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Abstract:  As an extension of traditional modal logics, this paper proposes a fuzzy first-order modal logic based 
on beilievable degree, and gives out a description of the fuzzy first-order modal logic based on constant domain 
semantics. In order to make the reasoning procedure between the fuzzy assertions efficiently, the notion of the fuzzy 
constraint is considered. A fuzzy constraint is an expression in which both syntax ingredient and semantics 
information are contained. By using the notion of the constraint, the reasoning procedure between the fuzzy 
assertions can be directly considered in the semantics environment, thus a fuzzy reasoning formal system which 
contains fuzzy constraint as its basic element is developed. As a main work of the paper, the relationship between 
the validity of the new assertion and the satisfiability of the fuzzy constraints is analyzed, and reasoning rules of the 
fuzzy reasoning formal system based on first order modal logic are given out. Further work could be done by 
considering the soundness and completeness of the formal system, and by building an efficient mechanism of 
reasoning procedure. The results have potential application in the areas of artificial intelligence and computer 
science. 
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摘  要: 研究基于可信度的模糊一阶模态逻辑,给出了基于常域的模糊一阶模态逻辑语义以及推理形式系统描

述.为有效进行模糊断言间的推理,考虑了模糊约束的概念.模糊约束是一个表达式,其中既有语法成分又包含意义

信息.模糊推理形式系统中的基本对象是模糊约束,针对模糊约束引进可满足性概念,研究模糊约束可满足性相关性

质.利用模糊约束的概念,模糊断言间的推理可以直接在语义环境下加以考虑,因此,以模糊约束为基本元素的模糊

推理形式系统随之建立.主要分析新产生断言有效性与模糊约束集可满足性之间的关系,并在此基础上给出了模糊

推理形式系统的推理规则.进一步的工作可探讨模糊推理形式系统的可靠性与完全性,建立推理过程的能行机制.研
究结果可在人工智能和计算机科学等领域得以应用. 
关键词: 模态逻辑;模糊推理;形式系统;模糊约束;可满足性 
中图法分类号: TP18   文献标识码: A 

1   Introduction 

Modal logic[1] is considered as an important logic branch, which was developed firstly in the category of 
nonclassical logics, and has been now widely used as a formalism for knowledge representation in artificial 
intelligence and an analysis tool in computer science[2,3]. Along with the study of modal logics, it has been found 
that modal logics have a close relationship with many other knowledge representation formalisms. The most 
well-known result is the connection of the possible world semantics for the modal epistemic logic S5 with the 
approximation space in the rough set theory[4], where the system S5 has been shown to be useful in the analysis of 
knowledge in various areas[5]. As a fragment of first order logic, modal logics are limited to deal with crisp 
assertions, as its possible world semantics are crisp. That is, assertions about whether a formal proposition holds is a 
yes-no question. More often than not, the assertions encountered in the real world are not precise and thus cannot be 
treated simply by using ‘yes’ or ‘no’. The fuzzy logic directly deals with the notion of vagueness and imprecision, 
and has been used in many research areas such as interval mathematics[6], possibility theory[7], rough set theory or 
artificial neural networks. By combining with the fuzzy logic, traditional modal logic has been extended. For 
example, Hájek[8] provided a complete axiomatization of fuzzy S5 system, where the accessibility relation is a 
universal relation. Godo and Rodríguez[9,10] gave a complete axiomatic system for the extension of Hájec’s logic 
with another modality corresponding to a fuzzy similarity relation. Zhang, et al.[11,12] established a formal system of 
fuzzy reasoning based on propositional modal logics and discussed the soundness and completeness of the system. 
Subsequently they also gave out a description of the fuzzy first-order modal logic based on constant domain 
semantics[13]. The work in this paper is an extensive study of the fuzzy reasoning based on first-order modal logic. 
We shall discuss the properties of the fuzzy first-order modal logic based on constant domain semantics, study the 
relationship of the reasoning procedures between the classical modal logic and the fuzzy modal logic, introduce a 
fuzzy reasoning formal system based on fuzzy first-order modal logics and give out a description of the fuzzy 
reasoning process based on the satisfiability.  

2   A Quick Overview of First-Order Modal Logic 

In general, the alphabet of a first-order modal logic consists of the following symbols: a set of variable  

symbols, denoted by VS={x1,x2,…}; a set of relation symbols, denoted by PS={ : 1, 2, ...n
iP n = }, where n

iP is the ith  

n-place relation symbol; the logical symbols, ¬ (negation), ∧ (and), ∨ (or), ⊃ (material implication); quantifiers ∀ 
(for all) and ∃ (exists); the modal operator symbols □ (necessity operator) and ◇ (possibility operator). 

Definition 2.1. An atomic formula of the first-order modal logic is an expression of the form 1( ,..., )nP x x , 
where P is an n-place relation symbol and 1,..., nx x  are variables. 
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Definition 2.2. The set of first-order formulas of a first-order modal logic is the smallest set satisfying the  
following conditions: Every atomic formula is a formula; if ϕ is a formula, so are ¬ϕ, □ϕ, ◇ϕ,∀xϕ and ∃xϕ; if ϕ 
and ψ are formulas and ° is a binary connective, then ϕ°ψ is a formula.  

When establishing the formal systems of modal logics, it was convenient to take ¬,⊃and □ as primitive, and 
the other connectives and modal operator are defined as usual. For quantifiers we take ∀ as primitive, and treat ∃ as 
a defined one. Hence, our modal logic formal system contains following axioms and inference rules: 

·Axioms: 
Ap1  ( ⊃ϕ ( ϕψ ⊃ ));  
Ap2  (((ϕ ⊃ (ψ ⊃ γ )) ⊃ ((ϕ ⊃ ψ ) ⊃ (ϕ ⊃ γ )));  
Ap3  (( ¬ ϕ ⊃ ¬ ψ ) ⊃ (ψ ⊃ ϕ ));  
Ap4  ( x∀ )(xϕ ⊃ )(yϕ ), where y is any variable free for x in )(xϕ ; 
Ap5  ( x∀ (ϕ ⊃ ψ ) ⊃ ( x∀ ϕ ⊃ x∀ ψ )); 
K    (□(ϕ ⊃ ψ ) ⊃  (□ϕ ⊃ □ψ )); 
T    (□ϕ ⊃ ϕ ); 
E    ( ¬□ ¬ ϕ ⊃ □ ¬□ ¬ ϕ ). 

• Inference rules:  
N (necessity rule)  if − ϕ then −□ϕ;  

UG (universal generalization)  if − ϕ then − ϕx∀ ;  

MP (modus ponens)  if − ϕ ⊃ψ and − ϕ then − ψ. 

Definition 2.3. A reasoning process in the formal system of the first-order modal logic is a sequence of 
formulas ϕ1,…,ϕn such that for each i(1≤i≤n), either ϕi is an axiom of the formal system or ϕi follows from previous 
members of the sequence by the inference rules N or UG or MP. The last member ϕn of the sequence is said to be a 
theorem of the formal system. 

A constant domain semantics (or a model) of a first-order modal logic is a structure , , ,M W R D I= 〈 〉 , where W 
is a set of possible worlds, R is a relation on W, D is a non-empty set called domain of the frame ,W R〈 〉 , I is an 
interpretation of the frame 〉〈 DRW ,, , which assigns to each n-place relation symbol P and to each possible world 

w∈W, some n-place relation on the domain D of the frame. Thus, I(P,w) is an n-place relation on D, and so each 
n-tuple 〉〈 ndd ,...,1 of members of D either is in the relation I(P,w) or is not. Notice that in a constant domain 

semantics, the domain of quantification is the same from world to world.  
Remark: Different modal logics are characterized by different classes of frames which rely on the properties 

of the relations defined between the possible worlds. Without loss of generality, we shall consider the logic which is 
characterized by the class of reflexive, symmetric and transitive frames. 

Let M=〈W,R,D,I〉 be a constant domain model of a first-order modal logic. A valuation in the model M is a 
mapping v that assigns to each free variable x some member v(x) of the domain D of the model.  

Definition 2.4. Let M be a constant domain model of a first-order modal logic and ϕ be a formula. For each 
w∈W and each valuation v in M, the notation that the formula ϕ is true at world w of model M with respect to 
valuation v, denoted by M,w|=vϕ, will be defined as follows:  

(1) If ϕ is an atomic formula P(x1,...,xt), then M,w|=v P(x1,...,xt) provided 〈v(x1),...,v(xt)〉∈I(P,w). 
(2) M,w|=v¬ϕ ⇔ M,w|≠vϕ. 
(3) M,w|=vϕ ⊃ψ ⇔M,w|=v¬ϕor M,w|=vψ. 
(4) M,w|=v□ϕ⇔for every w′∈W, if wRw' then M,w′|=vϕ. 
(5) M,w|=v∀xϕ⇔for every x-variant v′ of v in M, M,w|=v′ ϕ, where v′ is an x-variant of v means that v′ and v 

agree on all variables except possibly the variable x. 
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Definition 2.5. Let M be a constant domain model of a first-order modal logic and ϕ be a formula. For each 
w∈W, we say that ϕ is true at world w of model M, denoted by M,w|=ϕ, if M,w|=vϕ for every valuation v in M; we 
say that ϕ is true in model M, denoted by M|=ϕ, if M,w|=ϕ for every world w of M. 

Proposition 2.6. For any formula ϕ of the first-order modal logic, if ϕ is a theorem of the formal system then ϕ 
is true in every model M= 〈W,R,D,I 〉 of the system such that R is an equivalent relation on W. 

Usually, first-order modal logics are limited to deal with crisp concepts. However, many useful concepts 
encountered in the real world do not have a precisely defined criteria for the membership. To cope with this, we 
shall introduce a fuzzy first-order modal logic system based on believable degrees.  

3   Fuzzy First-Order Modal Logic with Believable Degrees 

Our fuzzy first-order modal system will use the same alphabet of symbols and the set of formulas as that in the 
first-order modal logic system mentioned in Section 2. In order to deal with vague notions, we extend the first-order 
modal logics by using expressions of the form 〈ϕ(x1,...,xt),ε〉 with the intended meaning that the believable degree of 
the individuals expressed by the variables x1,...,xt having the relation expressed by the formula ϕ is at least ε, where 
ϕ(x1,...,xt) is a formula of the first-order modal logic, and ε∈[0,1]. An expression of the form 〈ϕ,ε〉 is also called a 
fuzzy assertion.  

Definition 3.1. A constant domain semantics (or a model) of a fuzzy first-order modal logic is a structure M 
=〈W,R,D,I〉 where W is a set of possible worlds, R is an equivalence relation on W, D is a non-empty set called 
the domain of the frame 〈W,R〉, I is an interpretation of the frame 〈W,R,D〉, which assigns to each formula 

),...,( 1 txxϕ with free variables x1,...,xt and to each possible world w∈W, some t-place function on the domain D of 

the frame such that following conditions are satisfied: 
(1) If ϕ is an atomic formula P(x1,...,xt) then for each t-tuple 〈d1,...,dt〉 of members of D, I(P,w)(d1,...,dt)∈ 

[0,1].  
(2) I (¬ϕ,w)(d1,...,dt)=1−I (ϕ,w)(d1,...,dt).  
(3) I (ϕ ⊃ ψ ,w)(d1,...,dt)=max{ −1 I(ϕ ,w)(d1,...,dt), I(ψ ,w)(d1,...,dt)}. 
(4) I (□ϕ ,w)(d1,...,dt)=inf{I(ϕ ,w′)(d1,...,dt): w R w′}. 
(5) For any ϕ (x,x1,...,xt) and any t-tuple 〈 d1,...,dt 〉 of members of D,I ( , )x wϕ∀ (d1,...,dt)=inf{I( ϕ ,w) 

(d,d1,...,dt): d∈D}.  
Let M =〈W, R, D, I〉 be a fuzzy constant domain model. An evaluation in the model M is a mapping v that 

assigns to each free variable x some member v(x) of the domain D of the model. 
Definition 3.2. Let M be a constant domain model of a first-order modal logic and ϕ be a formula with free 

variables x1,...,xt. For each w∈W and each valuation v in M, a fuzzy assertion 〈ϕ,ε〉 is true at world w of model M  
with respect to valuation v, denoted by M,w ≈ v〈ϕ,ε〉, if I(ϕ,w)(v(x1),...,v(xt))≥ε. 

Proposition 3.3. Let M be a constant domain model of a first-order modal logic andϕ be a formula. Then for  
each w∈W and each valuation v in M, the following properties hold. 

(1) Ifϕ is an atomic formula P(x1,...,xt), then M,w ≈ v 〈P(x1,...,xt), ε 〉 provided I(P,w)(v(x1),...,v(xt)) ≥ ε . 

(2) If M,w ≈ v 〈 ¬ ϕ , ε 〉 then I (ϕ ,w)(v(x1),...,v(xt)) ≤ 1− ε . 

(3) M,w ≈ v 〈 ϕ ⊃ ψ , ε 〉 ⇔ M,w ≈ v 〈 ¬ ϕ , ε 〉 or M,w ≈ v 〈ψ , ε 〉 . 

(4) M,w ≈ v 〈□ϕ , ε 〉 ⇔ for every w′∈W, if wRw′ then M,w′ ≈ v 〈 ϕ , ε 〉 . 

(5) M,w ≈ v 〈 x∀ ϕ , ε 〉 ⇔ for every x-variant v′ of v in M, M,w ≈ v′ 〈 ϕ , ε 〉 . 

Definition 3.4. Let M be a constant domain model of a fuzzy first-order modal logic and 〈 ϕ , ε 〉 be a fuzzy 
assertion. For each w∈W, we say that 〈 ϕ , ε 〉 is true at world w of model M, denoted by M,w ≈ 〈 ϕ , ε 〉 , if 
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M,w ≈ v 〈 ϕ , ε 〉 for every valuation v in M; we say that 〈 ϕ , ε 〉 is true in model M, denoted by M ≈ 〈 ϕ , ε 〉 , if 

M,w ≈ 〈 ϕ , ε 〉 for every world w of M. 

Proposition 3.5. Let M be a model and ϕ (x) be a formula in which x is free, and let y be any variable which is 
free for x in ϕ (x). Suppose v and v′ are valuations in M such that v′ is x-variant of v and has v′(x)=v(y). For  
any ε ∈ [0,1] and any possible world w, M,w ≈ v 〈ϕ (y), ε 〉 if and only if M,w ≈ v′ 〈ϕ (x), ε 〉 . 

Remark 1: Proposition 3.5 describes a basic principle of the substitution for variables by other variables. It is 
an important technique that will be used later in the section where the satisfiability of the fuzzy constraints is 
discussed. 

Proposition 3.6.[13] Let M = 〈W,R,D,I 〉 be any fuzzy first-order modal model such that R is an equivalence 

relation on W, we have the following properties:  
(a) For any axiom ϕ of the first-order modal logic, M ≈ 〈ϕ,0.5 〉 ;  

(b) If M ≈ 〈ϕ, ε 〉 then M ≈ 〈□ϕ,ε 〉 . 

(c) If M ≈ 〈ϕ ⊃ ψ , ε 〉 and M ≈ 〈ϕ,ε′ 〉 then M ≈ 〈ψ ,ε 〉 , where ε,ε′∈[0,1] such that ε >1−ε′. 

(d) If M ≈ 〈ϕ, ε 〉 then M ≈ 〈 )(xxϕ∀ ,ε 〉 . 

In the formal system of the first-order modal logic, a reasoning process will guarantee that every theorem is 
true in every model M= 〈W,R,D,I 〉 such that R is an equivalent relation on W. In the fuzzy system, we have known 

by Proposition 3.6 that the believable degree of any axiom is at lest 0.5. It is natural to ask whether or not the 
believable degree of the theorem in the formal system is also ≥ 0.5 in the fuzzy system? The following proposition 
partially answers the question. 

Proposition 3.7. Let M = 〈W,R,D,I 〉 be any fuzzy first-order modal model such that R is an equivalence  
relation on W. If M ≈ 〈ϕ,0.5+ 〉 for any axiom ϕ in the formal system of the first-order modal logic, then 

M ≈ 〈ψ ,0.5+ 〉 for any theoremψ in the formal system of the first-order modal logic, where 0.5+ means that the  

believable degree of the relative formula is >0.5. 

4   The Relationship Between the General Reasoning and the Fuzzy One 

Let Σ be a set of formulas of the first-order modal logic and ϕ be a formula. We say that ϕ is a logical 
consequence of Σ , denoted by Σ = ϕ, if every model of Σ is a model of ϕ. In a fuzzy first-order modal logic, a set 

of basic fuzzy assertions is called a fuzzy knowledge base. Assume that Σ~ is a fuzzy knowledge base and 〈 ϕ , ε 〉 is a 

fuzzy assertion. We say that 〈 ϕ , ε 〉 is a logical consequence of Σ~ , denoted by Σ~ ≈ 〈 ϕ , ε 〉 , if every model of Σ~  

is a model of 〈ϕ, ε 〉 .  

Definition 4.1. If Σ~ is a fuzzy knowledge base then the crisp knowledge base with respect to Σ~  is a set of 
formulas Σ such that for anyϕ ,ϕ ∈ Σ if and only if 〈ϕ, ε 〉 ∈ Σ~ for some ε ∈ [0,1]. 

To study the relations between = and ≈ , we consider the relations between the general semantics and the fuzzy 
semantics of the first-order modal logic. Generally, the crisp semantics can be viewed as a special case of the fuzzy 
semantics. If Σ~ is a fuzzy knowledge base and Σ is the crisp one with respect to Σ~ , then it is obvious that every 
crisp model of Σ is also a model of Σ~ , thus we immediately have the following theorem. 

Theorem 4.1. Let Σ~ be a fuzzy knowledge base and Σ be the crisp one with respect to Σ~ . For any ϕ and any 
ε >0, if Σ~ ≈ 〈ϕ, ε 〉 then Σ = ϕ. 

The converse of Theorem 4.1 is not true in the general case. A closer relationship holds whenever we consider 
normalized fuzzy knowledge bases. 

Definition 4.2. A fuzzy assertion 〈ϕ, ε 〉 is said to be normalized if ε >0.5. A fuzzy knowledge base is 
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normalized if every fuzzy assertion in it is. 
Let M = 〈W,R,D,I 〉 be a fuzzy model. The crisp semantics with respect to M, is a quadruple of the form 

M= 〈W,R,D,I 〉 , such that W=W, R=R, D=D and for any atomic formula P(x1,...,xt) and any possible world w∈W, 

I(P,w)(d1,...,dt)=1 if and only if I (P,w)( d1,...,dt)>0.5, where (d1,...,dt) is any t-tuple of D. 
By induction on the connectives and modal words in ϕ, we can prove the following lemma. 
Lemma 4.2. Let M = 〈W,R,D,I 〉 be a fuzzy model of the first-order modal logic and M= 〈W,R,D,I 〉 be the 

crisp one with respect to M. For any possible world w∈W and any formulaϕ (x1,...,xt) of the first-order modal 

logic, if I(ϕ,w)(v(x1),...,v(xt))>0.5, then we have that I(ϕ,w)(v(x1),...,v(xt))=1 in M; if I (ϕ,w)( v(x1),...,v(xt))<0.5, 
then I(ϕ,w)(v(x1),...,v(xt))=0, where v is any valuation in M. 

Theorem 4.3. Let Σ~ be a normalized knowledge base and Σ be the crisp one with respect to Σ~ . If Σ = ϕ then 

there is an ε ≥ 0.5 such that Σ~ ≈ 〈ϕ, ε 〉 . 

Proof:  If it is not the case, then we would have a model M which is a model of Σ~ and there is a possible 

world w0∈W and a valuation v0 in M such that I(ϕ,w0)(v0(x1),...,v0(xt))<0.5. Since M is a model of Σ~ , we have that 

for anyψ ∈ Σ , any w∈W and any valuation v in M, I(ψ ,w)(v(x1),...,v(xt))>0.5. Let M be the crisp model with 

respect to M. By Lemma 4.2, M is a model of Σ but not a model of ϕ, which contradicts that Σ = ϕ. □ 

5   Fuzzy Reasoning and Satisfiability 

Let Σ~ be a fuzzy knowledge base and 〉〈 εϕ , be a fuzzy assertion. The process of deciding whether 〉〈≈ εϕΣ ,~ or 

not is called a fuzzy reasoning process based on fuzzy first-order modal logics. To verify that 〉〈≈ εϕΣ ,~ , one has to 

verify that every model of Σ~ is a model of 〉〈 εϕ , , which is not convenient in practical applications. To cope with it, 

we attempt to find a method which can be used to decide whether or not 〉〈≈ εϕΣ ,~ effectively. The associated work  

about fuzzy propositional modal logics has been discussed in Refs.[11,12]. In the following, we shall extend the 
work from propositional modal logic to first-order logic and develop a formal system of fuzzy reasoning based on 
fuzzy first-order modal logic. 

The basic idea is to syntactize the semantic information. More precisely we will extend the logical language for 
the fuzzy first-order modal logic in a way such that there are infinitely many possible world symbols w and a binary 
relation symbol ℜ . Under an extended interpretation I, w is interpreted as a possible world, andℜ  as R, the 
accessibility relation in the frame of the interpretation I. 

Definition 5.1. In addition to the basic symbols of the first-order modal logic, the formal system of fuzzy 
reasoning also contains a set of possible worlds symbols w1,w2,..., a set of relation symbols {<, ≤ ,>, ≥ } and a binary 
relation symbol ℜ . The basic expression, called fuzzy constraint, in the system is in the form of 〈w: ϕ rel ε 〉 , 
where ϕ is a formula in the first-order logic, ε ∈ [0,1] and rel∈ {<, ≤ ,>, ≥ }. 

Definition 5.2. An interpretation I of the system contains a model 〈WI,R, DI,I 〉 , where for any w, wI∈WI is 
a possible world,ℜ I = R. Also for any w and any formula ϕ (x1,...,xt) with free variables x1,...,xt, (ϕI,wI) (simply 
denoted by I(ϕ,w)) is a t-place function on DI such that the properties (1)~(5) in Definition 3.1 are satisfied. For 
any two possible world symbols w and w′, w′ is said to be accessible from w if wI ℜ I w′I. 

Definition 5.3. A fuzzy constraint 〈w: ϕrel ε 〉 , where ϕ is a formula with free variables x1,...,xt, is said to be  
satisfiable in I if there exists a valuation v such that I(ϕ,w)(v(x1),...,v(xt))rel ε . A set of fuzzy constraint S is said to 
be uniformly satisfiable in an interpretation I if there exists a valuation v such that every fuzzy constraint of S is 
satisfiable in I with respect to v. 

The basic properties about the satisfiability of the fuzzy constraints has been discussed in Ref.[13], where some 
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propositions have been listed.  
Proposition 5.1. If S is satisfiable in an interpretation I and 〈w:¬ ϕ rel n〉∈S, then S ∪ { 〈w: ϕ rel* 1 ε− 〉 } is 

satisfiable in I, where rel∈ { ≥ ,≤,>,<} and rel* is the converse of rel.  
Proposition 5.2. If S is satisfiable in I and 〈w: ϕ ⊃ ψ ≤ ε 〉 ∈ S, then S ∪ { 〈w: εϕ −≥ 1 〉 , 〈w:ψ ≤ ε 〉 } is 

satisfiable in I. 
Proposition 5.3. If S is satisfiable in I and 〈w:ϕ ψ ε⊃ ≥ 〉 ∈ S, then at least one of the sets S ∪ { 〈w: εϕ −≤ 1  

〉 } and S ∪ { 〈w:ψ ≥ ε 〉 } is satisfiable in I. 
Proposition 5.4. Let S be a set of fuzzy constraints and 〈w: □ϕ ≥ ε 〉 ∈ S. If S is satisfiable in I then 

S ∪ { 〈w′:ϕ ≥ ε 〉 } is satisfiable in I for any w′ such that w′ is accessible from w. 

Remark 2: Proposition 5.4 is also correct if the relation ≥ is replaced by >. When the constraint of the form 
〈w: □ϕ ≤ε 〉 is considered, the condition of the associated proposition should be modified slightly. This is due to 

the simple fact that inf S ≤ ε does not necessarily imply the existence of an element in S less than or equal to ε. 
Proposition 5.5. Let S be a set of fuzzy constraints and 〈w: □ϕ <ε 〉 ∈ S. If S is satisfiable in I then 

S ∪ { 〈w′:ϕ < ε 〉 } is satisfiable in I for some w′ such that w′ is accessible from w. Moreover, if 〈w:□ϕ ≤ ε 〉  
∈ S and S is satisfiable in I with the condition such that WI is finite, then S ∪ { 〈w′:ϕ  ≤ ε 〉 } is satisfiable in I  

for some w′ such that w′ is accessible from w. 
Proposition 5.6. If S is satisfiable in I and 〈w: )(xxϕ∀ ≥ ε 〉 ∈ S, then S ∪ { 〈w: ( )yϕ ≥ ε 〉 } is satisfiable in I, 

where y is any variable free for x in )(xϕ . 
Remark 3: Proposition 5.6 also holds if the relation ≥ is replaced by >. For a constraint of the form 〈w: 

)(xxϕ∀ ≤ ε 〉 , the condition in the corresponding proposition should also be modified slightly the same as that in 

Proposition 5.5. But in this case, the interpretation domain DI will be considered. 
Proposition 5.7. If S is satisfiable in I and 〈w: )(xxϕ∀ <ε 〉 ∈ S, where x dose not occur freely in any formula 

of the constraint in S, then S ∪ { 〈w: )(xϕ <ε 〉 } is satisfiable in I. Moreover, if 〈w: )(xxϕ∀ ≤ε 〉 ∈ S, where x does not 

occur freely in any formula of the constraint in S, and S is satisfiable in I with the condition that DI is finite, then 
S ∪ { 〈w: )(xϕ ≤ ε 〉 } is satisfiable in I. 

By Proposition 5.1∼5.7, we introduce the following as the basic rules for our reasoning system: 
• The reasoning rules aboutℜ : 
( rℜ )  φ⇒〈 〈 w,w 〉 :ℜ ≥1 〉 ; 
( sℜ )  〈 〈w,w′ 〉 :ℜ ≥1 〉 ⇒〈 〈w′,w 〉 :ℜ ≥1 〉 ; 
( tℜ )  〈 〈w,w′ 〉 :ℜ ≥1 〉 , 〈 〈w′,w″ 〉 :ℜ ≥1 〉 ⇒〈 〈w,w″ 〉 :ℜ ≥1 〉 . 

• The basic reasoning rules: 
( ¬ rel ) 〈w: ϕ¬ rel ε 〉 ⇒〈w:ϕ rel* ε−1 〉 , where rel∈ {≥, ≤ ,>,<}; 
( ≥⊃ )  〈w:ϕ ⊃ ψ  ≥ ε 〉 ⇒〈w: εϕ −≤ 1 〉 or 〈w:ψ  ≥ε 〉 ; 
( ≤⊃ )  〈w:ϕ ⊃ ψ ≤ ε 〉 ⇒〈w: εϕ −≥ 1 〉 and 〈w:ψ ≤ ε 〉 ; 
(□≥)  〈w:□ϕ ≥ ε 〉 , 〈 〈w′,w 〉 :ℜ ≥ 1 〉 ⇒〈w′:ϕ ≥ ε 〉 ; 
(□<)  〈w:□ϕ < ε 〉 ⇒〈 〈w′,w 〉 :ℜ ≥ 1 〉 and 〈w′:ϕ <ε 〉 ; 
( ≥∀ )  〈w: )(xϕ∀ ≥ ε 〉 ⇒〈w: )(yϕ ≥ε 〉 , where y is free for x in )(xϕ ; 
(∀ <)  〈w: )(xxϕ∀ < ε 〉 ⇒〈w: )(xϕ < ε 〉 ; 
Remark 4: (a) The reasoning rules about ℜ  based on the assumption that the relation R considered in the 

semantics of the fuzzy first-order modal logic is an equivalent relation on the set of the possible worlds. (b) There 
are some additional basic reasoning rules can be defined. For instance, the reasoning rules ( ⊃ <), ( ⊃ ), (□> ) and 
(∀ >) etc. We can define even more reasoning rules, such as ( rel∧ ), ( rel∨ ), (◇rel) etc., where rel∈ { ≤ , ≥ ,<,>}, as 
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an extension of the basic reasoning rules. (c) We may have the reasoning rules □≤ and ≤∀ which are constrained 

by the finite semantics in which either the set of possible worlds is finite or the individual domain is finite. 
However, the condition does not affect the reasoning in the real world since the information used in a real 
application is usually finite. 

6   Conclusion and Further Work 

In this paper, we analyze the properties of the fuzzy first-order modal logic, and introduce a formal system of 
fuzzy reasoning based on the first-order modal logic, and examine the properties about the satisfiability of the 
reasoning process. The role of studying the fuzzy reasoning is that we can transform the question of deciding 

whether Σ~ |≈ ,ϕ ε〈 〉 or not into a process to decide if a set of the fuzzy constraints is satisfiable, which has been 

completely achieved in the fuzzy propositional modal logic. Our further work is to discuss the soundness and of 
completeness the fuzzy reasoning system and to build a reasoning mechanism which can be used to decide whether 

or not Σ~ |≈ 〉〈 εϕ, efficiently. 
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