSURIF LI B 5 (0 K0 R PR IGAE AV G I ER AL, 7250 B AR T 0 N 18 48 3 ik R P U T
SR 5 T, A8 R I EH Y X b (5 R V8 SRR 2% R ) B sy, A ) R AT IR ARV G5, P23 A
W&, SCHR [116] WF90 T 39 MBS E 3% ) Z IR I ACEE, A 59 B B IRl U T 28, S8 )5 R H R R =i
U I, Mo N 4R Ed, 3 T REAMOARTE, LASGHEE TS MR R UIZRAIBEA. Shao 25 A T T — A
ZAFI T SUARATASTAY, AT o S Al 22 GO0 S AL AIEEAT TN 25, A FDWBL N 257 VR SR AN TR 5 R 2 ), A
FHAY TGRSR G AT VR A 7 B R SR AN RIS 55 (V8 S, AR5 FHE [R5 2 08 5 0 SUIRATT N 2 90 55
L.

6 BIRESITMHE

AFTA4 text-to-SQL AL55 1 FH B AL RV 7 v
6.1 #iEEE

T A2 text-to-SQL M 1 SUARAT, #RTGE ZOX RN ZREE. TN A T 24 text-to-SQL ArvEHIH4E, )
Kb T X — 4R T 7.

1) ATISU"'™" L ATIS I T-HLET B R 4e, th I $2 ) A2 i SQL 841, & — > 4 HL_1 R ST SR (1 % dis
£ AE 27 SR LLANE] 2000 IR 0]V, BRI M7 3 7 48, 93% MITS 0L N 2064 3 5K DL R4 1 211 %
g, I N AR TATEE. SR T MRS5S SRR R ATIS AR IRE A M), T 5 AMFEADS GROUP BY
), A% Order By 5] B4,

2) GeoQuery™ """\, GeoQuery U535 [ (1) H FE KR, foe 0t oy 1)1 B FLox B2 (K18 AR R R, 2 S Bl AT
— ST O IR Ny SQL, Tyer 48 A VR Finegan-Dollak 26 A\ 121456 J5 #9047 T BRI 58 3% R0 5
21 880 4542 1n) 5 SQL A, HAREIEMAELIR /N, (H SQL #EH) 7 T GROUP BY. ORDER BY Hl HAVING -4,
DA RS A ), 2 — AN — 4 HL R SO B 4.

3) WikiSQL™. ATIS Fil GeoQuery ¥ #1771 45 Kdhs UL/ (SQL A T-F) Ay i 45 () /1. 2017 48,
Zhong 5 N RAT T — A RAER 4L WikiSQL. WikiSQL #4245 80654 A~ A T AR (1 1) @A SQL A iy 7~
K HF Wikipedia [1) 24241 3. WikiSQL ¥ A5 5 bl B FE Ry 8~15 AN inl, K r B KA 8~11 AMii], K5
BIERLY 5~7 A XA KBUEHRAE— 4, (052 AR T T 12 06, Ik T BATIN text-to-SQL $dl4E. H i,
X HEAE R BRI R L2 T 90%. WikiSQL AN AT #) KA 0 — ik, Mg HE. 4. 78
IR =R S

4) Spider™. WikiSQL ) A vIAH X K 138 L 48 7 8. 2018 4F, HRE K22 TN R T Spider didE. 1%k
PEAEALE T 10181 4 BARIE T 10 AY, LAAM AR TE 200 AL Bs R (1) 5693 4% SQL, WA G T 138 NANIH )
A, FLARAE B B AR WikiSQL, {H Spider 51N T ¥ £ [¥] SQL 2%, #il41 GROUP BY. ORDER BY.
HAVING 5 4E, 8 F AR K. HIL WikiSQL, Spider S (K458 . A= s 2% SQL hE Jy42
TOREER, H AT B AR AR HU 60% A AT IRITER .
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5) SParCP. BR& K2 HIMFST N b5 4 HE T SParC, BT Spider () N SCAHSCRRA. ¥ 13 J& SParC s 4
IR, S R 3L T Spider, {HE SParC 77— K 75 1) 5 B 1L 45 T 4 S (U Wl A gk Bk, B 4000 24
FETI R T4, 12000 24N ) BUFD SQL *

6) CoSQL!"™. CoSQL 2 FH] T #4 i B ATk 25 1 X A # 1 text-to-SQL i RHZ, & 2 Spider 1 SParC T-45 (1143 1
AR, CoSQL {47 30000 LA L []4 A1 10000 LA sy B SQL 2 if, X L8 v itk 7+ 3000 AN i, ¥ & 138 4
U 200 AN S HE R . A X IR EORL T — AN S bR I B S, S — AN P R R B, 1 SQL LK
MiE L SQL KR & 4. B T Wil A% SQL 4k, CoSQL B4 i T PN FHT 55 — & A\ SQL Al iy &5 54k e v, RYI
BEX AR ) SQL FET W45 L, 77 A — A FARTE 5 R 45 P AT, 0 FH P S AT R T, CoSQL A ld
F A SQL L5 LT — RAF iGN E.

7) 3 CSpider . PR ZZER T AN I text-to-SQL WA 4E CSpider, AHH4E & Spider 1 iR A,
SCHR [123] #RR T H 3L text-to-SQL 11— L% A1 1)k ik, 055 S il 850 58] 95 SCECH e (9 B35 190 8 (quiestion-to-DB
mapping). H SCIFI43 i 1) DL K — S AR T S I

Fbm: AT 5 SRR MR T A48 & B8O e v R BME AR A LR R S 018 & 10 2 2R B ik IR AN 4 57

Q1: How many dorms have a TV lounge? (5 £ /> [8]15 & AR S % 2)

S1: SELECT COUNT (*) FROM dorm AS T1 JOIN has_amenity AS T2 ON T1.dormid = T2.dormid JOIN dorm_amenity AS T3
ON T2.amenid=T3.amenid WHERE T3.amenity name="TVlounge’

Q2: What is the total capacity of these dorms? (iX 2675 i HL g 728 2 /b 2425 9)

S2:SELECT SUM (T1.student_capacity) FROM dorm AS T1 JOIN has_amentity AS T2 ON T1.dormid= T2.dormid JOIN
dorm_amenity AS T3 ON T2.amenid= T3.amenid WHERE T3.amenity name="TV Lounge’

Q3: How many students are living there? (5 LA T % /b 2E47)

S3: SELECT COUNT (*) FROM student AS T1 JOIN lives_in AS T2 ON T1.stuid=T2.stuid WHERE T2.dormid IN (SELECT
T3. dormid FROM has_amenity AS T3 JOIN dorm_amenity AS T4 ON T3.amenid=T4.amenid WHERE T4.

amenity name="TV Lounge”)

Q4: Please show their first and last names. (1% &7~ AT 110 4% Ak K. )

S4: SELECT T1.fname, T1.lname FROM student AS T1 JOIN lives_in AS T2 ON T1.stuid=T2.stuid WHERE T2.dormid IN
SELECT T3. dormid FROM has_amenity AS T3 JOIN dorm_amenity AS T4 ON T3.amenid=T4.amenid WHERE T4.

amenity name="TV Lounge’)

13 SParC 4 4E A i k1)

8) TableQA " 38— RHEAE 2019 4E%$ 70 T & i+ 30 NL2SQL Bk B€, Al 108 FH oz pih LA K% 388 FH A58k 14 2 % 4
P A A Ht I, PEAEAE DEIERS T ARTE ) AR F 5 SQL WA M ULHL, BUHh 4 )7 44 b i /E 254K, 5000
SEARAE N IRUE AR, 1 T 4 AR BB AE 4. 5 WikiSQL —#F, Bl 4L AW I 2 K &l sl ik &
.

F2 MFE IR T LIREIEEM G THE .

#2 BT CIRM text-to-SQL Fali M LLAL

pigiiES i K AR Tk BB Bt R T BB 45k W
GeoQuery™ 1?1211 877 246 7 1 7 AT, YL
WikiSQL™! 80654 77840 26531 26531 1 EZ ¢ e
Spider™ 10181 5693 1020 200 5.1 A b
CSpider"*! 9691 5263 876 166 53 EZ ¢ TS
TableQA !'** 64891 20311 6029 6029 1 245, e
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3 N SCAHSEAY text-to-SQL Hdl £ Y L4

PAEIES PORET v 54 SR IR P AL B A FERE U EAR Ak
ATIS! 1) 1658 11653 7.0 27 1 27 BT,

SParC* 4298 12726 3.0 1020 200 5.1 BT
CoSQL!" 3007 15598 5.2 1020 200 5.1 et

6.2 iFNTE

text-to-SQL AT45 M PPN TR b T ZEALFE R KA JCHL 2 (exact matching accuracy/logical form accuracy) FIHHAT
HENH (execution accuracy). K UEAC B #22 b A ALK SQL & 1) SbniE SQL & T (K 4544, Ty 1 3 Ho R n) A ik
(i, 4 where A 4 AR I . BEEE BT 45, SQL i A 4k 7 fi# e SELECT. WHERE. GROUP BY
S, BB AL & o DU G IR UK R, IFR IR LR N AR &L 43l ln, %1 SELECT 4144 “SELECT
avg(coll), max(col2), min(coll)”, & 5¢ K R /R A EE A “(avg, min, coll), (max, col2)”, 5 bR A i (42 &t 47 T
8 AN A 2R A8 e A A — SO, O ) A AR L . AT R R LR 45 e R A SQL A i)
PATEE AL, 00 A1k 55 FR e 2 ) A PRAT &5 A — BT, A A P £ 9 2 £ 6 7). WikiSQL FH TableQA ##i 5 52Hr
IS VCHC AT HERf 2, Spider. CSpider. SParC H1 CoSQL 41X 37 #f ks i VL it 2.

SR IR PPN FRbR R T IZ A, (R AR LA — S ) . R A DL 50 28 W] R TEAG 4 47, 4910 G, 342 A RN HG
AL ) 254K, “ORDER BY 4114 ASC LIMIT 1”f1“SELECT MIN(¥1 44 )t & 25 3% (1), AR & AT 44 AR JA).
RAT-SQLUIEAS 43 4 eh 45, JLAE Spider B3E4E b 18% AL A 2T i) 5 bRk 2 1452, BRIDGE SN LAl E T
50 AN RIEAT 08T, IR A 9 AR AL AR SQL A ke = A= AH [ i 45 &L, (RSN [H] 1) SQL AR sR
LA R R, PRI AT HERf SR Fr b n] B 2> il R Re.

T PR AR (AR, S S ST AR TR VPR A, Affolter ZE N UPHRH T — R4 I
PEA TR o 1) 7 48] i R A R 55 2 AH DG TR Bt PRS2 R A L R 1 4 LU [ W R 4, (R PR T 242 I
P, SCHR [126] 3 T3 S RS, 45 2 A SQL 28 i1y, 58 AT 4R L0 AT An] £50is A 541 #80R [ml 48 (7] 11 &5
S, WreAe s R 2 T 22 SQL FlARE SQL J& M1l A, S CH—H T —/N 2 ZHESL, Bk i wy
A SQL TE45 78 Hds i 1 A i) 22 AN IR ECHs 22 B AT 45 51, F5 AT 45 RAAAEAS — BUI S DO — 58 AN 2 1 L
A 25 A R 4 R IR, A Cosette! ik — 2526 82 4 (1) )3 G M 2 15 M 17D, 45 45 WS [ G 00, ) e
WESHRES AR, WEEA TR ; £ &0t DL DR R R H AN PE, I A N 3830, STk [128]
K St BRI AE RS 7 280 2 vp 3R /N B PRI, AR A Ik SQL mIHERATE. 24 T e DX 73 A i
IR FHEI A 1 S5 AR A D, B S AR 2 AR A i), B RS SO RAE A b IR 0%, Bl AR LRSS
H 455, 43 B AR v A ), (ETE T S AN TR — AR T A i) 2 5 2 O R BE N LS R, # R IR — )
TR AR R M, AR R B AT b il 2 i) 55 AR A i) 1) 45 SR AN [R]. IR 55 T Al 2 i R BEAS 4352
), nT LR A B0 AR == AR, ) LA 43 i (1) AR 30 A vf, PR AR n] R vy BAIX 43 JL A 1%
Ao, AT AR 20 1) 1 SR .

7 PERE

ARG8T H AT AR T, 4 O I SCA R A AR 1) ol R, 0 1 — 2B IR AT R 2.
71 ARHER

2017 4FELAHT, % text-to-SQL AT 55 B 9T 3 AR FH 6 Tt /K 2R i 7 v, HLAE v 70 SR AN 1) 22 28 £ g 1) 3. 2017
A WikiSQL H A KA, WF 7RSI 1) 36T Ge v 2% 2 (W73, BRI ) B2 B . 2 U8 B R A 1. 2018
4E Spider BHHE R A, 2 TAEFFIAWI L 29, 2 RIGPEHE J Bl 8. 3] 2019 4F, FFIA0 TAEM R Z 5.
LA Z R E 2 AL B 14 HIH T text-to-SQL {145 232 1l L 1) N ] 6.
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Coarse2Finel*" TE-SQLI%
TG S (72 SyntaxSQLNet!*") HydraNet!*’]
TypeSQL I gyatset| BRIDGE!

Seq2 SQ{_},;“’] IncSQLI™ X-SQLI# Ryansql"®”

SQLNet IRNets | IGSQLE

ui A0

EditSQLY !
| 2005 2014 2016 2017 2018 2019 2020 >
NaLIx( NaLIR[3! Athenal?! Athena++23
Duoquest!®!
BT RKE T %

14 #97 text-to-SQL A5 T [ A2 Jit  Fi

R SR B text-to-SQL 4T-4%, GeoQuery HUHE FE B FIAK /N, WikiSQL B 42 M5 K, Spider
HH B AL SRR, T T B0SE N F 37 5, BRI A SR 4 K3 43 TAR Y AE WikiSQL 88 Spider £4 48 FHEAT T MK,
BT T OGS 723 RN B0 B L FOIF 5T b kAT i 45 R4 BT

R4 BoR T HATAE WikiSQL A5 8 U |- HE 44 52 i (4B, Sk s R R 56 T B i 2% X i i, HiHE 44 58—
HIf# v 5 % 52 TE-SQL!" "+ Execution-Guided Decoding”, H ARSI AR A VT BC 28 FIBAT HER 2 7059 87.8%
H192.5%.

# 4 WikiSQL 4F A ATRAAE AN RS0 f k5 ff DG 2 S PR T HE AR 22 (%)

. AN _ R _

G UN e PATHER R S HAUCHCRE PATHER %
IE-SQL+BERT+EG!"" 87.9 92.6 87.8 92.5
HydraNet+RoBERTa+EG ) 86.6 924 86.5 922
BRIDGE+EG™! 86.8 92.6 86.3 91.9
X-SQL+MT-DNN+EG! 86.2 923 86.0 91.8
SQLova+BERT+EG!"" 84.2 90.2 83.6 89.6
IncSQL+EG "™ 513 87.2 51.1 87.1
Coarse2Fine™™ 7.5 79.0 71.7 78.5
TypeSQLE? — 745 ~ 73.5
SQLNet?” 63.2 69.8 61.3 68.0

WikiSQL W3 B b faj 525y, {4 & SELECT M1 WHERE %), A% ORDER BY. GROUP BY
HAVING. FEEH), AT MEFEAC, % 4 thB% IneSQLYY, BRIDGEM!, TE-SQL™ 4k, 34157 HI 3k T~ TAT- 25 R it id 7
5. SQLNet b SQL 4 0 il K 6 A TAT-5%5, T WHERE 61 o (K48 A8 199 2% F5000 A1, oAy 74T 2548 &
Iy SIRBEAT I, B T AN R4, TypeSQLPY. SQLova®™. X-SQL™'AI HydraNet™ 4 4%k T SQLNet™ %4
S5 K5 1R SR S5 8 T AR SQLNet™ [y e idh 3= B4 rp 9 A 38 I Bds 122 R NILQ (K956 55, LA S BB AR AT 4T 4511
(1A E . TypeSQLEER Xt NLQ H#iA7 S AR B 7 1R 51, ) FH 54 22 A 28 RN TR E 1R NLQ HR IR SE AR AR i 3L
HHL. Coarse2Fine"  BA 4 Where A1) i A2 AR 43 h 2 AT 55, L1 2 A KL IS f vl 1) it 7940 4 45 L
IncSQLY M Fi J 1) S S 41 A A A Y, (RA0E 7 Mgy b R SO SQLoval® M i T PRI ZRBE 2R it NLQ %l
FEIRIA 55, SQLNet® il WHERE 1~ ) A #3611 WHERE T4 7 9471, SQLova ™ HR4f8 41 s/ 45 4k iy 4% 1
{EAE NLQ H I 17 B AN 45 R A B . X-SQLWE F I ZRBE RS R b, 3880 7 1 F SCHg a2 8 gt N R, JF4
H—RPET KL S 0 H bs e B g 112590 SRR 8L SQLoval™ il X-SQLM™ LK NLQ T4 41 H ik A
FRYN M G 5 1), 177 HydraNet™ g i st — v A #— A5, iX 591 % BERT/RoBERTa (¥ J5UUAE 45 58 W) 4,
B T AL 2 S g S 2, MR I R ST A AN NLQ-F N W BT A TAL S 45 3L, 4T WHERE 4% {0 Al
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SELECT i, %7 41 45 A A3 2. 35T 14T 55 0 figih 7 5 T LA 20T 10 1) 180, 9l G485 2 gt = ), AR
% & AT Z M KA 2. A X — i 131, TE-SQL S A i FHT G it - At i e AE 4, i 2 1 17— Pl ) 3 1
¥ HIRRE SRS #2 (extraction-linking) /7%, FHECIUNEE R 7 A bR i K 7 V400 NLQ 4 21 (8 LU e 2%
R, ST ORI BB SR A2 bR B T, T NLQ ] BEAN & 1 304 K 8 4, sl 735 1 25 i Je s o2 s
G AN, T B0 R B R A0 90 1038 S S5 R AT WU, 45 20 v 4R AT 19 SQL i, th T ) f e, B 45X A 11
i R A FHORT I 4128 — T A, BRI 0 A i A 0 W L A Ml e AT T B ARG O R, A R Tk e AT Ui

5 BRI Spider B30 Y B HEA SERTAOBERY, H RTHER 55— AR )7 0 RAT-SQLM + GraPPa'™, Hi4F
MR LRSI UCRC 3N 69.6%. 536 4 2R4BL, Spider B3 8 IET-Zoit2% 2 (K 5 AR W3 & (5 1, B ATHENA++
1t Spider S8 UF4E - IFIUEMIRIL 78.89% A, HRHE STk [126] (145, A FABKIRAE 1 IE PR g e Z 564 7).

%5  Spider B UF AR AE LA FIARAY (KRS HEUCEC L (%)

[ BUEAE WA EE
RAT-SQL+ GraPPa””! 73.43 69.63
RAT-SQL+BERT!"! 69.7 65.6
BRIDGE+BERT!*"! .1 67.5
Ryansql+BERT B! 66.6 58.2
SLSQL+BERT!"?? 60.8 55.7
IRNet+BERT ! 61.9 54.7
EditSQL+BERT™ 57.6 53.4
Global-GNN 52.1 47.4
GNNF" 40.7 39.4
RCSQLE" 28.8 24.3
SyntaxSQLNet!*"! 24.8 27.2
SQLNet33*131 10.9 12.4
TypeSQLm‘M’m] 8.2 2.0

5 WikiSQL i 4EAH LL, Spider 2i#fa 4 A&t i i 22 1K 24 WikiSQL s 000 K& 4. ik
FIEPEREAE 1 H R A0 D, 11T Spider AW & 2 R 0K ZeArif. — 7 T fn 805 B0 e (1) 5528 15 DRI AE, TE vk Wl )
JEP R ARSI AR LR ST 1 B ), 53— 7 T, 2R T 0 2R ORI SR TR R JE Ak TR
%} Spider 1T-25 (K147 AL, S84 A RIARAL 7 VAIEAT T o0lE, (A9 45 50 A T W3 14Tt

(1) AER A 75 T, — S 5E HE AR T T T SR R RN 48— G i (1) J7 ¥ T00UN 4038 5 5528 (1 Transformer) 1]
DA BE6T AR 55 2R Ak DO MR, il 3k 0 P IR DG &R, ) DA Gl 25 B A U . 8 — i 1 T LAY
8 NLQ 5 5504 122 2 7] (4 6) 55 sl 0GR, 375 B ASE 200 g8 ) 0 e o 7 WR 3 L WS 47 i) 50 o ) W 6 3 S A T
OISR, InRAE. dl. HEPSE, 856 TG 2 BRI SE I 1 R

Sk [37] A GNN 0 B (R i AT T S0k, B eSS o BB % Js IS (1 46 4 S SRR, BRI A
PR 2556 SQL T A7 A= M. BT i 5177 A1) CAH AL, (E2 ph T2l R B = CAN ), AR 45 SR 1K SQL 1B At AT 1R
KM 22 8, GNNUTV ] ol 22 9 28 1) LS G-t ol BRI 122 1) 3 AR 3R . TRINet ™ Ut HH T S e e e 1
2, A R DT TC A 0 DR 3 AT 40 2E AT NILQ (R4 55, SLSQL! Mt FH F I 2 b R AT 7 F LB 0E A7 M o e
B2, FEHEAT T BESEG, GE W TORS R (0B 2 B2 T LAY R SQL AT (1 PE RE. Ryansql™ M i 745 ik A KT CNN, #2755
NLQ FUSE 205 43 VT L (1 PR 530 B 77, [RIREIIN 7 BANXE 55 2 I 51 R 1 4. RAT-SQL™ Rl BRIDGE" ' #{i X}
NLQ FEs A AT S8 — G i, F FLASAE T 1 B0 22 140 9 28 N siont 55 A 50a B AL e ViR o, A8 P 25090 1
FBN AT LAY (R e D, A B ) b AN 2 XA SR 44 sl 44, B I B P 25 R L e b R Y
TR I .

(2) FERRRD 7 T, S5 (AR 2BV EE X 52 2% SQL 51N T 88 2 (M FAT-45, R4 i 1L 2 AR AR 98 22 2% ). 1
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Ryansql™ ) FAE45 205 11 AN, AR5 A< R AN [ 58 N4 %, BRIDGE™,  EditSQL"™". SLSQL" M/ T
I seq-to-seq 7 VEUEATMEND, LEMEAD L FE P, 25 N FH TR 2 10 29 RORAG BY TN 25 71, 451 in %) 25 #F SELECT iE 5
Z G R 3R 2T AR AT 45 1) AR A% R, B al AN I AL BRI ) 5. EditS QL) At i B AR i SN L
SO A4 B8 SQL S, SLSQL!IIE LI RE R T — ANWIF BRI, ok ke B A s 5 SQL A, i
A2 R A R K, BRIDGE R SQL HhAT IR st Xof 7 ) 4 B I 7 04T T 4. SyntaxSQLNet " i JE4# ] T seq-
to-tree HMRRS IR, J5 42142 T4 GNNPL, RAT-SQLMY, IRNet® 247E Spider 1145 114 ] seq-to-tree HIfRA% 77
v, BB LA R RS I R A%, SQL 5 F A G HATJZ IR G5 1, seq-to-tree H JZ XG5 MI TR AT 2 A AR AL 22 2] 34 T
SQL [fy4kH), XL g by 45 A AL SN B SQL 8 SR /R AU 5, B T ARHE IR,

FESLA T, 22 5 Hh IRNet AN 2 bty B AR, 1Ly S FH Aof 2 o) 4 2 Jl— ol o D 1603 LR 7R TE X SemQL, 44
Jei PR R ) N 4 SQL A #TE A, AT LAY 45 A /K e IR A 578 SemQL SR IR 45 44, il HLAR 2% 5 e e
J§% SQL ¥, FAMFZ TAEHAE ] T $ATHE T UVOBOR, 10 A A et R ook I - ot 1 45 5.

% 6 5 T HT4E WikiSQL F1 Spider %45 12 BUB I (K678 K H: 3 3 Dk,

R 6 AR AR HUAAN T ZE otk

ity : A
A L TR
e RN NLQFEHE 4 fith fie s BETTHR
41 Transformer, o G — HEQR AT BEUBE R MR S5 R g fty, JE T Trans=
RAT-SQL BLLSTM 28—l seq-to-tree former, 341G F &N B 1= T L]
o Transormer, i i I £ B RNLQ RS (0 A 2, SR
BRIDGE Bi-LSTM gl POk Iseqrto-seq o i ke A, ISENLQAIKGR A 5

1 NLQUONNMER: o ooy HOUSURTEE TAES, W6 G0 B,

Ryansq CNN+Transformer I8 U SR AR R A D 4 )

SLSQL! Trgrfg)lr{rlr}er, o Bk fseq-to-seq ggﬁEﬁgT%E‘FL BB, WA T R R B
IRNet?*®! Bi-LSTM %%U%;ggﬂ??ﬁh seq-to-tree P HFUEERE, HE HHINLQANSQLIK) 1 [f) % /kSemQL
i W4 A VAN, R
EditsQL" BILSTM  AMAIHER ) ditseqto-seq iy go s DLGL, (A AAREIISQLIEAINT,
en®  NLQ: Bi-LSTM, ., - FEGNNCTIER b, A2 )R P8 15 I EAH DR 1 51/36, 3o 16k
Global-GNN Hiot: GNN IIMRIHER ) seq-to-tree G BT AR
GNNP N?g;;f,%ﬁ;“”’ IYMHIHEE S seqetotree UL P Pl W42 0 4k A
RCSQL™ Bi-LSTM S SETPATS MR TS R RG28, A8 1] 07 7 1 1 i
SyntaxSOLNet ™ BiLSTM - S S UANEF AFSpider{T 45 BT HOMIAY 3R G5 L 1

SQL, JHHdf B sk R THE AL LI

IESQL[”O] _ _ o %H%Eﬂ-%%ﬁ‘lﬁ, %?T?FU*M?‘IE‘JF&%EX i)
FEENWHI . (B BRAERTAIER G R
BERMASNLQAN— 41, B AF:55 53 b 5 RS K

HydraNet™! Transformer Z—fi HTFATS ISP 2

- e RUTIRA E T SR M R e, B R

X-SQLY Transformer G54t I ST ) A v e
- o oUW 2 LR SO R 2 A 2]
Sanis Tansformer SRS BFEES gy ey LT BERTARB 03RRI G

IncSQLY" Bi-LSTM IINGIHER ] seq-to-action  HRHIA RN TR T MR T SIS B VERRY

Coarse2Finel®" Bi-LSTM SREREHEE S BTSSR TR DKL B9VE AT AR D AT 5.

T it wl Fr : 7= =k K = S M ﬁ ]
TypeSQLE BILSTM DR LTS %ﬁ;ﬁ@giﬁfgﬁgﬁ%ﬁfﬂ”i i
SQLNe™ LS - i RVBGSIEAL 1 UCSSQLA MM 6T (F

4, dE S 7 WHEREE A (K505 il
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F R SCAR ORI 2 58 text-to-SQL AT45 45 T 0 TE BRI text-to-SQL [ & X A, X E K, AH AT A
1RZ%, HHTTE SParC Fll CoSQL £l 45 L IIVEAG 2 KL10 40% Zida. 32 7 FI T H A7 s U Y (RO i U 0 B2 &5 52,
LA ) ORS A VT L (question match) S E % A i) st (RoRS ff DT 0 B 53 40, A8 FORS A VC AL/ (interaction match) LA
—ANESUCN BT, T B RS P AR A ) BRI R A 1343 . EditSQL™M 2% 18 T P 119 177 S g AR S i il
(1025 11, IGSQLAETLIERI T A K R o 10 D7 005 I8, A P 7 — 4 R 24 7 2 v R 08 (1 A 0 o 324 i 8 11
BRI R, Hui 28 NP0 B R SCiEE Gfl. So PERC R A BAR B B A S A B HESE 2 H e
HERIfRU T 5. CoSQL $&H T PIASBINT 45, M SQL FAAr i & A plamm 87, LK F s A7 0 T, H rie & A 5
Z AR LAE.

x 7 BT RIALE SParC Al CoSQL MR EIELIL (%)

R SParC : CoSQL :
v SRS Aff DUC T 5 A8 RS A DT i) R A U A RS A DTG
Hui ALY 55.8 30.8 46.8 17.0
1GSQL™ 512 29.5 425 15.0
EditSQL"” 479 25.3 40.8 13.7
GAZP"™ 45.9 23.5 39.7 12.8

7.2 FIERIEIRE

AR H AN text-to-SQL FHFFEENAT T BOKIHED, (AN T2 8], H BTAETER ) B nT DL Zh .

(1) EVARTE 5 Tn) 05 3t P A ) g 575 Ak S

VU AR TR 5 ) e () AR, R IR SR BB P b (R R B, S text-to-SQL AR 55— AR SCRE HL IR AE )
i) S0 40T SC BT, IRNet b 12 ) i iy 44 Ty iRz, H T S 90 TAESE A e s S04 A P TN 2R L i)
SURVECH P R A G Tl R S TR A 7 44 R DG P LA R 3 3 ML R Ik et vy 58, Moz
) AT SR 2 214 T B A 28 2 SR ) B ) i —, RAT-SQLIHE Y HAR % b 39% 35 M2 SELECT ) i %1, 3%
AT RIS TIE SR B, LL RSB, 2 T AL s 1) PR A3 3501 . Ryansql® 45 H 72 FE 20 W7 (1 4
e, BIREPRAS R 34.9%. ExUREEZ I R ME B SR LR LA T 1) ARE SRR B 2R, 0T ek
BOMESAFAEARTRTE X B2 IE, S a8 1 1 HEAf K42 S 9 2 B3R 48, W an < 2x a2 O] LR IR A ) i E R 1>,
IR TR AR LR e A — M. SCHR [133] % Spider B3 45 1 10 JBUEAT T IR S B 4,
IRNet™ . GNNUHI RAT-SQL!™ i K5 it UL Jic 58 35 A T . 2) T 50 v (10 B AN S AT i £ A0 P o ke 7 22 AMABE X
TG, A5 L ) 758 << P IRFR OSP34 At 22 /02 >, Jrfee 0] I B 000 g v | B A e gk 1 i ).
3) F3 I i 80 AN 4 ik S R 3R A4 A 4, 0 1) L IRARAS AR R R 2 0 2 ) IR BIBAECA A T R, L
“2019 4 J5 M= 28 /] (P38 BN SR 2 /02 7, T i = % e 28 w7 3R o AT A R B 4) B e
N BEAEAEAR LI 3 44 R0 51 44, 0] 55 B A 8 S, 1 7 Spider B4 4R 1) “car_ 17404 4 1, K “car_makers” il
“model_list” " #B& 47 44 “Maker” ()%, “car_names” 1 X 4,15 %1 “Makeld”F1“Make”.

BEAb, Spider PB4 AN Bt i 5 K3, PIREAS SQL AT 1.8 /e 8, T B S 1 F ey i) B e ks B
%, B S A%, WYV s e vh 4 A RRARABLPE &, BB AR 2 AR I B S, RN R AT 30-40 SIANECE
JIAT, A WAEAEAE 2 MR il R 30 Uy =X, S A5 In) 505 50408 P2 1) D 5 ) 575 B PR .

(2) P UEE 5 PR

RS LN SR A WL BB e AT AR I, AT A SR L R B A — M R 0 ) R < R T
1E3)) TP 3AF RS, AR T 2L M T AR ik 239z 2y 013t Ak H W1 4 o B AE 018, 0 SRS A Y SRR WL 1)
) AR IR AR, A2 AR T REJCVE VT B IR e, SO il R E 3 vl LLAR 22 /b N2, st 2/ AT 2%}
ARG R A AT . A, AH ) 1) 10 V8 A6 AN [ ATk 2 12 11 55 B nT B8 AN ), 481 G i1 2 8 v 1 i) < fe K 1)
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Ak, Ferpre g R R Al 0 AR, T IR m 9 i << di KR 7, SRS AT DI V% B M Ak << KR A AR
RAT-SQL¥!rt Where £ PR 5 (b 29%, iy s 045 (1 FH T 390 A 2 3 p P A8 R 58 1) DL i 8T, ASE 26 G 10 3 it
“older than 21”71 older — 1], JCIZAE B IE I S Ah“age > 217, BRIDGE 45 1311 25 Ik A WLk (1 ] VT 20 e v
S SQL A= AR R 10 SR K 22—, 5 Q1 ) 8 “What are the full names of all left handed players, in order of birth
date?”, B A B f#“left handed”, it ik &5 SLHl /b T 4 F“WHERE hand = ‘L.

(3) A Ak

H T AR AN BEAR S 3 At i I 2 2 A0 1) Il L, G5 A7 2R 5 bR B0 2 R B6 2 . B EXCEPT Eiiik & T
) SQL i 4. Spider Hrdls HEM s SQL L IR AE 2 S B, g ) REUAE 2 2 At oy rP AL DRDHE A IR A 4
AN, RAT-SQLABERTY RIS UE4E | ih 5 2k 4 A2 (TR R 2 3 0 86.4% 73.6%- 62.1% Fil 42.9%,
BRIDGE" {5 B35 4 85.5% 71.5%- 56.3% A1 51.8%, FHIH AT L AZ 2% 25 1 1) A2 ple 34 42 g 0 45 I

TR, AMERCRE IS . R 2 (B, A R ] B R SR 2 (R, U DAV 2 ik ik
PRIER PG R AR, MBI R 2 W R R B U4t T EURBkiR. LA CSpider " IREA 1, ) 4 ti<1970°
TELE PRI IR 7 4 7, XY SQL A

SELECT DISTINCT T1.Maker

FROM CAR_MAKERS AS T1 JOIN MODEL_LIST AS T2 ON T1.Id = T2.Maker JOIN CAR NAMES AS T3
ON T2.model = T3.model JOIN CARS DATA AS T4 ON T3.Makeld = T4.id

WHERE T4.year = ‘1970’;

XA TR 4 RAFRBEATIEFARAE. T @51 ) PMAE K BAAEZR 5 S8R M I (¥ B 45 23, i 50 e &
MG Z 11 “postseason” F1*“team” W L REA T 145, 13X 5 3N IR M, SLSQL! N SRR ffy 6 1, i B ik /s 1o v 4
A NTERTA T A 52, BT P AR I A 2 e b AR, 75 B0 “Highschooler™#E4T B 1E#, B0 A Bk .

X T AL T AT IR T A, G AN ) L T A AR R OG AR, WA REAS T A A R A, X LA AT
JE [FIHE LS. CSpider 11 ) 4k H AT TC S RIS B DL IR 44 77, S I (1 2 4y

SELECT name FROM swimmer WHERE id NOT IN (SELECT swimmer_id FROM record)

TR T T R A AT B S K 7 (K44 5, JEXERY SQL

SELECT customer name FROM customers WHERE payment method != ‘I{ 4>’

AR PN 10 L) 1) A, AL ST AR 7 AR SR AN ], AR 2R 5 A, I A I 5 AL 3 A i, ELAEE Y o A I A fe
T “swimmer id” ki1 £ ).

Fh T UL, AT AR T AT B ) I, RS A SE L LA ik, MR A AR A o T AR AT — s T
RE ), EARIE 5 BB SR A B A (078 SO — N BRI Bk

(4) FAHE R AR

ZR AR PR A2 RS IR e 2 A T ) R o T e B R e A AN B, B L A B 4
S G B RGP LR 2 2, JOe ) A T I 4, AEUE IR IR B b B iR 2>
B LAEE R & ol BTG, K2 #HR R P, BRI TP A 55, Spider s LR AT HEM %, HAE
KTV G 26 TSI % 8¢ SQL &, ANH 58 SQL P fIfE, PRk VF 2 MR 200 T 1% . 35—, M4l TableQAM*fy
giit, WikiSQL A1 Spider £ &b it 97% M 95% [ AR M A FHEI, JLARIE Y SQL Ay (id e 440
[, 2 i) U35 AT IR AL k.

73 HRERE

text-to-SQL MIWFFT AEA i1 22 ke, & nT LUN LR J7 ik e T 0F.

(1) ) 2RI

FPHAERGR [ BN, W] RESAFAETRERT R DF SRR A A B BHRANE B3RIK, SR H A 2 5
TURPE S ST R JT I, TR AR 22, AR HE 1) T P AR R A S A0S 4 SRBEAT el 4 A v 10 il RELAR A2 0%, JH P AR

© PEFEERK IR s/ www. jos. org. cn



N EF AT A RIET I AT R A RITR EE 4129

M — )T 0 LA, DRk 22 e 01 T AT B S B g s A oK, IX TR BE AL RE 68 A0 BE L) R O30, BRARCEH Lk
£ SParC Fll CoSQL %#a4E L IMIRFFY, HIER R ASIRAT. SLAt, KRG i 5 £t ny AR i L, eAe s
A H IR BB A, SR AU T SCHRs Ll A B T R ORI S 2, B2 S 1R I 2R B o Bk —.

(2) FINAINT AR

VF 22 25 W10 AR R 2 T8 A ) AR B AR, 9 0 1 AR 55 Tn) R ) A0 S A 1 b g A AR AR T,
i P A1 T3 BB P R O D10 0007, A 25 0T 55 AR BN, SRR HOD A S AT U BT A, 1K L
FINABENR, F T4 3R Uss S, SR AR AT B e ) SCIR]. 48R, AR AR N IR 5 I AR EY rhofe — A kil

) WREHL

FE TR R 1) 7 7 LU0 5 8 o WD R ) S0, T 6T G vh27 S 10 k38 6 2 2 PR G A Al DRI,
AT LIRS LT 20090, LA AU & B 5O Bn, B8R oadE 4 A i A senT LA e 42 3
W73, R RBLIE G T h T R 44, I T B FERE, TI82 550 nT AR B ok B 30 AR i 41

4) 5T OARM M E S5

MR RS, P IEA L AE ) SQL 24, T K oG D & 1 A 45 R 2 A4 XA = R, text-
t0-SQL ATl 25, FUAIL XA B G2 15 B0 500 P L A 4k DALk, AT DAAR [ 5 8 SOAR I ) B AR AR 45 6. s,
SR BB TN SCAS J2 e S [ WSS 2% E8 ). A8 A < Rl S s G A7 5 A A S AT SO, T 20 9y 45 5 A e o
AL SR A L e P T TARZ SUR, B BEAh & SUAR R A e AS th At b FE 25 6.

SRR UL, text-to-SQL FIBFFETERE 2 JUAE b SR AR OR, 1E— 0 AR THv] LIME B THE S B ARz H,
DA% 2 R AT 55 ANBEAR I ER-5 A0, T3 26 ) ) A 000 B AR 22 LA Atk B A FE N A0 TE 5 AR BAR
W B, BA AR SR AR AN B2, text-to-SQL A 3 HUAH- 580, 45 3] JCHUAR 3 .
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