

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.21, No.7, July 2010, pp.1491−1502 http://www.jos.org.cn
doi: 10.3724/SP.J.1001.2010.00585 Tel/Fax: +86-10-62562563
© by Institute of Software, the Chinese Academy of Sciences. All rights reserved.

改进的以 SMT 为基础的实时系统限界模型检测
∗

徐 亮 1,2+

1(中国科学院 软件研究所 计算机科学国家重点实验室,北京 100190)
2(中国科学院 软件研究所,北京 100190)

Improved SMT-Based Bounded Model Checking for Real-Time Systems

XU Liang1,2+

1(State Key Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)
2(Institute of Software, The Chinese Academy of Sciences, Beijing 100190, China)

+ Corresponding author: E-mail: xul1981@126.com

Xu L. Improved SMT-based bounded model checking for real-time systems. Journal of Software, 2010,21(7):
1491−1502. http://www.jos.org.cn/1000-9825/585.htm

Abstract: SAT-Based bounded model checking (BMC) has high complexity in dealing with real-time systems.
Satisfiability modulo theories (SMT) solvers can generalize SAT solving by adding the ability to handle arithmetic
and other decidable theories. This paper uses SMT in BMC for real-time systems instead of SAT. The clocks can be
represented as integer or real variables directly and clock constraints can be represented as linear arithmetic
expressions. These make the checking procedure more efficient. TCTL (timed computation tree logic) is used to
specify the properties of real-time systems and improvement of the encodings has been done.
Key words: bounded model checking; satisfiability modulo theories; real-time system; timed automata; timed

Kripke structure; TCTL (timed computation tree logic)

摘 要: 基于 SAT 的限界模型检测在处理实时系统时具有很高的复杂度.SMT 求解器在计算可满足性的同时,还
能处理算术和其他可判定性理论.在对实时系统进行检测时,用 SMT 求解器代替 SAT 求解器,系统里的时钟就可以

用整型或实型变量表示,时钟约束则可以直接表示成线性算术表达式,从而使整个检测过程更加高效.带时间参数的

计算树逻辑(timed computation tree logic,简称 TCTL)被用来描述实时系统里的性质.同时,还对检测方法作了相应的

改进.
关键词: 限界模型检测;可满足性模块理论;实时系统;时间自动机;时间 Kripke 结构;带时间参数的计算树逻辑
中图法分类号: TP301 文献标识码: A

∗ Supported by the National Natural Science Foundation of China under Grant Nos.60721061, 60833001 (国家自然科学基金); the

CAS Innovation Program of China (中国科学院知识创新工程领域前沿项目); the Knowledge Innovation Key Directional Program of

the Chinese Academy of Sciences under Grant No.KGCX2-YW-125 (中国科学院知识创新工程重要方向项目)
Received 2008-12-12; Accepted 2010-01-25

1492 Journal of Software 软件学报 Vol.21, No.7, July 2010

1 Introduction

In symbolic model checking, Binary Decision Diagrams (BDD’s)[1] are used to represent system states. The
technique is used in many model checking tools, such as NuSMV[2] and TSMV[3]. But the size of BDD may grow
significantly as the number of variables increase. Checking a system with a large number of variables remains a
difficult problem for BDD-based model checking tools. On the other hand, Bounded Model Checking (BMC) based
on Boolean Satisfiability (SAT) has been introduced as a complementary technique to BDD’s model checking[4−6]
for combating the state explosion problem. The basic idea of BMC presented in Refs.[4−6] is to restrict the general
model checking problem to a bounded one. Instead of finding out whether the system M violates the property ψ, we
only need to know whether the system M has some counterexamples of length k to ψ. The problem is encoded into a
propositional formula, and then a SAT solver is used to check the formula, in order to see whether it is satisfiable.
The method’s efficiency is based upon the fact that if there is a counterexample, then it may be found only in a
small portion of its state space[4,5].

In recent years, people’s interest in automated verification has shifted to real-time systems. The verification of
real-time systems becomes a very important and challenging problem. References [7,8] transform the Timed
Automaton (TA) to a Region Graph (RG)[9], which is based on dense-time approach[10−12], then encode a Timed CTL
(TCTL)[9] formula to a propositional formula and use SAT solvers to check it. TSMV[3], improved from NuSMV for
verifying timed systems, uses Timed Kripke Structure (TKS) as its model, which is based on discrete-time
approach[13], and solves problems with BDD-based method. Either SAT-based or BDD-based method for real-time
systems, needs to encode clocks and clock constraints into boolean formulae. After this encoding, the clocks’
characteristics disappear which means the whole checking process has no time information to use. In order to
overcome this disadvantage, we use Satisfiability Modulo Theories (SMT) instead of SAT to do the check.

The SMT problem is a generalization of the SAT problem where Boolean variables are replaced by predicates
from various background theories, such as linear real and integer arithmetic. So, we can use real or integer variables
to represent clocks and linear arithmetic expressions to represent clock constraints instead of Boolean formulae,
which preserve the time characteristics in the checking process. There are some related works for SMT-based BMC,
such as CBMC[14] which is dealing with programming languages and SAL[15] which can check finite state systems
based on SAT solvers and check infinite state systems based on SMT solvers. By doing so, the encoding of clock
variables and clock constraints has less effect on BMC’s efficiency. A preliminary version of SMT-based BMC for
real-time systems is mentioned in Ref.[16] and the improvement to simplify the encodings in order to improve its
efficiency is given in this paper.

The rest of this paper is organized as follows. Some preliminaries are introduced in the next section. The
SMT-based BMC approach and the improvement are given in Section 3. The experimental results are summarized in
Section 4. Concluding remarks are given in Section 5.

2 Preliminaries

Real-Time systems do not only contain discrete variables but also have dense-time clocks which have a real
domain and continuously increase at a uniform rate. Clocks are usually set to zero at the beginning and can be reset
at any time. Real-time systems can often be modeled as a TA, which is a popular approach and several model
checkers exist (e.g. Refs.[17,18]), or simply modeled as a TKS, which combines simplicity and efficiency (e.g.
Ref.[3]).

徐亮:改进的以 SMT 为基础的实时系统限界模型检测 1493

2.1 Timed automata

A TA is a finite-state machine equipped with a set of clocks. Hereafter, the set AP={p1,p2,…} denotes atomic

propositions, ` denotes the set of natural numbers, `+ denotes the set of {1,2,…},] denotes the set of integer

numbers, \ denotes the set of real numbers and \+ denotes the set of non-negative real numbers.

Let X be a finite set of variables called clocks. A clock valuation is a function v:X→\+, which assigns a non-

negative real number v(x) to each clock x∈X. For a subset Y of X by v[Y:=0] we mean the valuation v′ such that

∀x∈X, v′(x)=0 and ∀x∈X\Y, v′(x)=v(x). For δ∈\+, v+δ denotes the valuation v″ such that ∀x∈X, v″(x)=v(x)+δ. The

set ΨX of clock constraints over the set of clocks X is defined as follows:

ψ::=x≺c|x−x′≺c|ψ∧ψ′|¬ψ,

where x,x′∈X, ≺∈{<,≤ ,=,≥,>} and c∈`.

A clock valuation v∈VX, in which VX denotes the set of all valuations, satisfies the clock constraint ψ∈ΨX

denotes:
v x≺c iff v(x)≺c,

v x−x′≺c iff v(x)−v′(x)≺c,

v ψ∧ψ′ iff v ψ∧v ψ′,
v ψ iff v ψ.

We denote by [[ψ]] the set of valuations that satisfy ψ, that is:
[[ψ]]={x∈VX|v ψ}.

Definition 1. A TA is a tuple 〈S,X,Σ,s0,ε,I〉 where:
− S is a finite set of locations.
− X is a finite set of clocks.

− Σ is a finite set of labels.
− s0∈S is an initial location.
− ε is a finite set of transition relations, ε⊆S×Σ×ΨX×2X×S.
− I:S→ΨX is a state invariant function.

Each element e∈ε is denoted by , ,: le s sψ ′= ⎯⎯⎯→Y . This represents a transition from location s to location s′ on
the input label l∈Σ. The set Y⊆X gives the clocks to be reset with this transition. ψ∈ΨX is the enabling condition for
e. Figure 1 is a simple example of TA. Let cmax be the largest constant appearing in ΨX. For x∈X, frac(v(x)) denotes

the fractional part of v(x), and ⎣v(x)⎦ denotes its integral part.

Fig.1 A simple example of TA

Definition 2. For two clock valuations v and v′, v vΨ ′�
X

 iff for all x,y∈X follows the conditions below:

criticali waiti

readyiidlei

lock=nil x:=0

lock=nil

xi<B

xi<B
lock:=p
xi:=0

xi>A lock≠p

xi>A lock=p

1494 Journal of Software 软件学报 Vol.21, No.7, July 2010

max max

max

max

() () ,
() ((() ()) ((()) 0 (()) 0)),
() .(() (| |)).

v x c v x c
v x c v x v x frac v x frac v x

x y c c c v x y c v x y cΨ

′> → >

′ ′⇒ = ∧ = → =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
′∀ − ∈ ⇒ = − → = −≺ ≺ ≺

≤

≤X

We use [v] to denote the equivalence class of the relation Ψ� X
 to which v belongs. Such a class is called a

zone. The set of all the zones is denoted by Z(n). A zone [v] is final iff [v]>cmax for all v∈[v] and x∈X. A zone [v]
satisfies the clock constraint ψ∈ΨX, if [v] ψ iff ∀v′∈[v],v′ ψ,.

Definition 3. The RG of a TA is a finite structure 〈Q,q0,→,L〉:
− Q={(s,[v])|(s,[v])∈S×Z(n)}, is the set of states.
− q0∈Q is the initial state.

− → is defined as follows:
• (,[]) (,[])ls v s v′ ′⎯⎯→ iff , ,: le s sψ ε′∀ ⎯⎯⎯→ ∈Y such that s=source(e), s′=target(e), [v′]=[v[Y:=0]]

and v′ I(s′).

• (,[]) (,[])s v s vδ ′⎯⎯→ iff [v′]=I(s) and [v′]=[v]+δ or [v′]=[v] if [v] is final.
− L:Q→2AP is a labeling function that maps each state of Q to a set of atomic propositions true in that state.

A state q is deadlock if there is no delay δ∈\+ and an action l∈Σ such that lq q qδ ′ ′′⎯⎯→ ⎯⎯→ , for some
q′,q″∈Q. For simplicity of presentation, we consider only progressive TA[7].

2.2 Timed Kripke structure

TKS is an extension of Kripke Structure (KS) where each transition is labeled by a nonnegative integer.
Definition 4. A TKS is a tuple 〈S,s0,R,L〉 where
− S is a finite set of states.
− s0∈S is an initial state.

− R⊆S×`×S is a finite set of transitions labeled by a natural number, called the duration of the transition.

− L:S→2AP is a labeling function that maps each state of S to a set of atomic propositions true in that state.

A path π in TKS is a infinite sequence 31 2
0 1 2 ...dd ds s s⎯⎯→ ⎯⎯→ ⎯⎯→ , where s0,s1,s2,…∈S. For each path, and

for n∈`, let π(n) denotes the nth state sn, and πn denotes the nth suffix 1 2
1 ...n nd d

n ns s+ +
+⎯⎯⎯→ ⎯⎯⎯→ . Finally, for

n≤m∈`, let π[n…m] denotes the finite sequence 1 2
1 ...n n md d d

n n ms s s+ +
+⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯→ with m−n transitions and

m−n+1 states. The duration Dπ[n…m] of such a finite sequence is dn+1+dn+2+…+dm (Dπ when m=n). Fig.2 is a
simple example of TKS.

Fig.2 A simple example of TKS

2.3 TECTL

Computation tree logic (CTL) is a propositional branching-time temporal logic introduced by Ref.[19] as a

p1,p2
S1

S2

S0 p0

0

0

7

2

21

徐亮:改进的以 SMT 为基础的实时系统限界模型检测 1495

specification language for finite state systems. TECTL[9] is ECTL with timing constraints. TECTL formulae are
built according to the following syntax:

, : | | | | | ()p EF E Uϕ ϕα β α α β α β α α β= ¬ ∧ ∨ ,

where p∈AP and ϕ is an interval in \+ with integer bounds of the form [n,m], [n,m], (n,m), (n,m), [n,∞] and (n,∞),

for n,m∈`, or ϕ called the timing constraint, is a predicate on durations. Typically, for all constraints of the form

“≤n”, “=n”, “≥n”, n is in the relevant domain (here `). Let Iϕ be the predicate that the timing constraint ϕ is

satisfied and iIϕ be the predicate that state i satisfies the timing constraint ϕ where i∈`.

Here, we give a translation of a TECTL formula ψ to an ECTL formula ψ′ as follows:
 is translated to

 is translated to
 is translated to
 is translated to ()

 is translated to ()

() is translated to (())

p p

EF EF I

EG EG I

E U E U I

ϕ ϕ

ϕ ϕ

ϕ ϕ

α β α β
α β α β

α α

α α

α β α β

∈
′ ′∧ ∧
′ ′∨ ∨

′∧

′→

′ ′∧

AP

Definition 5 (semantics). Let si∈S, p∈AP. The semantics of TECTL formulae are defined as follows:

0

0

| iff is satisfied in state
| iff |
| iff (|) (|)
| iff (|) (|)

| iff .(0(|))

| iff .(0(|))

| () iff

i i

i

i i i

i i i
k

i i k

k
i i k

i

s p p s
s s
s s s
s s s

s EF s s k s I

s EG s s k s I

s E U

ϕ ϕ

ϕ ϕ

ϕ

α α
α β α β
α β α β

α π α

α π α

α β

=

= ¬ ≠
= ∧ = ∧ =

= ∨ = ∨ =

= ∃ = ∧ ∃ = ∧

= ∃ = ∧ ∀ = →

= ∃

≥

≥

0.(0((|) 0 (|)))k
i k js s k s I j k sϕπ β α= ∧ ∃ = ∧ ∧ ∀ < =≥ ≤

As an example, the TECTL formula EFϕα is true in state si means that there is a path π with its first state equal
to si and can reach a state which satisfies α and the timing constraint ϕ.

2.4 Satisfiability modulo theories

Recent SMT solvers[20−22] closely integrate theory-specific solvers with a Davis-Putnam-Logemann-Loveland
(DPLL) approach to SAT. These types of SMT solvers are often referred to as DPLL(T)[22]. In this type of
architecture, the DPLL-based SAT solver passes conjunctions of predicates belonging to theory T, such as linear real
and integer arithmetic, uninterpreted functions, and the theories of various data structures[22−24], to a specialized
solver. The specialized solver is then responsible for deciding feasibility of those predicates.

A Satisfiability Modulo Theories Library (SMT-LIB) benchmark declaration is as follows:

1

 =
 =

 =

 =
 =

n

b
L

ϕ

ϕ
ϕ

σ

benchmark begin
logic
assumption

assumption
formula
status

end

#

where the value of logic coincides with the name of a logic L for some logic in SMT-LIB. The formulae in the
assumption and formula are in the language of L and they together constitute the benchmark. The attribute status

1496 Journal of Software 软件学报 Vol.21, No.7, July 2010

declaration records whether the benchmark’s formula is known to be satisfiable in the associated background theory.
For example, in checking real-time systems, the tools need to support linear real or integer arithmetic. The

SMT-LIB theory of Ints or Reals or Reals_Ints is needed as its background theory. By using SAT solvers, multiple
Boolean variables are used as a bit representation for integers and the necessary integer theories are specified as
Boolean operations on those individual bit variables. This can result in extremely large SAT instances. By using
SMT solvers, with logic=QF_LRA or QF_LIA, real or integer variables, linear arithmetic and Boolean
combinations of inequations between linear polynomials over real or integer variables can be used in assumption

and formula. This preserves the time information in the system and with simplified instances∗.
Yices[20], the winner of the 2006 SMT competition, includes an incremental simplex algorithm for the theory of

linear arithmetic that is tightly integrated within the DPLL framework. Yices’ great ability to work with the theory
of linear arithmetic made it particularly well suited for real-time systems model checking. For these reasons, we use
Yices as the SMT solver in this paper.

3 Improved SMT-Based Bounded Model Checking

3.1 Bounded semantics of TECTL

In order to define the bounded semantics of TECTL and the encodings of BMC to a SMT problem, we have to
give some notions. Let M=〈S,T,s0,L〉 be a model with different semantics in different models. If TA is used as the

model, we have to transform the TA to a corresponding RG. Then the elements in M stand for the corresponding
ones in Definition 3 and dead(wk) means the state wk is a deadlock. (If the model is represented by TKS, and the
elements in M stand for the corresponding ones in Definition 4, then dead(wk) is set true if Dπ[0,k]>n, k∈`+, and the

timing constraint is in the form of “≤n” or “=n”, and else dead(wk) is set false.) A k-path of M is a finite sequence
π=w0,…,wk of states such that (wi,wi+1)∈T for i=0,…,k−1. The k-model for M is a structure Mk=〈S,pathk,s0,L〉, where

pathk is the set of all different k-paths of M. We use loop(π) to denote {l|l≤k∧(wk,wl)∈T}.
Definition 6 (bounded semantics). Let Mk be a k-model of M, si∈S, p∈AP, α, β TECTL formulae in Negation

Normal Form (NNF), Mk,s kα denotes that α is true in state s in Mk. k is defined as follows:

0

0

, | iff ()
, | iff ()
, | iff (, |) (, |)
, | iff (, |) (, |)

, | iff .(0 (, |))

, | iff .((()

k k

k k

k k k k k k

k k k k k k
i

k k k i k

k k

M s p p L s
M s p p L s
M s M s M s
M s M s M s

M s EF w s i k M w I

M s EG w s loop de
ϕ ϕ

ϕ

α β α β
α β α β

α π α

α π π

= ∈

= ¬ ∉
= ∧ = ∧ =

= ∨ = ∨ =

= ∃ = ∧ ∃ = ∧

= ∃ = ∧ ∨

≤ ≤

0

()) 0 (, |))

, | () iff .(0 ((, |) 0 (, |)))

i
k k i k

i
k k k k i k k j k

ad w i k M w I

M s E U w s i k M w I i j M w
ϕ

ϕ

α

α β π β α

′∧ ∀ = →

= ∃ = ∧ ∃ = ∧ ∧ ∀ =

≤ ≤

≤ ≤ ≤ ≤

In TA model, k′=k. In TKS model, k′=k if the timing constraint is in the form of “≤n” or “=n”, else k′=2k−l′
where l′=min(loop(π)). A TECTL formula ψ is true in k-model Mk, denoted Mk kψ, iff ψ is true in the initial state of

the model Mk. Similar to Ref.[7], we have the following theorem.
Theorem 1. Let Mk=〈S,pathk,s0,L〉 be a k-model, and ψ a TECTL formula. M ψ iff there is k∈{0,…,|M|} such

that Mk kψ.
Proof (sketch). Follows from the following facts:
− TECTL formula can be translated to ECTL formula which was given in Section 2.3.
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above

∗ More details about the currently supported background theories and logics in SMT_LIB, see http://goedel.cs.uiowa.edu/smtlib/.

徐亮:改进的以 SMT 为基础的实时系统限界模型检测 1497

translation can be translated to the model checking problem for ECTL.
− By Theorem 4.1 of Ref.[6] we can get the conclusion.

With this theorem, we are able to reduce a model checking problem M ψ to a bounded model checking
problem Mk kψ. We will discuss in the next subsection how to decide whether Mk kψ or not.

3.2 SMT-Based bounded model checking for TECTL

Given a TECTL formula ψ, a model M and a bound k, SMT-based BMC approach for TECTL needs to generate
and solve a semi-propositional formula 0,[[,]] : [[]] [[]]

k

s
k k MM Mψψ ψ= ∧ where 0,[[]]s

kMψ represents the

transition relations of the k-paths in the k-model Mk and [[]]
kMψ specifies which k-paths satisfy ψ. The

satisfiability of the semi-propositional formula on some k≤|M| implies that M satisfies ψ. Otherwise, ψ do not hold
in M.

In order to construct [[M,ψ]]k, we first give some useful notions. Let w be a vector state variable,
w=(w[1],…,w[n]), where w[i] for i=1,…,n are propositional variables and n depends on the size of the model,
n=⎡log2(|M|)⎤. A state can be represented by a truth assignment to (w[1],…,w[n]). When we talk about a state w, we

mean the state represented by w with a given assignment. The equality wi≡wj is defined by 1 [] []n
i jm w m w m= ⇔∧ .

Let k≥0, wj,i represents the jth state on the ith path and [,]j iIϕ means that wj,i satisfies the time constraint ϕ. So we

use w0,i,…,wk,i to represent the k+1 states of the ith k-path for each i∈{0,…,Nk(ψ)−1}, where Nk(ψ) is the number of
different k-paths needed for checking the formula ϕ, and it is defined as follows:

() () 0, where
() () ()
() max{ (), ()}
() () 1

() (1) () 1

(()) () () 1

k k

k k k

k k k

k k

k k

k k k

N p N p p
N N N
N N N
N EF N

N EG k N

N E U k N N

ϕ

ϕ

ϕ

α β α β
α β α β

α α

α α

α β α β

= ¬ = ∈

∧ = +
∨ =

= +

= + +

= + +

i
i

AP

Definition 7 (translation of the k-model). Let Mk=〈S,pathk,s,L〉 be a k-model of M and ψ a TECTL formula.

The semi-propositional formula [[M,ψ]]k is defined as follows:
() 1 1

, 1,
0 0

[[,]] : () (,)
kN k

k j i j i
i j

M I s T w w
ψ

ψ
− −

+
= =

= ∧ ∧ ∧

where I(s) is true when s is the initial state, wj,i for j=0,…,k and i=0,…,Nk(ψ)−1 are vectors of state variables.
According to the bounded semantics of TECTL, we get the following definition.
Definition 8 (translation of TECTL formulae). Let p∈AP, α, β TECTL formulae, m, n represent states’

number and paths’ number respectively. The rules of a TECTL formula ψ translated to a semi-propositional formula
are defined as follows:

[,]
,

[,]
,

[,] [,] [,]

[,] [,] [,]

() 1[,] [,] [,]
, 0,0 0

[,

[[]] : ()

[[]] : ()

[[]] : [[]] [[]]

[[]] : [[]] [[]]

[[]] : (() ([[]]))

[[]]

k

m n
k m n

m n
k m n

m n m n m n
k k k
m n m n m n

k k k
N EF km n j i j i

k m n i ki j

m
k

p p w

p p w

EF w w I

EG

ϕα
ϕ ϕ

ϕ

α β α β

α β α β

α α

α

−
= =

=

¬ = ¬

∧ = ∧

∨ = ∨

= ≡ ∧ ∧∨ ∨
() 1] [,] [,]

, 0, , ,0 0 0

(() 1 1[,] [,] [,] [,]
, 0,0 0 0

: (() (() ()) ([[]]))

[[()]] : (() (([[]]) [[]]))

k

k

N EG k kn j i j i
m n i k i k i ki l j

N E U k jm n j i j i t i
k m n i k ki j t

w w L l dead w I

E U w w I

ϕ

ϕ

α
ϕ

α β
ϕ ϕ

α

α β β α

′−
= = =

− −
= = =

= ≡ ∧ ∨ ∧ →

= ≡ ∧ ∧ ∧

∨ ∨ ∧
∨ ∨ ∧

1498 Journal of Software 软件学报 Vol.21, No.7, July 2010

Let [[]]
kMψ denote [0,0][[]]kψ and use the arithmetic expressions to represent [,]j iIϕ directly. Lk,i:=T(wk,i,wl,i)

encodes a backloop from the kth state to the lth state in the ith k-path. k′ in EG case is thesame in Definition 6.
So, from the encodings of [[M,ψ]]k, we have the following theorem.
Theorem 2. Let M be a model, Mk be a k-model, and ψ a TECTL formula. Then Mk kψ iff

0,[[]] [[]]
k

s
k MMψ ψ∧ is satisfiable.

Proof (sketch). Follows from the following facts:
− TECTL formula can be translated to ECTL formula which was given in Section 2.3.
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above

translation can be translated to the model checking problem for ECTL. Our definition of the translation
of TECTL problem is based on this translation.

− Theorem 6.1 of Ref.[6] shows that the translation of the model checking of ECTL problem to the SAT
problem is correct. So our translation of TECTL problem to the SMT problem is correct.

3.3 Improved SMT-based encodings

From Definition 8, the translated formula is in the form of φ0∨φ1∨…∨φn, where n∈` and φ0∨…∨φn are

propositional formulae with the same structure but different path numbers. According to Ref.[25], it’s a rotation
symmetric formula. We say a formula is rotation symmetric if, for every permutation σ={k0→0,…,kn→n} of its
components’ indexes, the permutation of a satisfiability assignment is a satisfiability assignment for the permuted
formula. The rotating symmetry in the formula enables us to consider only one fixed order of paths such as the
improvement in Ref.[26], yet not affecting its satisfiability.

Definition 9 (improved SMT-based encoding). Let p∈AP, w a state variable, ψ, α, β TECTL formulae, k≥0.

The encoding , ()[[,]] ki N
u kw ψψ is defined as follows:

0 0 1

0 1

, ()

, ()

, () , ,

, () , ,

, () [,]
0, 0

[[,]] : ()

[[,]] : ()

[[,]] : [[,]] [[,]]

[[,]] : [[,]] [[,]]

[[,]] : () (

k

k

k

k

k

i N p
u k

i N p
u k

i N i g i g g
u k u k u k

i N i g i g
u k u k u k

i N EF k j i
u k i j

p w p w

p w p w

w w w

w w w

EF w w w Iϕ

α β

α β

α
ϕ ϕ

α β α β

α β α β

α

¬

∧ +

∨

=

=

¬ = ¬

∧ = ∧

∨ = ∨

= ≡ ∧ ∧∨ 0

0 0

1

1,
,

, () 1 ,[,]
0, , , ,0 0

, (()) 11,[,]
0, ,0 0

[[,]])

[[,]] : () (() ()) ([[,]])

[[(),]] : () (([[,]])

k

k

i g
u j i k

i N EG k k i j g gj i
u k i k i k i u j i kl j

i N E U k ji gj i
u k i u j i kj t

w

EG w w w L l dead w I w

E U w w w I w

ϕ

ϕ

α
ϕ ϕ

α β
ϕ ϕ

α

α α

α β β

+

′ + + ×
= =

−+
= =

= ≡ ∧ ∨ ∧ →

= ≡ ∧ ∧ ∧

∨ ∧
∨ ∧ 1 0 01 ,

,[[,]])i g t g g
u t i kwα + + + ×

i is the start path number, Nk(ψ) is the number of paths needed to check the formula ψ, g0=Nk(α) and g1=Nk(β). Let
[[]]

ku Mψ denote 0, () 1
0[[,]] kN

u ks ψψ − and use the arithmetics to represent [,]j iIϕ directly. k′ in EG case is the same

in Definition 6.

Theorem 3. Let M be a model, Mk a k-model, and ψ a TECTL formula. Then Mk kψ iff 0,[[]] [[]]
k

s
k u MMψ ψ∧

is satisfiable.
Proof (sketch). Follows from the following facts:
− TECTL formula can be translated to ECTL formula which was given in Section 2.3.
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above

translation can be translated to the model checking problem for ECTL. Our definition of the translation
of TECTL problem is based on this translation.

− Theorem 3.2 of Ref.[26] shows that the improved translation of ECTL problem to the SAT problem is
correct. So our improved translation of TECTL problem to the SMT problem is correct.

徐亮:改进的以 SMT 为基础的实时系统限界模型检测 1499

4 Experiments

The experiments were run under RedHat Enterprise Linux AS release 4 (Nahant update 4) on a 2-processor
Xeon 3.0GHz machine with 32GB RAM. We use “SMT-based BMC” to represent our methods (it is implemented
in the tool[27]), “Improved” means we use the improved translation of TECTL formulae in Definition 9,
“Unimproved” means we use the translation of TECTL formulae in Definition 8. We also use SAL 3.0[15], UPPAAL
4.0.6[18], TSMV 1.0[3], NuSMV 2.4.3[2] as compariable methods.

4.1 Fischer’s protocol

The system consists of n(n≥2) processes: Process1,…,Processn, which compete for an access to the critical
region. Each process in Fischer’s protocol has one local clock x and can access the global pointer lock (lock:=p to
assign its process ID to the pointer). The TA of one process was shown in Fig.1. Processi’s transitions can be
described as follows:

(,) : (,0)
(, ,) : (, ,0)

() : ()
() : ()

(,) : (,)

i i i

i i i i

i i i

i i i

i i

i idle lock nil i x ready
i ready x B i lock x wait p
i wait lock i x A i idle
i wait lock i x A i critical
i critical i lock idle nil

= ∧ = → =

= ∧ < → =

= ∧ ≠ ∧ > → =
= ∧ = ∧ > → =

= → =

Experimental Results and Analysis. For n processes, we verify the negation of mutual exclusion property

1 1: ()n
iiEF criticalψ =∧ . If A≥B, ψ1 is false, and if A<B, ψ1 is true. We compare our method with SAL and UPPAAL,

and TA is used as its model. The experimental results with A=1 and B=4000 are shown in Table 1.

Table 1 Experimental results for mutual exclusion (time in second, size in MB)
SMT-Based BMC

Improved Unimproved
SAL UPPAAL n k Time Var Size Time Var Size Time Size Time Size

2 6 0.006 102 4.08 0.024 292 4.47 0.160 8.84 0.440 1.03
3 8 0.008 179 4.21 0.077 555 4.99 1.021 11.93 0.446 1.54
4 10 0.016 278 4.35 0.192 902 5.79 2.373 15.07 0.766 2.05
5 12 0.032 399 4.47 0.421 1335 6.77 6.241 18.25 0.868 3.08
6 14 0.052 542 4.60 1.055 1848 8.27 11.612 21.47 1.056 4.10
7 16 0.074 707 4.86 2.495 2447 10.46 34.234 24.73 2.110 8.21
8 18 0.112 893 5.05 4.585 3129 12.32 64.865 28.03 14.674 29.75

The 1st column shows the number of processes. The 2nd column gives the bound of SMT-based BMC. The 3rd
to 5th columns give the time, variables and memory needed for the improved SMT-based BMC method. The 6th to
8th columns are the same but for unimproved SMT-based BMC; the 9th and 10th columns display the time and
memory needed for SAL. The 11th and 12th columns are the same but for UPPAAL.

From Table 1, we can see that, the SMT-based BMC method spend less time and memory than SAL and the
time increasing trend of SMT-based BMC is much slower than SAL and UPPAAL with the increase of processes.
Otherwise, the improved SMT-based BMC is much better than the unimproved one in the time, variables and
memory they needed.

4.2 Bridge-Crossing problem

The bridge-crossing problem is a famous mathematical puzzle with time critical aspects[28]. A group of four
people, called P1, P2, P3 and P4, have to cross a bridge at night. It is dark and they can only cross the bridge if they
carry a lamp. Only one lamp is available and at most two of them can cross at the same time. Therefore any solution
requires that, after the first two people cross the bridge, one of them returns, bringing back the lamp for the

1500 Journal of Software 软件学报 Vol.21, No.7, July 2010

remaining people. The four people have different maximal speeds: here P1 crosses in 5 time units (t.u.), P2 in 10
t.u., P3 in 20 t.u. and P4 in 25 t.u. When a pair crosses the bridge, they move at the speed of the slower one. Now,
how much time is required before the whole group is on the other side (in the safe state)?

The details of this model can be found in Ref.[3]. We use TKS as the model in this problem.
Experimental Results and Analysis. We have tested two properties of this problem:
− ψ2:EF=60×T(safe)

The formula expresses the property that the whole group will be safe exactly at 60 t.u.. The property is true as
the minimum time to cross the bridge is 60×T t.u..

− ψ3:EF≤59×T(safe)
The formula expresses the property that the whole group will be safe at some time less than 60×T t.u.. It is

obviously false.

Table 2 Experimental results for ψ2 (time in second, size in MB)
SMT-Based BMC

Improved Unimproved
TSMV NuSMV

×T k Time Var Size Time Var Size Time Size Time Size
×1 5 0.012 280 4.21 0.023 442 4.34 0.006 1.82 0.084 6.17

×10 5 0.014 280 4.21 0.026 442 4.34 0.023 1.93 2.618 41.94
×20 5 0.015 280 4.21 0.024 442 4.34 0.044 2.06 8.945 45.48
×50 5 0.012 280 4.21 0.024 442 4.34 0.162 2.34 58.351 58.54

×100 5 0.016 280 4.21 0.022 442 4.34 0.466 2.76 236.662 110.71
×200 5 0.017 280 4.21 0.026 442 4.34 1.274 3.60 2608.600 204.68

Table 3 Experimental results for ψ3 (time in second, size in MB)
SMT-Based BMC

Improved Unimproved
TSMV NuSMV

×T k Time Var Size Time Var Size Time Size Time Size
×1 5 0.015 274 4.21 0.023 436 4.34 0.014 1.82 0.165 8.70

×10 5 0.014 274 4.21 0.026 436 4.34 0.082 2.06 5.305 42.04
×20 5 0.015 274 4.21 0.024 436 4.34 0.191 2.32 18.647 45.48
×50 5 0.014 274 4.21 0.024 436 4.34 0.643 3.03 121.671 60.62

×100 5 0.013 274 4.21 0.022 436 4.34 1.829 4.22 502.045 120.18
×200 5 0.013 274 4.21 0.026 436 4.34 5.918 6.64 6494.262 205.19

The results show in Table 2 and Table 3. The 1st column in Table 2 shows the magnifications of each one’s
crossing time (e.g. “×10” means replacing 5, 10, 20 and 25 with 50, 100, 200 and 250.). The 2nd to 8th columns are
the same in Table 1. The 9th and 10th columns display the time and memory needed for TSMV method. Tthe 11th
and 12th columns show the time and memory consumed with NuSMV method. They are the same in Table 3.

For ψ2, the bound is 5, which means in Step 5 the system is in the safe state and the property is true. For ψ3,
the bound is also 5, that means in or after Step 5, the system will never reach the safe state within 59×T t.u., and the
property is false. This is because the minimal time that the system first in safe state is 60×T t.u. at k=5, that means
when k<5 the system cannot reach state safe and when k≥5 the system reaches safe state, as the duration of the
system is monotonically increased, Dπ[0…k]≥60×T, the timing constraint cannot be satisfied any more. So k=5 is
enough for ψ3.

From Table 2 and Table 3, we can see that SMT-based BMC are much faster than TSMV and NuSMV. The time
SMT-based BMC used is almost the same with different magnifications, but TSMV and NuSMV are increased
exponentially. Also, the performance of the improved SMT-based BMC is better than the unimproved one.

5 Conclusions and Future Work

We have considered BMC for real-time systems based on SMT solver Yices to verification TECTL properties.

徐亮:改进的以 SMT 为基础的实时系统限界模型检测 1501

We have chosen TECTL BMC as our main verification technique because of the advantage that the length of the
symbolic paths needed in verifying a TECTL property could be much shorter. SMT-Based BMC can deal with two
kinds of models: Timed Automata and Timed Kripke Structures. We have compared our method with some other
real-time system model checkers by two well-known examples. The experimental results indicate that the efficiency
of our method is better than others. We also did improvement to the SMT-based BMC and the improved one is
better than the unimproved one.

For future work, stuttering studied in Ref.[29], linear counterexamples studied in Ref.[30] and some reduction
methods can be incorporated into our method to simplify the k-model and to reduce the number of verification
paths. Another direction is to work on efficient techniques for the verification of valid TECTL properties under the
TA model without necessary to reach a high completeness threshold, such as Ref.[31] using k-induction or similar to
that considered for LTL and ACTL properties in Refs.[32,33].

Acknowledgement We thank Prof. Wenhui Zhang for discussing some issues about this paper.

References:
[1] Bryant RE. Graph-Based algorithms for Boolean function manipulation. IEEE Trans. on Computers, 1986,C-35(12):1035−1044.

[2] Cimatti A, Clarke EM, Giunchiglia F, Roveri M. NuSMV: A new symbolic model verifier. In: Halbwachs N, Peled D, eds. Proc. of

the 11th Int’l Conf. on Computer Aided Verification. Berlin: Springer-Verlag, 1999. 495−499.

[3] Markey N, Schnoebelen P. Symbolic model checking for simply-timed systems. In: Lakhnech Y, Yovine S, eds. Proc. of the Formal

Techniques in Real-Time and Fault-Tolerant Systems. Berlin: Springer-Verlag, 2004. 102−117.

[4] Biere A, Cimatti A, Clarke E, Fujita M, Zhu Y. Symbolic model checking using SAT procedures instead of BDDs. In: Proc. of the

36th Conf. on Design Automation. ACM Press, 1999. 317−320.

[5] Biere A, Cimatti A, Clarke E, Zhu Y. Symbolic model checking without BDDs. In: Cleaveland R, ed. Proc. of the 5th Int’l Conf. on

Tools and Algorithms for Construction and Analysis of Systems. Berlin: Springer-Verlag, 1999. 193−207.

[6] Penczek W, Wozna B, Zbrzezny A. Bounded model checking for the universal fragment of CTL. Fundamenta Informaticae, 2002,

51(1-2):135−156.

[7] Penczek W, Wozna B, Zbrzezny A. Towards bounded model checking for the universal fragment of TCTL. In: Damm W, Olderog

ER, eds. Proc. of the Formal Techniques in Real-Time and Fault-Tolerant Systems. Berlin: Springer-Verlag, 2002. 265−290.

[8] Yu F, Wang BY, Huang YW. Bounded model checking for region automata. In: Lakhnech Y, Yovine S, eds. Proc. of the Formal

Techniques in Real-Time and Fault-Tolerant Systems. Berlin: Springer-Verlag, 2004. 246−262.

[9] Alur R, Courcoubetis C, Dill DL. Model-Checking in dense real-time. Information and Computation, 1993,104(1):2−34.

[10] Koymans R. Specifying real-time properties with metric temporal logic. Real-Time Systems, 1990,2(4):255−299.

[11] Lynch NA, Attiya H. Using mappings to prove timing properties. In: Proc. of the 9th Annual ACM Symp. on Principles of

Distributed Computing. ACM Press, 1990. 265−280.

[12] Dill DL. Timing assumptions and verification of finite-state concurrent systems. In: Sifakis J, ed. Proc. of the Int’l Workshop on

Automatic Verification Methods for Finite State Systems. Berlin: Springer-Verlag, 1989. 197−212.

[13] Emerson EA, Mok A, Sistla AP, Srinivasan J. Quantitative temporal reasoning. In: Clarke EM, Kurshan RP, eds. Proc. of the 2nd

Int’l Conf. on Computer Aided Verification. Berlin: Springer-Verlag, 1990. 136−145.

[14] Armando A, Mantovani J, Platania L. Bounded model checking of software using SMT solvers instead of SAT solvers. In: Valmari

A, ed. Proc. of the 13th Int’l SPIN Workshop. Berlin: Springer-Verlag, 2006. 146−162.

[15] http://sal.csl.sri.com/index.shtml

[16] Xu L. SMT-Based bounded model checking for real-time systems. In: Zhu H, ed. Proc. of the 8th Int’l Conf. on Quality Software.

IEEE Computer Society, 2008. 120−125.

[17] Yovine S. Kronos: A verification tool for real-time systems. Journal on Software Tools for Technology Transfer, 1997,1(1-2):

123−133.

1502 Journal of Software 软件学报 Vol.21, No.7, July 2010

[18] Larsen KG, Pettersson P, Wang Y. UPPAAL in a nutshell. Journal on Software Tools for Technology Transfer, 1997,1(1-2):

134−152.

[19] Emerson EA, Clarke EM. Using branching-time temporal logics to synthesize synchronization skeletons. Science of Computer

Programming, 1982,2(3):241−266.

[20] Dutertre B, de Moura L. A fast linear-arithmetic solver for DPLL(T). In: Ball T, Jones RB, eds. Proc. of the 18th Int’l Conf. on

Computer Aided Verification. Berlin: Springer-Verlag, 2006. 81−94.

[21] Bozzano M, Bruttomesso R, Cimatti A, Junttila T, Ranise S, Rossum P, Sebastiani R. Efficient satisfiability modulo theories via

delayed theory combination. In: Etessami K, Rajamani SK, eds. Proc. of the 18th Int’l Conf. on Computer Aided Verification.

Berlin: Springer-Verlag, 2005. 335−349.

[22] Ganzinger H, Hagen G, Nieuwenhuis R, Tinelli C. DPLL(T): Fast decision procedures. In: Alur R, Peled D, eds. Proc. of the 16th

Int’l Conf. on Computer Aided Verification. Berlin: Springer-Verlag, 2004. 175−188.

[23] Armando A, Castellini C, Giunchiglia E, Maratea M. A SAT-based decision procedure for the Boolean combination of difference

constraints. In: Hoos HH, Mitchell DG, eds. Proc. of the 7th Int’l Conf. on Theory and Applications of Satisfiability Testing. Berlin:

Springer-Verlag, 2004. 16−29.

[24] Filliâtre JC, Owre S, Rueβ H, Shankar N. ICS: Integrated canonizer and solver. In: Berry G, Comon H, Finkel A, eds. Proc. of the

13th Int’l Conf. on Computer Aided Verification. Berlin: Springer-Verlag, 2001. 246−249.

[25] Pieprzyk J, Qu CX. Rotation-Symmetric functions and fast Hashing. In: Boyd C, Dawson E, eds. Proc. of the 3rd Australasian Conf.

on Information Security and Privacy. Berlin: Springer-Verlag, 1998. 169−180.

[26] Xu L, Chen W, Xu YY, Zhang WH. Improved bounded model checking for universal fragment of CTL. Journal of Computer

Science and Technology, 2009,24(1):96−109.

[27] Wang Xiaoliang. Yices-Based bounded model checking for timed automata [MS. Thesis]. Beijing: Institute of Software, the

Chinese Academy of Sciences, 2009 (in Chinese with English abstract).

[28] Rote G. Crossing the bridge at night. Bulletin of the EATCS, 2002,78:241−246.

[29] Zhou C, Ding DC. Improved SAT based bounded model checking. In: Cai JY, Cooper SB, Li A, eds. Proc. of the 3rd Int’l Conf. on

Theory and Applications of Models of Computation. Berlin: Springer-Verlag, 2006. 611−620.

[30] Buccafurri F, Eiter T, Gottlob G, Leone N. On ACTL formulae having linear counterexamples. Journal of Computer and System

Sciences, 2001,62(3):463−515.

[31] De Moura L, Rue H, Sorea M. Bounded model checking and induction: From refutation to verification. In: Hunt Jr. WA, Somenzi F,

eds. Proc. of the 15th Int’l Conf. on Computer Aided Verification. Berlin: Springer-Verlag, 2003. 14−26.

[32] Zhang W. SAT-Based verification of LTL formulas. In: Brim L, Haverkort B, Leucker M, van de Pol J, eds. Proc. of the 11th Int’l

Workshop on Formal Methods: Applications and Technology. Berlin: Springer-Verlag, 2006. 277−292.

[33] Zhang W. Model checking with SAT-based characterization of ACTL formulas. In: Butler M, Hinchey MG, Larrondo-Petrie MM,

eds. Proc. of the 9th Int’l Conf. on Formal Engineering Methods. Berlin: Springer-Verlag, 2007. 191−211.

附中文参考文献:
[27] 王晓亮.基于 Yices 对时间自动机的有界模型检测[硕士学位论文].北京:中国科学院软件研究所,2009.

XU Liang (Ph.D.) was born in 1981. He is
a R&D Engineer at the National
Engineering Research Center of
Fundamental Software. His current
research areas are bounded model
checking, formal verification, formal
security policy and so on.

