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Abstract:  SAT-Based bounded model checking (BMC) has high complexity in dealing with real-time systems. 
Satisfiability modulo theories (SMT) solvers can generalize SAT solving by adding the ability to handle arithmetic 
and other decidable theories. This paper uses SMT in BMC for real-time systems instead of SAT. The clocks can be 
represented as integer or real variables directly and clock constraints can be represented as linear arithmetic 
expressions. These make the checking procedure more efficient. TCTL (timed computation tree logic) is used to 
specify the properties of real-time systems and improvement of the encodings has been done. 
Key words: bounded model checking; satisfiability modulo theories; real-time system; timed automata; timed 

Kripke structure; TCTL (timed computation tree logic) 

摘  要: 基于 SAT 的限界模型检测在处理实时系统时具有很高的复杂度.SMT 求解器在计算可满足性的同时,还
能处理算术和其他可判定性理论.在对实时系统进行检测时,用 SMT 求解器代替 SAT 求解器,系统里的时钟就可以

用整型或实型变量表示,时钟约束则可以直接表示成线性算术表达式,从而使整个检测过程更加高效.带时间参数的

计算树逻辑(timed computation tree logic,简称 TCTL)被用来描述实时系统里的性质.同时,还对检测方法作了相应的

改进. 
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1   Introduction 

In symbolic model checking, Binary Decision Diagrams (BDD’s)[1] are used to represent system states. The 
technique is used in many model checking tools, such as NuSMV[2] and TSMV[3]. But the size of BDD may grow 
significantly as the number of variables increase. Checking a system with a large number of variables remains a 
difficult problem for BDD-based model checking tools. On the other hand, Bounded Model Checking (BMC) based 
on Boolean Satisfiability (SAT) has been introduced as a complementary technique to BDD’s model checking[4−6] 
for combating the state explosion problem. The basic idea of BMC presented in Refs.[4−6] is to restrict the general 
model checking problem to a bounded one. Instead of finding out whether the system M violates the property ψ, we 
only need to know whether the system M has some counterexamples of length k to ψ. The problem is encoded into a 
propositional formula, and then a SAT solver is used to check the formula, in order to see whether it is satisfiable. 
The method’s efficiency is based upon the fact that if there is a counterexample, then it may be found only in a 
small portion of its state space[4,5]. 

In recent years, people’s interest in automated verification has shifted to real-time systems. The verification of 
real-time systems becomes a very important and challenging problem. References [7,8] transform the Timed 
Automaton (TA) to a Region Graph (RG)[9], which is based on dense-time approach[10−12], then encode a Timed CTL 
(TCTL)[9] formula to a propositional formula and use SAT solvers to check it. TSMV[3], improved from NuSMV for 
verifying timed systems, uses Timed Kripke Structure (TKS) as its model, which is based on discrete-time 
approach[13], and solves problems with BDD-based method. Either SAT-based or BDD-based method for real-time 
systems, needs to encode clocks and clock constraints into boolean formulae. After this encoding, the clocks’ 
characteristics disappear which means the whole checking process has no time information to use. In order to 
overcome this disadvantage, we use Satisfiability Modulo Theories (SMT) instead of SAT to do the check. 

The SMT problem is a generalization of the SAT problem where Boolean variables are replaced by predicates 
from various background theories, such as linear real and integer arithmetic. So, we can use real or integer variables 
to represent clocks and linear arithmetic expressions to represent clock constraints instead of Boolean formulae, 
which preserve the time characteristics in the checking process. There are some related works for SMT-based BMC, 
such as CBMC[14] which is dealing with programming languages and SAL[15] which can check finite state systems 
based on SAT solvers and check infinite state systems based on SMT solvers. By doing so, the encoding of clock 
variables and clock constraints has less effect on BMC’s efficiency. A preliminary version of SMT-based BMC for 
real-time systems is mentioned in Ref.[16] and the improvement to simplify the encodings in order to improve its 
efficiency is given in this paper. 

The rest of this paper is organized as follows. Some preliminaries are introduced in the next section. The 
SMT-based BMC approach and the improvement are given in Section 3. The experimental results are summarized in 
Section 4. Concluding remarks are given in Section 5. 

2   Preliminaries 

Real-Time systems do not only contain discrete variables but also have dense-time clocks which have a real 
domain and continuously increase at a uniform rate. Clocks are usually set to zero at the beginning and can be reset 
at any time. Real-time systems can often be modeled as a TA, which is a popular approach and several model 
checkers exist (e.g. Refs.[17,18]), or simply modeled as a TKS, which combines simplicity and efficiency (e.g. 
Ref.[3]). 
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2.1   Timed automata 

A TA is a finite-state machine equipped with a set of clocks. Hereafter, the set AP={p1,p2,…} denotes atomic 

propositions, ` denotes the set of natural numbers, `+ denotes the set of {1,2,…}, ] denotes the set of integer 

numbers, \ denotes the set of real numbers and \+ denotes the set of non-negative real numbers. 

Let X be a finite set of variables called clocks. A clock valuation is a function v:X→\+, which assigns a non- 

negative real number v(x) to each clock x∈X. For a subset Y of X by v[Y:=0] we mean the valuation v′ such that 

∀x∈X, v′(x)=0 and ∀x∈X\Y, v′(x)=v(x). For δ∈\+, v+δ denotes the valuation v″ such that ∀x∈X, v″(x)=v(x)+δ. The 

set ΨX of clock constraints over the set of clocks X is defined as follows: 

ψ::=x≺c|x−x′≺c|ψ∧ψ′|¬ψ, 

where x,x′∈X, ≺∈{<,≤ ,=,≥,>} and c∈`. 

A clock valuation v∈VX, in which VX denotes the set of all valuations, satisfies the clock constraint ψ∈ΨX 

denotes: 
v x≺c  iff  v(x)≺c, 

v x−x′≺c  iff  v(x)−v′(x)≺c, 

v ψ∧ψ′ iff  v ψ∧v ψ′, 
v ψ  iff  v ψ. 

We denote by [[ψ]] the set of valuations that satisfy ψ, that is: 
[[ψ]]={x∈VX|v ψ}. 

Definition 1. A TA is a tuple 〈S,X,Σ,s0,ε,I〉 where: 
− S is a finite set of locations. 
− X is a finite set of clocks. 

− Σ is a finite set of labels. 
− s0∈S is an initial location. 
− ε is a finite set of transition relations, ε⊆S×Σ×ΨX×2X×S. 
− I:S→ΨX is a state invariant function. 

Each element e∈ε is denoted by , ,: le s sψ ′= ⎯⎯⎯→Y . This represents a transition from location s to location s′ on 
the input label l∈Σ. The set Y⊆X gives the clocks to be reset with this transition. ψ∈ΨX is the enabling condition for 
e. Figure 1 is a simple example of TA. Let cmax be the largest constant appearing in ΨX. For x∈X, frac(v(x)) denotes 

the fractional part of v(x), and ⎣v(x)⎦ denotes its integral part. 
 
 
 
 
 
 
 
 
 

Fig.1  A simple example of TA 

Definition 2. For two clock valuations v and v′, v vΨ ′�
X

 iff for all x,y∈X  follows the conditions below: 

criticali waiti

readyiidlei

lock=nil x:=0

lock=nil 

xi<B

xi<B 
lock:=p
xi:=0 

xi>A lock≠p

xi>A lock=p
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max max

max

max

( ) ( ) ,
( ) (( ( ) ( ) ) ( ( ( )) 0 ( ( )) 0)),
( ) .(( ) ( | | )).

v x c v x c
v x c v x v x frac v x frac v x

x y c c c v x y c v x y cΨ

′> → >

′ ′⇒ = ∧ = → =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
′∀ − ∈ ⇒ = − → = −≺ ≺ ≺

≤

≤X

 

We use [v] to denote the equivalence class of the relation Ψ� X
 to which v belongs. Such a class is called a 

zone. The set of all the zones is denoted by Z(n). A zone [v] is final iff [v]>cmax for all v∈[v] and x∈X. A zone [v] 
satisfies the clock constraint ψ∈ΨX, if [v] ψ iff ∀v′∈[v],v′ ψ,. 

Definition 3. The RG of a TA is a finite structure 〈Q,q0,→,L〉: 
− Q={(s,[v])|(s,[v])∈S×Z(n)}, is the set of states. 
− q0∈Q is the initial state. 

− → is defined as follows: 
• ( ,[ ]) ( ,[ ])ls v s v′ ′⎯⎯→  iff , ,: le s sψ ε′∀ ⎯⎯⎯→ ∈Y  such that s=source(e), s′=target(e), [v′]=[v[Y:=0]] 

and v′ I(s′). 

• ( ,[ ]) ( ,[ ])s v s vδ ′⎯⎯→  iff [v′]=I(s) and [v′]=[v]+δ or [v′]=[v] if [v] is final. 
− L:Q→2AP is a labeling function that maps each state of Q to a set of atomic propositions true in that state. 

A state q is deadlock if there is no delay δ∈\+ and an action l∈Σ such that lq q qδ ′ ′′⎯⎯→ ⎯⎯→ , for some 
q′,q″∈Q. For simplicity of presentation, we consider only progressive TA[7]. 

2.2   Timed Kripke structure 

TKS is an extension of Kripke Structure (KS) where each transition is labeled by a nonnegative integer. 
Definition 4. A TKS is a tuple 〈S,s0,R,L〉 where 
− S is a finite set of states. 
− s0∈S is an initial state. 

− R⊆S×`×S is a finite set of transitions labeled by a natural number, called the duration of the transition. 

− L:S→2AP is a labeling function that maps each state of S to a set of atomic propositions true in that state. 

A path π in TKS is a infinite sequence 31 2
0 1 2 ...dd ds s s⎯⎯→ ⎯⎯→ ⎯⎯→ , where s0,s1,s2,…∈S. For each path, and 

for n∈`, let π(n) denotes the nth state sn, and πn denotes the nth suffix 1 2
1 ...n nd d

n ns s+ +
+⎯⎯⎯→ ⎯⎯⎯→ . Finally, for 

n≤m∈`, let π[n…m] denotes the finite sequence 1 2
1 ...n n md d d

n n ms s s+ +
+⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯→  with m−n transitions and 

m−n+1 states. The duration Dπ[n…m] of such a finite sequence is dn+1+dn+2+…+dm (Dπ when m=n). Fig.2 is a 
simple example of TKS. 

 
 
 
 
 
 
 
 
 

Fig.2  A simple example of TKS 

2.3   TECTL 

Computation tree logic (CTL) is a propositional branching-time temporal logic introduced by Ref.[19] as a 

p1,p2
S1

S2

S0 p0

0

0

7

2
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specification language for finite state systems. TECTL[9] is ECTL with timing constraints. TECTL formulae are 
built according to the following syntax: 

, : | | | | | ( )p EF E Uϕ ϕα β α α β α β α α β= ¬ ∧ ∨ , 

where p∈AP and ϕ is an interval in \+ with integer bounds of the form [n,m], [n,m], (n,m), (n,m), [n,∞] and (n,∞), 

for n,m∈`, or ϕ called the timing constraint, is a predicate on durations. Typically, for all constraints of the form 

“≤n”, “=n”, “≥n”, n is in the relevant domain (here `). Let Iϕ be the predicate that the timing constraint ϕ is 

satisfied and iIϕ  be the predicate that state i satisfies the timing constraint ϕ where i∈`. 

Here, we give a translation of a TECTL formula ψ to an ECTL formula ψ′ as follows: 
 is translated to 

 is translated to 
 is translated to 
 is translated to ( )

 is translated to ( )

( ) is translated to ( ( ))

p p

EF EF I

EG EG I

E U E U I

ϕ ϕ

ϕ ϕ

ϕ ϕ

α β α β
α β α β

α α

α α

α β α β

∈
′ ′∧ ∧
′ ′∨ ∨

′∧

′→

′ ′∧

AP

 

Definition 5 (semantics). Let si∈S, p∈AP. The semantics of TECTL formulae are defined as follows: 

0

0

|  iff  is satisfied in state 
|  iff |
|  iff ( | ) ( | )
|  iff ( | ) ( | )

|  iff .( 0( | ))

|  iff .( 0( | ))

| ( ) iff 

i i

i

i i i

i i i
k

i i k

k
i i k

i

s p p s
s s
s s s
s s s

s EF s s k s I

s EG s s k s I

s E U

ϕ ϕ

ϕ ϕ

ϕ

α α
α β α β
α β α β

α π α

α π α

α β

=

= ¬ ≠
= ∧ = ∧ =

= ∨ = ∨ =

= ∃ = ∧ ∃ = ∧

= ∃ = ∧ ∀ = →

= ∃

≥

≥

0.( 0(( | ) 0 ( | )))k
i k js s k s I j k sϕπ β α= ∧ ∃ = ∧ ∧ ∀ < =≥ ≤

 

As an example, the TECTL formula EFϕα is true in state si means that there is a path π with its first state equal 
to si and can reach a state which satisfies α and the timing constraint ϕ. 

2.4   Satisfiability modulo theories 

Recent SMT solvers[20−22] closely integrate theory-specific solvers with a Davis-Putnam-Logemann-Loveland 
(DPLL) approach to SAT. These types of SMT solvers are often referred to as DPLL(T)[22]. In this type of 
architecture, the DPLL-based SAT solver passes conjunctions of predicates belonging to theory T, such as linear real 
and integer arithmetic, uninterpreted functions, and the theories of various data structures[22−24], to a specialized 
solver. The specialized solver is then responsible for deciding feasibility of those predicates. 

A Satisfiability Modulo Theories Library (SMT-LIB) benchmark declaration is as follows: 

1

  
     = 
    = 

             
    = 

     = 
     = 

n

b
L

ϕ

ϕ
ϕ

σ

benchmark begin
logic
assumption

assumption
formula
status

end

#
 

where the value of logic coincides with the name of a logic L for some logic in SMT-LIB. The formulae in the 
assumption and formula are in the language of L and they together constitute the benchmark. The attribute status 
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declaration records whether the benchmark’s formula is known to be satisfiable in the associated background theory. 
For example, in checking real-time systems, the tools need to support linear real or integer arithmetic. The 

SMT-LIB theory of Ints or Reals or Reals_Ints is needed as its background theory. By using SAT solvers, multiple 
Boolean variables are used as a bit representation for integers and the necessary integer theories are specified as 
Boolean operations on those individual bit variables. This can result in extremely large SAT instances. By using 
SMT solvers, with logic=QF_LRA or QF_LIA, real or integer variables, linear arithmetic and Boolean 
combinations of inequations between linear polynomials over real or integer variables can be used in assumption 

and formula. This preserves the time information in the system and with simplified instances∗. 
Yices[20], the winner of the 2006 SMT competition, includes an incremental simplex algorithm for the theory of 

linear arithmetic that is tightly integrated within the DPLL framework. Yices’ great ability to work with the theory 
of linear arithmetic made it particularly well suited for real-time systems model checking. For these reasons, we use 
Yices as the SMT solver in this paper. 

3   Improved SMT-Based Bounded Model Checking 

3.1   Bounded semantics of TECTL 

In order to define the bounded semantics of TECTL and the encodings of BMC to a SMT problem, we have to 
give some notions. Let M=〈S,T,s0,L〉 be a model with different semantics in different models. If TA is used as the 

model, we have to transform the TA to a corresponding RG. Then the elements in M stand for the corresponding 
ones in Definition 3 and dead(wk) means the state wk is a deadlock. (If the model is represented by TKS, and the  
elements in M stand for the corresponding ones in Definition 4, then dead(wk) is set true if Dπ[0,k]>n, k∈`+, and the  

timing constraint is in the form of “≤n” or “=n”, and else dead(wk) is set false.) A k-path of M is a finite sequence 
π=w0,…,wk of states such that (wi,wi+1)∈T for i=0,…,k−1. The k-model for M is a structure Mk=〈S,pathk,s0,L〉, where 

pathk is the set of all different k-paths of M. We use loop(π) to denote {l|l≤k∧(wk,wl)∈T}. 
Definition 6 (bounded semantics). Let Mk be a k-model of M, si∈S, p∈AP, α, β TECTL formulae in Negation 

Normal Form (NNF), Mk,s kα denotes that α is true in state s in Mk. k is defined as follows: 

0

0

, |  iff  ( )
, |  iff  ( )
, |  iff  ( , | ) ( , | )
, |  iff  ( , | ) ( , | )

, |  iff  .( 0 ( , | ))

, |  iff  .( ( ( )

k k

k k

k k k k k k

k k k k k k
i

k k k i k

k k

M s p p L s
M s p p L s
M s M s M s
M s M s M s

M s EF w s i k M w I

M s EG w s loop de
ϕ ϕ

ϕ

α β α β
α β α β

α π α

α π π

= ∈

= ¬ ∉
= ∧ = ∧ =

= ∨ = ∨ =

= ∃ = ∧ ∃ = ∧

= ∃ = ∧ ∨

≤ ≤

0

( )) 0 ( , | ))

, | ( ) iff  .( 0 (( , | ) 0 ( , | )))

i
k k i k

i
k k k k i k k j k

ad w i k M w I

M s E U w s i k M w I i j M w
ϕ

ϕ

α

α β π β α

′∧ ∀ = →

= ∃ = ∧ ∃ = ∧ ∧ ∀ =

≤ ≤

≤ ≤ ≤ ≤

 

In TA model, k′=k. In TKS model, k′=k if the timing constraint is in the form of “≤n” or “=n”, else k′=2k−l′ 
where l′=min(loop(π)). A TECTL formula ψ is true in k-model Mk, denoted Mk kψ, iff ψ is true in the initial state of 

the model Mk. Similar to Ref.[7], we have the following theorem. 
Theorem 1. Let Mk=〈S,pathk,s0,L〉 be a k-model, and ψ a TECTL formula. M ψ iff there is k∈{0,…,|M|} such 

that Mk kψ. 
Proof (sketch). Follows from the following facts: 
− TECTL formula can be translated to ECTL formula which was given in Section 2.3. 
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above 

                                                             
∗ More details about the currently supported background theories and logics in SMT_LIB, see http://goedel.cs.uiowa.edu/smtlib/. 
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translation can be translated to the model checking problem for ECTL. 
− By Theorem 4.1 of Ref.[6] we can get the conclusion. 

With this theorem, we are able to reduce a model checking problem M ψ to a bounded model checking 
problem Mk kψ. We will discuss in the next subsection how to decide whether Mk kψ or not. 

3.2   SMT-Based bounded model checking for TECTL 

Given a TECTL formula ψ, a model M and a bound k, SMT-based BMC approach for TECTL needs to generate 
and solve a semi-propositional formula 0,[[ , ]] : [[ ]] [[ ]]

k

s
k k MM Mψψ ψ= ∧  where 0,[[ ]]s

kMψ  represents the 

transition relations of the k-paths in the k-model Mk and [[ ]]
kMψ  specifies which k-paths satisfy ψ. The 

satisfiability of the semi-propositional formula on some k≤|M| implies that M satisfies ψ. Otherwise, ψ do not hold 
in M. 

In order to construct [[M,ψ]]k, we first give some useful notions. Let w be a vector state variable, 
w=(w[1],…,w[n]), where w[i] for i=1,…,n are propositional variables and n depends on the size of the model, 
n=⎡log2(|M|)⎤. A state can be represented by a truth assignment to (w[1],…,w[n]). When we talk about a state w, we 

mean the state represented by w with a given assignment. The equality wi≡wj is defined by 1 [ ] [ ]n
i jm w m w m= ⇔∧ . 

Let k≥0, wj,i represents the jth state on the ith path and [ , ]j iIϕ  means that wj,i satisfies the time constraint ϕ. So we 

use w0,i,…,wk,i to represent the k+1 states of the ith k-path for each i∈{0,…,Nk(ψ)−1}, where Nk(ψ) is the number of 
different k-paths needed for checking the formula ϕ, and it is defined as follows: 

( ) ( ) 0,  where 
( ) ( ) ( )
( ) max{ ( ), ( )}
( ) ( ) 1

( ) ( 1) ( ) 1

( ( )) ( ) ( ) 1

k k

k k k

k k k

k k

k k

k k k

N p N p p
N N N
N N N
N EF N

N EG k N

N E U k N N

ϕ

ϕ

ϕ

α β α β
α β α β

α α

α α

α β α β

= ¬ = ∈

∧ = +
∨ =

= +

= + +

= + +

i
i

AP

 

Definition 7 (translation of the k-model). Let Mk=〈S,pathk,s,L〉 be a k-model of M and ψ a TECTL formula. 

The semi-propositional formula [[M,ψ]]k is defined as follows: 
( ) 1 1

, 1,
0 0

[[ , ]] : ( ) ( , )
kN k

k j i j i
i j

M I s T w w
ψ

ψ
− −

+
= =

= ∧ ∧ ∧  

where I(s) is true when s is the initial state, wj,i for j=0,…,k and i=0,…,Nk(ψ)−1 are vectors of state variables. 
According to the bounded semantics of TECTL, we get the following definition. 
Definition 8 (translation of TECTL formulae). Let p∈AP, α, β TECTL formulae, m, n represent states’ 

number and paths’ number respectively. The rules of a TECTL formula ψ translated to a semi-propositional formula 
are defined as follows: 

[ , ]
,

[ , ]
,

[ , ] [ , ] [ , ]

[ , ] [ , ] [ , ]

( ) 1[ , ] [ , ] [ , ]
, 0,0 0

[ ,

[[ ]] : ( )

[[ ]] : ( )

[[ ]] : [[ ]] [[ ]]

[[ ]] : [[ ]] [[ ]]

[[ ]] : (( ) ( [[ ]] ))

[[ ]]

k

m n
k m n

m n
k m n

m n m n m n
k k k
m n m n m n

k k k
N EF km n j i j i

k m n i ki j

m
k

p p w

p p w

EF w w I

EG

ϕα
ϕ ϕ

ϕ

α β α β

α β α β

α α

α

−
= =

=

¬ = ¬

∧ = ∧

∨ = ∨

= ≡ ∧ ∧∨ ∨
( ) 1] [ , ] [ , ]

, 0, , ,0 0 0

( ( ) 1 1[ , ] [ , ] [ , ] [ , ]
, 0,0 0 0

: (( ) ( ( ) ( )) ( [[ ]] ))

[[ ( )]] : (( ) (( [[ ]] ) [[ ]] ))

k

k

N EG k kn j i j i
m n i k i k i ki l j

N E U k jm n j i j i t i
k m n i k ki j t

w w L l dead w I

E U w w I

ϕ

ϕ

α
ϕ

α β
ϕ ϕ

α

α β β α

′−
= = =

− −
= = =

= ≡ ∧ ∨ ∧ →

= ≡ ∧ ∧ ∧

∨ ∨ ∧
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Let [[ ]]
kMψ  denote [0,0][[ ]]kψ  and use the arithmetic expressions to represent [ , ]j iIϕ  directly. Lk,i:=T(wk,i,wl,i) 

encodes a backloop from the kth state to the lth state in the ith k-path. k′ in EG case is thesame in Definition 6. 
So, from the encodings of [[M,ψ]]k, we have the following theorem. 
Theorem 2. Let M be a model, Mk be a k-model, and ψ a TECTL formula. Then Mk kψ iff 

0,[[ ]] [[ ]]
k

s
k MMψ ψ∧  is satisfiable. 

Proof (sketch). Follows from the following facts: 
− TECTL formula can be translated to ECTL formula which was given in Section 2.3. 
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above 

translation can be translated to the model checking problem for ECTL. Our definition of the translation 
of TECTL problem is based on this translation. 

− Theorem 6.1 of Ref.[6] shows that the translation of the model checking of ECTL problem to the SAT 
problem is correct. So our translation of TECTL problem to the SMT problem is correct. 

3.3   Improved SMT-based encodings 

From Definition 8, the translated formula is in the form of φ0∨φ1∨…∨φn, where n∈` and φ0∨…∨φn are 

propositional formulae with the same structure but different path numbers. According to Ref.[25], it’s a rotation 
symmetric formula. We say a formula is rotation symmetric if, for every permutation σ={k0→0,…,kn→n} of its 
components’ indexes, the permutation of a satisfiability assignment is a satisfiability assignment for the permuted 
formula. The rotating symmetry in the formula enables us to consider only one fixed order of paths such as the 
improvement in Ref.[26], yet not affecting its satisfiability. 

Definition 9 (improved SMT-based encoding). Let p∈AP, w a state variable, ψ, α, β TECTL formulae, k≥0. 

The encoding , ( )[[ , ]] ki N
u kw ψψ  is defined as follows: 
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i is the start path number, Nk(ψ) is the number of paths needed to check the formula ψ, g0=Nk(α) and g1=Nk(β). Let 
[[ ]]

ku Mψ  denote 0, ( ) 1
0[[ , ]] kN

u ks ψψ −  and use the arithmetics to represent [ , ]j iIϕ  directly. k′ in EG case is the same 

in Definition 6. 

Theorem 3. Let M be a model, Mk a k-model, and ψ a TECTL formula. Then Mk kψ iff 0,[[ ]]  [[ ]]
k

s
k u MMψ ψ∧  

is satisfiable. 
Proof (sketch). Follows from the following facts: 
− TECTL formula can be translated to ECTL formula which was given in Section 2.3. 
− Since we have assumed that we deal with progressive TA and the TKS is an extension of TK, the above 

translation can be translated to the model checking problem for ECTL. Our definition of the translation 
of TECTL problem is based on this translation. 

− Theorem 3.2 of Ref.[26] shows that the improved translation of ECTL problem to the SAT problem is 
correct. So our improved translation of TECTL problem to the SMT problem is correct. 
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4   Experiments 

The experiments were run under RedHat Enterprise Linux AS release 4 (Nahant update 4) on a 2-processor 
Xeon 3.0GHz machine with 32GB RAM. We use “SMT-based BMC” to represent our methods (it is implemented 
in the tool[27]), “Improved” means we use the improved translation of TECTL formulae in Definition 9, 
“Unimproved” means we use the translation of TECTL formulae in Definition 8. We also use SAL 3.0[15], UPPAAL 
4.0.6[18], TSMV 1.0[3], NuSMV 2.4.3[2] as compariable methods. 

4.1   Fischer’s protocol 

The system consists of n(n≥2) processes: Process1,…,Processn, which compete for an access to the critical 
region. Each process in Fischer’s protocol has one local clock x and can access the global pointer lock (lock:=p to 
assign its process ID to the pointer). The TA of one process was shown in Fig.1. Processi’s transitions can be 
described as follows: 

( , ) : ( ,0)
( , , ) : ( , ,0)

( ) : ( )
( ) : ( )

( , ) : ( , )

i i i

i i i i

i i i

i i i

i i

i idle lock nil i x ready
i ready x B i lock x wait p
i wait lock i x A i idle
i wait lock i x A i critical
i critical i lock idle nil

= ∧ = → =

= ∧ < → =

= ∧ ≠ ∧ > → =
= ∧ = ∧ > → =

= → =

 

Experimental Results and Analysis. For n processes, we verify the negation of mutual exclusion property 

1 1: ( )n
iiEF criticalψ =∧ . If A≥B, ψ1 is false, and if A<B, ψ1 is true. We compare our method with SAL and UPPAAL, 

and TA is used as its model. The experimental results with A=1 and B=4000 are shown in Table 1. 

Table 1  Experimental results for mutual exclusion (time in second, size in MB) 
SMT-Based BMC 

Improved Unimproved 
SAL UPPAAL n k Time Var Size Time Var Size Time Size Time Size 

2 6 0.006 102 4.08 0.024 292 4.47 0.160 8.84 0.440 1.03 
3 8 0.008 179 4.21 0.077 555 4.99 1.021 11.93 0.446 1.54 
4 10 0.016 278 4.35 0.192 902 5.79 2.373 15.07 0.766 2.05 
5 12 0.032 399 4.47 0.421 1335 6.77 6.241 18.25 0.868 3.08 
6 14 0.052 542 4.60 1.055 1848 8.27 11.612 21.47 1.056 4.10 
7 16 0.074 707 4.86 2.495 2447 10.46 34.234 24.73 2.110 8.21 
8 18 0.112 893 5.05 4.585 3129 12.32 64.865 28.03 14.674 29.75 

The 1st column shows the number of processes. The 2nd column gives the bound of SMT-based BMC. The 3rd 
to 5th columns give the time, variables and memory needed for the improved SMT-based BMC method. The 6th to 
8th columns are the same but for unimproved SMT-based BMC; the 9th and 10th columns display the time and 
memory needed for SAL. The 11th and 12th columns are the same but for UPPAAL. 

From Table 1, we can see that, the SMT-based BMC method spend less time and memory than SAL and the 
time increasing trend of SMT-based BMC is much slower than SAL and UPPAAL with the increase of processes. 
Otherwise, the improved SMT-based BMC is much better than the unimproved one in the time, variables and 
memory they needed. 

4.2   Bridge-Crossing problem 

The bridge-crossing problem is a famous mathematical puzzle with time critical aspects[28]. A group of four 
people, called P1, P2, P3 and P4, have to cross a bridge at night. It is dark and they can only cross the bridge if they 
carry a lamp. Only one lamp is available and at most two of them can cross at the same time. Therefore any solution 
requires that, after the first two people cross the bridge, one of them returns, bringing back the lamp for the 
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remaining people. The four people have different maximal speeds: here P1 crosses in 5 time units (t.u.), P2 in 10 
t.u., P3 in 20 t.u. and P4 in 25 t.u. When a pair crosses the bridge, they move at the speed of the slower one. Now, 
how much time is required before the whole group is on the other side (in the safe state)? 

The details of this model can be found in Ref.[3]. We use TKS as the model in this problem. 
Experimental Results and Analysis. We have tested two properties of this problem: 
− ψ2:EF=60×T(safe) 

The formula expresses the property that the whole group will be safe exactly at 60 t.u.. The property is true as 
the minimum time to cross the bridge is 60×T t.u.. 

− ψ3:EF≤59×T(safe) 
The formula expresses the property that the whole group will be safe at some time less than 60×T t.u.. It is 

obviously false. 

Table 2  Experimental results for ψ2 (time in second, size in MB) 
SMT-Based BMC 

Improved Unimproved 
TSMV NuSMV 

×T k Time Var Size Time Var Size Time Size Time Size 
×1 5 0.012 280 4.21 0.023 442 4.34 0.006 1.82 0.084 6.17 

×10 5 0.014 280 4.21 0.026 442 4.34 0.023 1.93 2.618 41.94 
×20 5 0.015 280 4.21 0.024 442 4.34 0.044 2.06 8.945 45.48 
×50 5 0.012 280 4.21 0.024 442 4.34 0.162 2.34 58.351 58.54 

×100 5 0.016 280 4.21 0.022 442 4.34 0.466 2.76 236.662 110.71 
×200 5 0.017 280 4.21 0.026 442 4.34 1.274 3.60 2608.600 204.68 

Table 3  Experimental results for ψ3 (time in second, size in MB) 
SMT-Based BMC 

Improved Unimproved 
TSMV NuSMV 

×T k Time Var Size Time Var Size Time Size Time Size 
×1 5 0.015 274 4.21 0.023 436 4.34 0.014 1.82 0.165 8.70 

×10 5 0.014 274 4.21 0.026 436 4.34 0.082 2.06 5.305 42.04 
×20 5 0.015 274 4.21 0.024 436 4.34 0.191 2.32 18.647 45.48 
×50 5 0.014 274 4.21 0.024 436 4.34 0.643 3.03 121.671 60.62 

×100 5 0.013 274 4.21 0.022 436 4.34 1.829 4.22 502.045 120.18 
×200 5 0.013 274 4.21 0.026 436 4.34 5.918 6.64 6494.262 205.19 

The results show in Table 2 and Table 3. The 1st column in Table 2 shows the magnifications of each one’s 
crossing time (e.g. “×10” means replacing 5, 10, 20 and 25 with 50, 100, 200 and 250.). The 2nd to 8th columns are 
the same in Table 1. The 9th and 10th columns display the time and memory needed for TSMV method. Tthe 11th 
and 12th columns show the time and memory consumed with NuSMV method. They are the same in Table 3. 

For ψ2, the bound is 5, which means in Step 5 the system is in the safe state and the property is true. For ψ3, 
the bound is also 5, that means in or after Step 5, the system will never reach the safe state within 59×T t.u., and the 
property is false. This is because the minimal time that the system first in safe state is 60×T t.u. at k=5, that means 
when k<5 the system cannot reach state safe and when k≥5 the system reaches safe state, as the duration of the 
system is monotonically increased, Dπ[0…k]≥60×T, the timing constraint cannot be satisfied any more. So k=5 is 
enough for ψ3. 

From Table 2 and Table 3, we can see that SMT-based BMC are much faster than TSMV and NuSMV. The time 
SMT-based BMC used is almost the same with different magnifications, but TSMV and NuSMV are increased 
exponentially. Also, the performance of the improved SMT-based BMC is better than the unimproved one. 

5   Conclusions and Future Work 

We have considered BMC for real-time systems based on SMT solver Yices to verification TECTL properties. 
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We have chosen TECTL BMC as our main verification technique because of the advantage that the length of the 
symbolic paths needed in verifying a TECTL property could be much shorter. SMT-Based BMC can deal with two 
kinds of models: Timed Automata and Timed Kripke Structures. We have compared our method with some other 
real-time system model checkers by two well-known examples. The experimental results indicate that the efficiency 
of our method is better than others. We also did improvement to the SMT-based BMC and the improved one is 
better than the unimproved one. 

For future work, stuttering studied in Ref.[29], linear counterexamples studied in Ref.[30] and some reduction 
methods can be incorporated into our method to simplify the k-model and to reduce the number of verification 
paths. Another direction is to work on efficient techniques for the verification of valid TECTL properties under the 
TA model without necessary to reach a high completeness threshold, such as Ref.[31] using k-induction or similar to 
that considered for LTL and ACTL properties in Refs.[32,33]. 
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