

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.9, September 2008, pp.2442−2448 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.02442 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

缩减 RIPEMD-128 分析
∗

王高丽 1,2+, 王美琴 1,2

1(山东大学 数学与系统科学学院,山东 济南 250100)
2(山东大学 密码技术与信息安全教育部重点实验室,山东 济南 250100)

Cryptanalysis of Reduced RIPEMD-128

WANG Gao-Li1,2+, WANG Mei-Qin1,2

1(School of Mathematics and System Sciences, Shandong University, Ji’nan 250100, China)
2(Laboratory of Cryptographic Technology and Information Security Ministry of Education, Shandong University, Ji’nan 250100, China)

+ Corresponding author: E-mail: wanggaoli@mail.sdu.edu.cn

Wang GL, Wang MQ. Cryptanalysis of reduced RIPEMD-128. Journal of Software, 2008,19(9):2442−2448.
http://www.jos.org.cn/1000-9825/19/2442.htm

Abstract: RIPEMD-128 is a cryptographic hash function proposed in 1996 by Hans Dobbertin, Antoon Bosselaers
and Bart Preneel. It consists of two different and independent parallel parts, with which the results in each
application of the compression function. This paper presents a practical attack for finding collisions for the first
32-step reduced RIPEMD-128 with complexity of 228 32-step reduced RIPEMD-128 operations. This is the first
published analysis for the first 32-step reduced RIPEMD-128.
Key words: hash function; collision; RIPEMD-128; differential path; message modification

摘 要: Hans Dobbertin, Antoon Bosselaers 和 Bart Preneel 在 1996 年提出 hash 函数 RIPEMD-128,它包含两个独

立并行的部分,每一部分的输出组合成 RIPEMD-128 的输出结果.给出前 32 步 RIPEMD-128 的碰撞实例,其计算复

杂度是 228次 32-步 RIPEMD-128 运算.本文是对前 32 步 RIPEMD-128 分析的第一次公开.
关键词: 杂凑函数;碰撞;RIPEMD-128;差分路经;明文修改
中图法分类号: TP309 文献标识码: A

1 Introduction

MD4[1] is an early-appeared hash function designed by using basic arithmetic and Boolean operations. After the
publication of MD4, several hash functions have been proposed, including MD5[2], HAVAL[3], RIPEMD[4],
RIPEMD-128[5], RIPEMD-160[5], SHA-0[6] and SHA-1[7], etc., most of which are based on the design principles of
MD4. RIPEMD was devised in the framework of the EU project RIPE. RIPEMD-128 was proposed in 1996 by

∗ Supported by the National Natural Science Foundation of China under Grant No.90604036 (国家自然科学基金); the National

Outstanding Young Scientist of China under Grant No.60525201 (国家杰出青年基金); the National Basic Research Program of China

under Grant No.2007CB807902 (国家基础研究发展计划(973))
Received 2007-07-23; Accepted 2007-11-20

王高丽 等:缩减 RIPEMD-128 分析 2443

Hans Dobbertin, Antoon Bosselaers and Bart Preneel as a substitute for RIPEMD with a 128-bit result[5]. H.
Dobbertin[8] gave a collision attack on MD4 which found a collision with probability 2−22 in 1996. Dobbertin[8]
found a collision of RIPEMD reduced to two rounds with 231 RIPEMD operations. Wang, et al.[9] found collisions
on MD4 and RIPEMD with complexity less than 28 MD4 operations and 218 RIPEMD operations respectively.

In this paper, we use the method of modular differential to analyze the hash function RIPEMD-128. This
method was presented early in 1997 by Wang, and formalized in Eurocrypt’05[9,10]. The modular differential method
is very efficient, by which the most prevailing hash functions such as MD4[9], MD5[10], HAVAL[11,12], SHA-0[6],
SHA-1[7] etc. have been broken. Furthermore, we use the message modification proposed by X.Y. Wang to improve
our collision probability. We show a cryptanalysis on reduced RIPEMD-128 which can find a collision of 32-step
RIPEMD-128.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-128 algorithm. In Section
3, we recall some properties of the nonlinear functions in RIPEMD-128 and some notations. Section 4 presents the
detailed descriptions of the attacks on reduced RIPEMD-128. Finally, we summarize the paper in Section 5.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a message with a length of 128
bit. Firstly the algorithm will pad any given message into a message with a length of 512 bit multiple. We don't
describe the padding process because it has little relation with our attack. For each 512-bit message block,
RIPEMD-128 compresses it into a 128-bit hash value by a compression function, which has two parallel operations:
Line1 and Line2. Each Line has four rounds. The nonlinear functions in each round are as follows:

(, ,) ,
(, ,) () ,

F X Y Z X Y Z
H X Y Z X Y Z

= ⊕ ⊕
= ∨ ¬ ⊕

(, ,) () ()

(, ,) () ()
G X Y Z X Y X Z
I X Y Z X Z Y Z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧ ¬

Here X, Y, Z are 32-bit words. The operations of four functions are all bitwise. ¬ represents the bitwise
complement of X, ∧, ⊕ and ∨ are bitwise AND, XOR and OR respectively. Each round of the compression function
is composed of 16 step operations.

(, , , , ,) : ((, ,)) ,
(, , , , ,) : ((, ,) 0 5 827999)
(, , , , ,) : ((, ,) 0 6 9 1)

(, , , , ,) : ((, ,) 0 8 1) ,
(, , , , ,) : (

FF a b c d x s a a F b c d x s
GG a b c d x s a a G b c d x x a s
HH a b c d x s a a H b c d x x ed eba s
II a b c d x s a a I b c d x x f bbcdc s
FFF a b c d x s a a

= + + <<<
= + + + <<<
= + + + <<<

= + + + <<<
= (, ,))

(, , , , ,) : ((, ,) 0 6 703 3)
(, , , , ,) : ((, ,) 0 5 4 124)

(, , , , ,) : ((, ,) 0 50 28 6)

F b c d x s
GGG a b c d x s a a G b c d x x d ef s
HHH a b c d x s a a H b c d x x c dd s
III a b c d x s a a I b c d x x a be s

+ + <<<
= + + + <<<
= + + + <<<

= + + + <<<

The initial value of RIPEMD-128 is: (a,b,c,d) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476).
The compression function of RIPEMD-128 consists of Line1 operation and Line2 operation.
Line1 operation process For a 512-bit block M=(m0,m1,…,m15), Line 1 operation process is as follows:
(1) Let (aa,bb,cc,dd) be the input of Line1 process for M. If M is the first block to be hashed, (aa,bb,cc,dd) is

the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps:
For j=0,1,2,3, for i=0,1,2,3, a=FF(a,b,c,d,wj,4i,sj,4i), d=GG(a,b,c,d,wj,4i+1,sj,4i+1), c=HH(a,b,c,d,wj,4i+2,sj,4i+2),
b=II(a,b,c,d,wj,4i+3,sj,4i+3). Sj,4i+k (k=0,1,2,3) are step-dependent constants. <<<s represents the circular shift s bit to
the left. + denotes addition modulo 232.

Line2 operation process For a 512-bit block M=(m0,m1,…,m15), Line2 operation process is as follows:
(1) Let (aaa,bbb,ccc,ddd) be the input of Line2 for M. If M is the first block to be hashed, (aaa,bbb,ccc,ddd) is

2444 Journal of Software 软件学报 Vol.19, No.9, September 2008

the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps:
For j=0,1,2,3, for i=0,1,2,3, a=III(a,b,c,d,wj,4i,sj,4i), d=HHH(a,b,c,d,wj,4i+1,sj,4i+1), c=GGG(a,b,c,d,wj,4i+2,sj,4i+2),
b=FFF(a,b,c,d,wj,4i+3,sj,4i+3). Add the output of Line1 to the output of Line2. a=b+cc+ddd, b=c+dd+aaa,
c=d+aa+bbb, d=a+bb+ccc. If M is the last message block, H(MM)=a*b*c*d is the hash value for the message
MM. Otherwise repeat the compression process for the next 512-bit message block and (a,b,c,d) as inputs.

3 Some Basic Conclusions and Notations

In this section we will recall some useful properties of the four nonlinear functions in our attack.
Proposition 1. For the nonlinear function F(X,Y,Z)=X⊕Y⊕Z, there are the following properties:

(, ,) (, ,) (, ,) (, ,)
(, ,) (, ,) (, ,) (, ,)

F X Y Z F X Y Z F X Y Z F X Y Z
F X Y Z F X Y Z F X Y Z F X Y Z

= ¬ ¬ = ¬ ¬ = ¬ ¬
= ¬ ¬ = ¬ ¬ = ¬ ¬

Proposition 2. For the nonlinear function G(X,Y,Z)=(X∧Y)∨ (¬X∧Z), there are the following properties:
(, ,) (, ,) 0, (, ,) (, ,) 1, (, ,) (, ,) ,
(, ,) , (, ,) 1, 0, (, ,) , (, ,) 1
(, ,) , (, ,) 0, 1, (, ,) , (, ,) 0

G X Y Z G X Y Z X G X Y Z G X Y Z X G X Y Z G X Y Z Y Z
G X Y Z X G X Y Z X Y Z G X Y Z Y G X Y Z Y X
G X Y Z X G X Y Z X Y Z G X Y Z Z G X Y Z Z X

= ¬ ⇔ = = ¬ ⇔ = = ¬ ⇔ =
= ¬ = ¬ ⇔ = = = ¬ = ¬ ⇔ =
= ¬ ¬ = ⇔ = = = ¬ = ¬ ⇔ =

Proposition 3. For the nonlinear function H(X,Y,Z)=(X∨¬Y)⊕Z, there are the following properties:
(, ,) (, ,) 0,
(, ,) , (, ,) 0, 1,
(, ,) , (, ,) 0, 1,
(, ,) , (, ,) 0, 1,

H X Y Z H X Y Z Y
H X Y Z X H X Y Z X Y Z
H X Y Z Y H X Y Z Y X Z
H X Y Z Z H X Y Z Z X Y

= ¬ ⇔ =
= ¬ ¬ = ⇔ = =
= ¬ = ¬ ⇔ = =
= ¬ = ¬ ⇔ = =

(, ,) , (, ,) 1, 0
(, ,) (, ,) 1
(, ,) , (, ,) 1, 0
(, ,) , (, ,) 1 0

H X Y Z X H X Y Z X Y Z
H X Y Z H X Y Z X
H X Y Z Y H X Y Z Y X Z
H X Y Z Z H X Y Z Z X orY

= ¬ = ¬ ⇔ = =
= ¬ ⇔ =
= ¬ ¬ = ⇔ = =
= ¬ ¬ = ⇔ = =

Proposition 4. For the nonlinear function I(X,Y,Z)=(X∧Z) ∨ (Y∧¬Z), there are the following properties:
(, ,) (, ,) 0, (, ,) (, ,) 1, (, ,) (, ,)
(, ,) , (, ,) 1, (, ,) , (, ,) 0
(, ,) , (, ,) 1, 0, (, ,) , (, ,) 0, 1

I X Y Z I X Y Z Z I X Y Z I X Y Z Z I X Y Z I X Y Z X Y
I X Y Z X I X Y Z X Z I X Y Z Y I X Y Z Y Z
I X Y Z Z I X Y Z Z X Y I X Y Z Z I X Y Z Z X Y

= ¬ ⇔ = = ¬ ⇔ = = ¬ ⇔ =
= ¬ = ¬ ⇔ = = ¬ = ¬ ⇔ =
= ¬ = ¬ ⇔ = = = ¬ ¬ = ⇔ = =

Notations. In order to describe our attack conveniently, we use the following notations. Some of them are
defined in Refs.[6,7,10,11,12].

M=(m0,m1,…,m15) represents 512-bit messages. ai, di, ci, bi denote the outputs of the (4i−3)-th, (4i−2)-th,
(4i−1)-th, 4i-th steps for compressing M, where 1≤i≤16. i i im m m′∆ = − denotes the modular difference of mi

and .im′ ai,j represents the j-th bit of ai where the least significant bit is the 1-st bit, and the most significant bit is

32-th bit. xi[j],xi[−j] are the resulting values by only changing the j-th bit of the word xi. xi[j] is obtained by
changing the j-th bit of xi from 0 to 1. xi[−j] is obtained by changing the j-th bit of xi from 1 to 0.

4 The Practical Attack Against Reduced RIPEMD-128

The collision pair of the first 32-step reduced RIPEMD-128 consist of two 512-bit messages 0 0|| , ||M M M M ′ .

We search them in the following 4 parts: (1) Denote the first 32-step reduced RIPEMD-128 by H32 and the output of
H32(M0) by a×b×c×d. Find a message M0 such that the outputs of H32(M0) (i.e. the inputs of H32(M) and

32 ()H M ′) satisfy b2=1, b3=0, b4=0. (2) Find two near-collision differentials respectively for Line1 and Line2

operations in which M and M′produce a collision. (3) Derive two sets of sufficient conditions which ensure that the
collision differentials hold. (4) Modify the message to fulfill most of the variable conditions.

Obviously the first part is easy to be accomplished. We will describe the last three parts in details.

4.1 Collision differential path for the first 32-step reduced RIPEMD-128

We use Wang’s method to deduce the differential paths. After deriving the sufficient conditions for the

王高丽 等:缩减 RIPEMD-128 分析 2445

differential paths according to the properties of the nonlinear functions, we must make sure that the sufficient
conditions are not contradict each other. All the conditions in the first round and some conditions in the second
round can be modified to hold by message modification technique, the other conditions in the last rounds are
difficult to be modified to hold. Therefore, we will ensure the sufficient conditions in the last rounds to be as few as

possible. We select M M M′∆ = − as follows: 24
0 1 15(, ,...,), (0,...,0,2 ,0).M m m m M= ∆ = The near-collision

differential paths for Line1 and Line2 are showed in Tables 1 and 2 respectively. The output differences are:

0,a cc ddd∆ = ∆ + ∆ = 0,d bb ccc∆ = ∆ + ∆ = 0,c aa bbb∆ = ∆ + ∆ = 31 31 322 2 (mod 2) 0b dd aaa∆ = ∆ + ∆ = + = .

4.2 Deriving conditions on chaining variables of Line1 and Line2

This section derives all the variable conditions that ensure the differentials in Tables 1 and 2 to hold. For
example, we describe how to derive sufficient conditions that guarantee the difference in step 4 of Table 2. The
input difference (ccc1[11,12,−13],ddd1[−2, −3,4],aaa1,bbb0) yields the output difference bbb1[15,22,24,…,30,−31].

By Proposition 4, the condition aaa1,i=1 (i=2,3) ensures that the change of ddd1,i=1 (i=2,3) results in no change
in bbb1 ; aaa1 , 4=0 ensures that the change of ddd1 , 4 results in ∆bbb1=21 4. bbb1 , 1 5=0 results in

1bbb ′ =bbb1[15]. aaa1,12=0 ensures that the change of ccc1,12 results in no change in bbb1. aaa1,11=1 ensures that the

change of ccc1,11 results in 21
1 2bbb∆ = and 1,22 0bbb = results in 1 1[22].bbb bbb′ = aaa1,13=1ensures that the change of

ccc1,13 results in 23
1 2bbb∆ = − and 1, 1,310(24,...,30), 1ibbb i bbb= = = results in 1 1[24,...,30, 31]bbb bbb′ = − .

Table 1 Differential Characteristic for Line1 of 32-step reduced RIPEMD-128

Step Chaining value wj,i Shift im∆ The step difference The output for M′
15 cc4 m14 9 224 2 cc4[2]
16 bb4 m15 8 −29

4[10]bb −

17 aa5 m7 7 0 5aa

18 dd5 m4 6 0 5dd

19 cc5 m13 8 29
5[10]cc

20 bb5 m1 13 0 bb5
21 aa6 m10 11 0 aa6
22 dd6 m6 9 0 dd6
23 cc6 m15 7 216 cc6 [17]
24 bb6 m3 15 0 bb6
25 aa7 m12 7 0 aa7
26 dd7 m0 12 0 dd7
27 cc7 m9 15 231 cc7 [32]
28 bb7 m5 9 0 bb7
29 aa8 m2 11 0 aa8
30 dd8 m14 7 224 231 dd8 [32]
31 cc8 m11 13 0 cc8
32 bb8 m8 12 0 bb8

4.3 Message modification

We modify M so that most of the conditions of Line2 in Table 3 hold. The modified algorithm is divided into
basic modification and advanced message modification techniques.

Basic Modification All the conditions in the first round (step 1−32) of Line2 can be modified to hold by the
basic modification which is a simple message modification. For example, if the condition aaa1,4=0 does not hold, we
set aaa1=aaa1⊕0x8, then update m5 as: m5=(aaa1>>>8)-aaa0-I(bbb0,ccc0,ddd0)-0x50a28be6.

2446 Journal of Software 软件学报 Vol.19, No.9, September 2008

Table 2 Differential characteristic for Line2 of 32-step reduced RIPEMD-128

Step Chaining value wj,i Shift im∆ The step difference The output for M′
1 aaa1 m5 8 aaa1
2 ddd1 m14 9 224 2 1[2, 3,4]ddd − −

3 ccc1 m7 9 −210
1[11,12, 13]ccc −

4 bbb1 m0 11
14 21 232 2 2+ −

1[15,22,24,...,30, 31]bbb −

5 aaa2 m9 13 8 102 2+
2[9, 11, 12,13]aaa − −

6 ddd2 m2 15 9 162 2− +
2[10,17]ddd −

7 ccc2 m11 15 10 12 232 2 2− − +
2[11, 12,13, 14,24]ccc − −

8 bbb2 m4 5 16 19 21 262 2 2 2− + + +
2[17,20,22,27]bbb −

9 aaa3 m13 7 215
3[16]aaa

10 ddd3 m6 7 −216
3[17, 18]ddd −

11 ccc3 m15 8 2 18 20 312 2 2 2− − +
3[3, 19, 21,32]ccc − −

12 ddd3 m8 11 5 301 2 2+ +
3[1,6,31]bbb

13 aaa4 m1 14 2 292 2− +
4[3,30]aaa −

14 ddd4 m10 14 2 301 2 2− − −
4[1, 3, 31]ddd − − −

15 ccc4 m3 12 11 301 2 2− + −
4[1,12, 31]ccc − −

16 bbb4 m12 6 211
4[12]bbb

17 aaa5 m6 9 26
5[7]aaa

18 ddd5 m11 13 −215
5[16]ddd −

19 ccc5 m3 15
13 152 2− −

5[14, 16]ccc − −

20 bbb5 m7 7
13 182 2− +

5[14, 19]bbb − −

21 aaa6 m0 12 218
6[19]aaa

22 ddd6 m13 8 0 6ddd

23 ccc6 m5 9 −224
6[25, 26]ccc −

24 bbb6 m10 11 −224
6[25]bbb −

25 aaa7 m14 7 224 225
7[26]aaa

26 ddd7 m15 7 0 7ddd

27 ccc7 m8 12 0 7ccc

28 bbb7 m12 7 231
7[32]bbb

29 aaa8 m4 6 231
8[32]aaa

30 ddd8 m9 15 0 8ddd

31 ccc8 m1 13 0 8ccc

32 bbb8 m2 11 0 8bbb

It is easy to rectify all the conditions from step 1 to step 32 of the Line2 differential path in Table 3.
Advanced Message Modification Some more conditions in round 2 of Line2 can be rectified by the

advanced message modification. If the condition on aaai,j does not hold, we change the j-th bit of the corresponding
message m to rectify it, and change some other message words to produce a partial collision in the first round of
Line2. A sample for correcting aaa5,7 is given in Table 4.

In Line2, the rectifiable conditions are as follows: aaa5,i (i=7,12,16), ddd5,i (i=7,14,16), ccc5,i (i=7,14,16,19),
bbb5,i (i=14,16,19), aaa6,14, aaa6,19, ddd6,25, ddd6,26, ccc6,26, bbb6,25, bbb6,26, aaa7,25, aaa7,26, ccc7,26, aaa8,32, ddd8,32.
There are 21 conditions of Line1 in Table 3. For a 512-bit messages M, after the two types of modifications, there
are 6 remaining conditions of Line2 in Table 3 that need to be satisfied. Therefore M, ()M M M M′ ′ = + ∆ consist of a
collision with probability 2−27. It is easy to see that the complexity of finding (,)M M ′ does not exceed 228 32-step
reduced RIPEMD-128 computations. We give a 1024-bit collision 0 0(|| , ||)M M M M ′ for the first 32-step reduced
RIPEMD-128 in Table 5. 0 , ,M M M ′ are all hashed by the first 32-step reduced RIPEMD-128.

王高丽 等:缩减 RIPEMD-128 分析 2447

Table 3 A set of sufficient conditions for collision of 32-step reduced RIPEMD-128
Step Line 1 Line 2

 0,2 1b = , 0, 0ib = (i=3,4)

1 a1 1, 1iaaa = (i=2,3,11,13), 1, 0iaaa = (I=4,12)

2 d1 1, 1iddd = (i=2,3,11,12,13,28,30), 1, 0iddd = (I=4,5,12,24,…,27,29,31)

3 c1 1, 1iccc = (I=13,15,22,24,25,26), 1, 0iccc = (i=9,11,12,27,…,31)

4 b1 1, 0ibbb = (i=9,…,13,15,17,22,24,…,30), 1,31 1bbb = , 1, 1,i ibbb ccc= (I=2,3,4)

5 a2 2, 1iaaa = (I=10,11,12,24,28,30), 2, 0iaaa = (i=9,13,14,17)

6 d2
2, 1iddd = (i=10,13,14,24), 2, 0iddd = (i=11,12,17,20,22,27,28,30),

2, 2,i iddd aaa= (I=15,22,24,…,27,29,31)

7 c2 2, 1iccc = (i=12,14,20,22,27), 2, 0iccc = (i=11,13,16,17,24), 2,9 2,9ccc ddd=

8 b2 2, 1ibbb = (I=16,17), 2,10 2,10bbb ccc= , 2, 0ibbb = (i=18,20,22,27)

9 a3 3,18 1aaa = , 3, 2,i iaaa bbb= (i=11,…,14,24) 3, 0iaaa = (I=3,16,17,19,21,27,32)

10 d3 3, 1iddd = (I=3,18,19,27,32), 3, 3,i iddd aaa= (i=20,22) 3, 0iddd = (i=1,6,17,21,31)

11 c3 3, 1iccc = (i=1,6,19,21,31), 3, 0iccc = (i=3,30,32) 3,16 3,16ccc ddd=

12 b3 3,30 1bbb = , 3, 3,i iccc bbb= (I=17,18), 3, 0ibbb = (i=1,3,6,19,21,31)

13 a4 4, 1iaaa = (i=3,19,21), 4, 0iaaa = (i=1,12,30,31) 4,32 3,32aaa bbb=

14 d4 4,2 4,2 1dd aa= + 4,6 4,6ddd aaa= , 4, 1iddd = (I=1,3,31)

15 c4 4,2 0,cc = 4,10 4,10cc dd= 4, 1iccc = (i=1,31), 4, 0iccc = (I=3,12), 4,30 4,30ccc ddd=

16 b4 4,10 1,bb = 4,2 0bb = 4, 0ibbb = (I=1,7,12,31)

17 a5 5,10 0aa = , 5,2 1aa = 5,7 0aaa = , 5,12 0aaa = , 5,16 0aaa =

18 d5 5,10 1dd = 5,7 1ddd = , 5,16 1ddd = , 5,14 0ddd =

19 c5 5,10 0cc = 5, 1iccc = (I=7,14,16), 5,19 0ccc =

20 b5 5,10 0bb = 5,16 0bbb = , 5,19 0bbb = , 5,14 1bbb =

21 a6 6,10 1aa = 6,14 0aaa = , 6,19 0aaa =

22 d6 6,17 6,17aa dd= 6, 0iddd = (I=19,25,26)

23 c6 6,17 0cc = 6,25 0ccc = , 6,26 1ccc =

24 b6 6,17 0bb = 6,25 1bbb = , 6,26 1bbb =

25 a7 7,17 1aa = 7,25 0aaa = , 7,26 0aaa =

26 d7 7,32 7,32dd aa= 7,25 1ddd = , 7,26 1ddd =

27 c7 7,32 0cc = 7,26 0ccc = , 7,32 0ccc =

28 b7 7,32 0bb = 7,32 0bbb =

29 a8 8,32 1aa = 8,32 0aaa =

30 d8 8,32 0dd = 8,32 0ddd =

31 c8 8,32 0cc =

Table 4 Message modification for correcting aaa5,7

Step mi Shift Modify mi
Chaining values after
message modification

17 m6 7 6 3 2 3 2 2([5] 7) (, ,) 0 50 28 6m ddd ddd I aaa bbb ccc x a be← >>> − − − 3 3 2 2[5], , ,ddd aaa bbb ccc

18 m15 8 15 3 2 3 3 2(8) ([5], ,) 0 50 28 6m ccc ccc I ddd aaa bbb x a be← >>> − − −
3 3 3 2, [5], ,ccc ddd aaa bbb

19 m8 11 () ()8 3 2 3 3 311 , [5], 0 50 28 6m bbb bbb I ccc ddd aaa x a be← >>> − − − 3 3 3 3, , [5],bbb ccc ddd aaa

20 m1 14 () ()1 4 3 3 3 314 , , [5] 0 50 28 6m aaa aaa I bbb ccc ddd x a be← >>> − − − 4 3 3 3, , , [5]aaa bbb ccc ddd

21 m10 14 10 4 3 4 3 3(14) (, ,) 0 50 28 6m ddd ddd I aaa bbb ccc x a be← >>> − − − 4 4 3 3, , ,ddd aaa bbb ccc

2448 Journal of Software 软件学报 Vol.19, No.9, September 2008

Table 5 A collision of the first 32-step reduced RIPEMD-128. H is the hash value without message padding

M0
0x0587ab92,0x2cd3a579,0x7989ca1a,0x1b8148c3,0xdc532138,0xd7c68b2b,0x9569259a,0xb7015533,
0x462354d1,0x59f2c00f,0x5810a92e,0xa4abc9e9,0xb61c35be,0x5eb8bb5b,0xacf5181f,0xc7769005

M 0x848cab86,0x16327e14,0x2d7d37d2,0x74f42427,0xdc33493e,0xd3c48f2b,0x9c7d395e,0xb7fddd32,
0x029e4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x10130778,0x67da1c0c

M0
0x0587ab92,0x2cd3a579,0x7989ca1a,0x1b8148c3,0xdc532138,0xd7c68b2b,0x9569259a,0xb7015533,
0x462354d1,0x59f2c00f,0x5810a92e,0xa4abc9e9,0xb61c35be,0x5eb8bb5b,0xacf5181f,0xc7769005

M′ 0x848cab86,0x16327e14,0x2d7d37d2,0x74f42427,0xdc33493e,0xd3c48f2b,0x9c7d395e,0xb7fddd32,
0x029e4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x11130778,0x67da1c0c

H 0xe7fe9b03,0x59ceb5a7,0x542a0994,0xc7ca0ca9

5 Conclusions

In this paper, we find a pair of collisions on the first 32-step reduced RIPEMD-128 by using Wang’s modular
differential method. To break the total RIPEMD-128 (64 steps), it is necessary to look for better differential
characteristics and to modify most of the sufficient conditions of the differential characteristics.

Acknowledgement We are greatly indebted to our supervisor Professor Xiaoyun Wang who gave us many
elaborate instructions.

References:
[1] Rivest RL. The MD4 message digest algorithm. In: Menezes A, Vanstone SA, eds. Proc. of the Advances in Cryptology -

CRYPTO’90. LNCS 537, Berlin, Heidelberg: Springer-Verlag, 1991. 303−311.
[2] Rivest RL. The MD5 message-digest algorithm. Request for comments (RFC 1321), Internet activities board, Internet privacy task

force, 1992. http:∥www.faqs.org/rfcs/rfcs 1321.html
[3] Zheng Y, Pieprzyk J, Seberry J. HAVAL–An one-way hashing algorithm with variable length of output. In: Jennifer S, Zheng YL,

eds. Proc. of the Advances in Cryptology, Auscrypto’92. LNCS 718, Berlin, Heidelberg: Springer-Verlag, 1993. 83−104.
[4] Dobbertin H. RIPEMD with two round compress function is not collision-free. Journal of Cryptology, 1997,10(1):51−69.
[5] Dobbertin H, Bosselaers A, Preneel B. RIPEMD-160: A strengthened version of RIPEMD. In: Gollmann D, ed. Proc. of the FSE

1996. LNCS 1039, Berlin, Heidelberg: Springer-Verlag, 1996. 71−82.
[6] Wang XY, Yu HB, Lisa Y. Efficient collision search attacks on SHA-0. In: Shoup V, ed. Proc. of Crypto’05. LNCS 3621, Berlin,

Heidelberg: Springer-Verlag, 2005. 1−16.
[7] Wang XY, Lisa Y, Yu HB. Finding collisions on the Full SHA-1. In: Shoup V, ed. Proc. of the Crypto’05. LNCS 3621, Berlin,

Heidelberg: Springer-Verlag, 2005. 17-36.
[8] Dobbertin H. Cryptanalysis of MD4. In: Gollmann D, ed. Proc. of the FSE 1996. LNCS 1039, Berlin, Heidelberg: Springer-Verlag,

1996. 53−69.
[9] Wang XY, Lai XJ, Feng DG, Chen H, Yu XY. Cryptanalysis for hash functions MD4 and RIPEMD. In: Cramer R, ed. Proc. of the

Eurocrypt2005. LNCS 3494, Berlin, Heidelberg: Springer-Verlag, 2005. 1−18.
[10] Wang XY, Yu HB. How to Break MD5 and other hash functions. In: Cramer R, ed. Proc. of the Eurocrypt2005. LNCS 3494, Berlin,

Heidelberg: Springer-Verlag, 2005. 19−35.
[11] Wang XY, Feng DG, Yu XY. An attack on hash function HAVAL-128. Science in China (Series F), 2005,48(5):545−556.
[12] Yu HB, Wang XY, Yun A, Park S. Cryptanalysis of the full HAVAL with 4 and 5 passes. In: Robshaw M, ed. Proc. of the FSE

2006. LNCS 4047, Berlin, Heidelberg: Springer-Verlag, 2006. 89−110.

附中文参考文献:
[11] 王小云,冯登国,于秀源.HAVAL-128 的碰撞攻击.中国科学(E 辑),2005,35(4):405−416. http://www.ilib.cn/I-zgkx-ce.2005.04.html

WANG Gao-Li was born in 1982. She is a
Ph.D. candidate at the Shandong University.
Her current research areas are cryptography,
etc.

WANG Mei-Qin was born in 1974. She is
an assistant professor at the Shandong
University. Her current research areas are
computer network security, cryptography,
etc.

