ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.9, September 2008, pp.2442-2448 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.02442 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

458 RIPEMD-128 404
E%m 1,2+’ JI—%Z% 1,2

(IR HOF S R GERE 22 BEIZR B 250100)
OhFRRY BRHEARSELCEHEWESLRE IR FH 250100

Cryptanalysis of Reduced RIPEMD-128

WANG Gao-Li'?*, WANG Mei-Qin"?

'(School of Mathematics and System Sciences, Shandong University, Ji'nan 250100, China)
*(Laboratory of Cryptographic Technology and Information Security Ministry of Education, Shandong University, Ji’nan 250100, China)

+ Corresponding author: E-mail: wanggaoli@mail.sdu.edu.cn

Wang GL, Wang MQ. Cryptanalysis of reduced RIPEMD-128. Journal of Software, 2008,19(9):2442-2448.
http://www.jos.org.cn/1000-9825/19/2442 .htm

Abstract: RIPEMD-128 is a cryptographic hash function proposed in 1996 by Hans Dobbertin, Antoon Bosselaers
and Bart Preneel. It consists of two different and independent parallel parts, with which the results in each
application of the compression function. This paper presents a practical attack for finding collisions for the first
32-step reduced RIPEMD-128 with complexity of 2?® 32-step reduced RIPEMD-128 operations. This is the first
published analysis for the first 32-step reduced RIPEMD-128.

Key words: hash function; collision; RIPEMD-128; differential path; message modification

=Z: Hans Dobbertin, Antoon Bosselaers #= Bart Preneel 7 1996 432 #; hash 4k RIPEMD-128,"¢ ¢4~ A~ 1%
S IATEY R B b0 404 s RIPEMD-128 #944r h 45 R 25 th A7 32 % RIPEMD-128 #9448 52 4, 3t A 4
2 2%k 32-% RIPEMD-128 i& S A SR 24 4T 32 % RIPEMD-128 44 44 % — KA.

X8R 22k R AL A RIPEMD-128; £ 574 2% B IS K

FEESZES: TP309 XERARIRED: A

1 Introduction

MD4M is an early-appeared hash function designed by using basic arithmetic and Boolean operations. After the
publication of MD4, several hash functions have been proposed, including MD5? HAVALP!, RIPEMD™,
RIPEMD-128"1, RIPEMD-160P, SHA-0' and SHA-117), etc., most of which are based on the design principles of
MD4. RIPEMD was devised in the framework of the EU project RIPE. RIPEMD-128 was proposed in 1996 by

« Supported by the National Natural Science Foundation of China under Grant No.90604036 (I %% 4k %} 22 %E4x); the National
Outstanding Young Scientist of China under Grant No0.60525201 ([&7 i 754 %E 4x); the National Basic Research Program of China
under Grant No.2007CB807902 ([Z 3 AliHF 53 & i+ %11(973))

Received 2007-07-23; Accepted 2007-11-20

@ R

Bk FIFSEF hp:// www. jos. org. cn

EEH™ 548 RIPEMD-128 547 2443

Hans Dobbertin, Antoon Bosselaers and Bart Preneel as a substitute for RIPEMD with a 128-bit result!®!. H.
Dobbertin'®! gave a collision attack on MD4 which found a collision with probability 22 in 1996. Dobbertin'
found a collision of RIPEMD reduced to two rounds with 2°' RIPEMD operations. Wang, et al.”’ found collisions
on MD4 and RIPEMD with complexity less than 28 MD4 operations and 2'®* RIPEMD operations respectively.

In this paper, we use the method of modular differential to analyze the hash function RIPEMD-128. This
method was presented early in 1997 by Wang, and formalized in Eurocrypt’05™'%. The modular differential method
is very efficient, by which the most prevailing hash functions such as MD4P! MD5!Y, HAVAL!':!2 SHA-0,
SHA-1" etc. have been broken. Furthermore, we use the message modification proposed by X.Y. Wang to improve
our collision probability. We show a cryptanalysis on reduced RIPEMD-128 which can find a collision of 32-step
RIPEMD-128.

The rest of the paper is organized as follows: In Section 2, we describe the RIPEMD-128 algorithm. In Section
3, we recall some properties of the nonlinear functions in RIPEMD-128 and some notations. Section 4 presents the

detailed descriptions of the attacks on reduced RIPEMD-128. Finally, we summarize the paper in Section 5.

2 Description of RIPEMD-128

The hash function RIPEMD-128 compresses any arbitrary length message into a message with a length of 128
bit. Firstly the algorithm will pad any given message into a message with a length of 512 bit multiple. We don't
describe the padding process because it has little relation with our attack. For each 512-bit message block,
RIPEMD-128 compresses it into a 128-bit hash value by a compression function, which has two parallel operations:
Linel and Line2. Each Line has four rounds. The nonlinear functions in each round are as follows:

F(X,Y,Z)=X®YDZ, G(X,Y,Z)=(X AY)V (=X AZ)

H(X,Y,Z)=(Xv=Y)®Z, 1(X,Y,Z)=(XAZ)v (Y A=2Z)

Here X, Y, Z are 32-bit words. The operations of four functions are all bitwise. — represents the bitwise
complement of X, A, @ and v are bitwise AND, XOR and OR respectively. Each round of the compression function
is composed of 16 step operations.

FF(a,b,c,d,x,s):a=(a+F(b,c,d)+x) <<<s,

GG(a,b,c,d,x,s):a=(a+G(b,c,d)+ x+0x5a827999) <<< s

HH(a,b,c,d,x,s):a=(a+H(b,c,d)+ x+0x6ed9ebal) <<< s
Il(a,b,c,d,x,s):a=(a+1(b,c,d)+ x+0x8 f Ibbcdc) <<< s,
FFF(a,b,c,d,x,s):a=(a+ F(b,c,d)+x) <<<s
GGG(a,b,c,d,x,s):a=(a+G(b,c,d)+ x+0x6d703ef 3) <<< s
HHH (a,b,c,d,x,s):a=(a+ H(b,c,d) + x + 0x5c4dd124) <<< s
Ii(a,b,c,d,x,s):a=(a+I(b,c,d)+ x+0x50a28be6) <<< s

The initial value of RIPEMD-128 is: (a,b,c,d) = (0x67452301, Oxefcdab89, 0x98badcfe, 0x10325476).

The compression function of RIPEMD-128 consists of Linel operation and Line2 operation.

Linel operation process For a 512-bit block M=(mg,m,...,m;s), Line 1 operation process is as follows:

(1) Let (aa,bb,cc,dd) be the input of Linel process for M. If M is the first block to be hashed, (aa,bb,cc,dd) is
the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps:
For j=0,1,2,3, for i=0,1,2,3, a=FF(a,b,c,d,wj4i,Sj4), d=GG(a,b,c,d,Wj4i:1,Sj4i+1), C=HH(@,b,c,d,W;4i+2,;4i+2),
b=l11(a,b,c,d,w; 4i:3,5]4i+3). Sj4i+k (k=0,1,2,3) are step-dependent constants. <<<s represents the circular shift s bit to
the left. + denotes addition modulo 2*2.

Line2 operation process For a 512-bit block M=(mgy,m,...,m;s), Line2 operation process is as follows:

(1) Let (aaa,bbb,ccc,ddd) be the input of Line2 for M. If M is the first block to be hashed, (aaa,bbb,ccc,ddd) is

© ik

HAFIFFET htpi/www, jos. org. cn

2444 Journal of Software #K%F33R Vol.19, No.9, September 2008

the initial value. Otherwise it is the output of the previous block compressing. (2) Perform the following 64 steps:
For j=0,1,2,3, for i=0,1,2,3, a=ll(a,b,c,d,w;iSj4i), d=HHH(a,b,c,d,W;i+1,Sj4i+1), c=GGG(a,b,c,d,W;4i+2,5)4i+2),
b=FFF(a,b,c,d,Wj 4i+3,5;4i+3). Add the output of Linel to the output of Line2. a=b+cc+ddd, b=c+dd+aaa,
c=d+aa+bbb, d=a+bb+ccc. If M is the last message block, HI(MM)=a*b*c*d is the hash value for the message
MM. Otherwise repeat the compression process for the next 512-bit message block and (a,b,c,d) as inputs.

3 Some Basic Conclusions and Notations

In this section we will recall some useful properties of the four nonlinear functions in our attack.

Proposition 1. For the nonlinear function F(X,Y,Z)=X®Y®Z, there are the following properties:

F(X,Y,Z)==F(=X,Y,Z)==F(X,=Y,Z)=—=F(X,Y,=Z)

F(X,Y,Z2)=F(=X,=Y,Z)=F(X,=Y,=Z)=F(=X,Y,=Z)

Proposition 2. For the nonlinear function G(X,Y,Z)=(XAY)v (—XAZ), there are the following properties:

G(X,Y,Z)=G(X,=Y,Z) = X =0,G(X,Y,Z2)=G(X,Y,=Z) & X =1,G(X,Y,Z2)=G(=X.,Y,Z) =Y =Z,

G(X,Y,Z)=X,G(—=X,Y,Z)=—X <Y =1Z=0,G(X,Y,Z2)=Y,G(X,~Y,Z)==Y & X =1

G(X,Y,Z)==X,G(—X,Y,Z)=X <Y =0,Z=1G(X,Y,2)=Z2,G(X,Y,-Z)=—-Z <& X =0

Proposition 3. For the nonlinear function H(X,Y,Z)=(Xv—Y)®Z, there are the following properties:

H(X,Y,Z)=H(=X,Y,Z)<Y =0, H(X,Y,Z)=X,H(=X,Y,Z)=—X <Y =1Z=0

H(X,Y,Z)==X,H(=X,Y,Z) =X <Y =0,Z=1, H(X,Y,Z)=H(X,-Y,Z)< X =1

H(X,Y,Z2)=Y,H(X,=Y,Z)=—=Y & X =0,Z2=1, H(X,Y,Z)==Y,H(X,=Y,Z)=Y & X=1Z2=0

H(X,Y,2)=Z2,H(X,Y,-Z)=—Z < X =0,Y =1, H(X,Y,Z2)==Z,H(X,Y,=Z)=Z < X =lorY =0

Proposition 4. For the nonlinear function 1(X,Y,Z2)=(XAZ) v (YA—=Z), there are the following properties:

1(X,Y,Z)=1(=X,Y,2) = Z=0,1(X.Y,Z2)=1(X,=Y,Z2) & Z=LI1(X,Y,Z)=1(X,Y,=Z)& X =Y

1(X,Y,Z)=X,1(=X,Y,2) ==X & Z=L1(X,Y,Z)=Y,I(X,=Y,Z)==Y & Z =0

1(X,Y,Z2)=Z,1(X,Y,=Z)=—=Z & X =LY =0,1(X,Y,Z)==Z,1(X,Y,=Z)=Z & X =0,Y =1

Notations. In order to describe our attack conveniently, we use the following notations. Some of them are
defined in Refs.[6,7,10,11,12].

M=(mg,my,...,m;s) represents 512-bit messages. a;, d;, Cj, b; denote the outputs of the (4i-3)-th, (4i-2)-th,
(4i—1)-th, 4i-th steps for compressing M, where 1<i<16. Am,=m'—m, denotes the modular difference of m;

and m{. a;; represents the j-th bit of a; where the least significant bit is the 1-st bit, and the most significant bit is

32-th bit. xi[j],.xi[—]] are the resulting values by only changing the j-th bit of the word Xx;. x;[j] is obtained by
changing the j-th bit of x; from 0 to 1. xj[—]] is obtained by changing the j-th bit of X; from 1 to 0.

4 The Practical Attack Against Reduced RIPEMD-128

The collision pair of the first 32-step reduced RIPEMD-128 consist of two 512-bit messages M, ||[M,M,||[M".
We search them in the following 4 parts: (1) Denote the first 32-step reduced RIPEMD-128 by Hj, and the output of

H3,(Mg) by axbxcxd. Find a message M, such that the outputs of H3y(Mg) (i.e. the inputs of Hsy(M) and
H,,(M")) satisfy b,=1, b;=0, bs=0. (2) Find two near-collision differentials respectively for Linel and Line2

operations in which M and M’produce a collision. (3) Derive two sets of sufficient conditions which ensure that the
collision differentials hold. (4) Modify the message to fulfill most of the variable conditions.

Obviously the first part is easy to be accomplished. We will describe the last three parts in details.
4.1 Collision differential path for the first 32-step reduced RIPEMD-128

We use Wang’s method to deduce the differential paths. After deriving the sufficient conditions for the

© ik

HAFIFFET htpi/www, jos. org. cn

EEH™ 548 RIPEMD-128 547 2445

differential paths according to the properties of the nonlinear functions, we must make sure that the sufficient
conditions are not contradict each other. All the conditions in the first round and some conditions in the second
round can be modified to hold by message modification technique, the other conditions in the last rounds are
difficult to be modified to hold. Therefore, we will ensure the sufficient conditions in the last rounds to be as few as
possible. We select AM =M'—-M as follows: M =(m,,m,,...m;), AM =(0,...,0,2**,0). The near-collision
differential paths for Linel and Line2 are showed in Tables 1 and 2 respectively. The output differences are:
Aa = Acc + Addd =0, Ad = Abb + Accc =0, Ac = Aaa+ Abbb =0, Ab=Add + Aaaa =2 +2*' (mod2*)=0.

4.2 Deriving conditions on chaining variables of Linel and Line2

This section derives all the variable conditions that ensure the differentials in Tables 1 and 2 to hold. For
example, we describe how to derive sufficient conditions that guarantee the difference in step 4 of Table 2. The
input difference (cccy[11,12,-13],ddd,[-2, —3,4],aaa;,bbb,) yields the output difference bbb,[15,22,24,...,30,-31].

By Proposition 4, the condition aaa, ;=1 (i=2,3) ensures that the change of ddd, ;=1 (i=2,3) results in no change
in bbb,; aaa, 4=0 ensures that the change of ddd,, results in Abbb,;=2"'*. bbb, ;5=0 results in

bbb]' =bbb,[15]. aaa, ;,=0 ensures that the change of ccc, ;, results in no change in bbb,. aaa, ;;=1 ensures that the
change of ccc; ;; results in Abbb, =2%' and bbb, ,, = O results in bbb, =bbb[22]. aaa, ;;=lensures that the change of

ccCy 5 results in - Abbby =2 and bbb, ; = 0(i = 24,...,30),bbb, 5, =1 results in bbb, =bbb[24,...,30,-31] .

Table 1 Differential Characteristic for Linel of 32-step reduced RIPEMD-128

Step Chaining value Wi Shift Am The step difference The output for M’
15 cCy my 9 27 2 ccy2]
16 bb, Mis 8 -2’ bb,[-10]
17 aas my 7 0 aa;

18 dd< my 6 0 dd;

19 ccs mis 8 2° cc,[10]
20 bb< m 13 0 bb5

21 aag Mg 11 0 aag

22 dde Mg 9 0 dds

23 CCo mis 7 216 cce [17]
24 bbs ms 15 0 bbe

25 aa; mi, 7 0 aa;

26 dd; my 12 0 dd,

27 ccy Mo 15 98! ccr[32]
28 bb7 ms 9 0 bb7

29 aag m, 11 0 aag

30 ddg miy 7 2% 23! dds [32]
31 CCg my; 13 0 CCg

32 bbg mg 124 0 bbg

4.3 Message modification

We modify M so that most of the conditions of Line2 in Table 3 hold. The modified algorithm is divided into
basic modification and advanced message modification techniques.

Basic Modification All the conditions in the first round (step 1-32) of Line2 can be modified to hold by the
basic modification which is a simple message modification. For example, if the condition aaa, =0 does not hold, we

set aaa;=aaa,;®0x8, then update ms as: ms=(aaa,;>>>8)-aaa,-l(bbby,cccy,ddd,)-0x50a28be6.

@ R

HAFIFFET htpi/www, jos. org. cn

2446

Journal of Software #1324k Vol.19, No.9, September 2008

Table 2 Differential characteristic for Line2 of 32-step reduced RIPEMD-128

Step Chaining value Wi Shift Am, The step difference The output for M’
1 aaa, ms 8 aaa,
2 ddd, Mis 9 2% 2 ddd,[-2,-3,4]
3 ceey m; 9 _2%“1 - cce,[11,12,-13]
4 bbb, mo 11 bbb [15,22,24,...,30,-31]
5 aaa, my 13 28 4010 aaa,[9,~11,-12,13]
6 ddd, m, 15 29 401 ddd,[-10,17]
7 ccey m, 15 910 912 4 9B cce,[11,-12,13,~14,24]
8 bbb, my 5 _Dl6 4 919 4 221 4 226 bbb,[-17,20,22,27]
9 aaa; ms 7 215 aaa,[16]
10 ddd; mg 7 o6 ddd,[17,-18]
11 cCcCs Mis 8 22 _ 918 _p20 4 93l cce,[3,-19,-21,32]
12 ddds mg 11 1425 +2% bbb,[1,6,31]
13 aaay m; 14 22 4 0% aaa,[-3,30]
14 ddd, Mo 14 —1—=2%_9p% ddd,[-1,-3,-31]
15 cCcCy ms 12 1421 0% cec,[-1,12,-31]
16 bbb, mis 6 2! bbb, [12]
17 aaas me 9 26 aaa,[7]
18 ddds my, 13 21 ddd,[-16]
19 cCCs m; 15 202" cec,[~14,-16]
20 bbbs m, 7 20 42" bbb,[~14,-19]
21 aaa, my 12 28 aaa,[19]
22 ddds mis 8 0 ddd,
23 cCCs ms 9 - cec,[25,-26]
24 bbby Mio 11 - bbb, [-25]
25 aaa; Mis 7 2% 9% aaa,[26]
26 ddd;, mis 7 0 ddd,
27 ccey mg 12 0 cce,
28 bbb, M1z 7 2% bbb, [32]
29 aaag my 6 23! aaa,[32]
30 dddg my 15 0 ddd,
31 cCCg m; 13 0 ccc,
32 bbbg m, 11 0 bbb,

It is easy to rectify all the conditions from step 1 to step 32 of the Line2 differential path in Table 3.

Advanced Message Modification

Some more conditions in round 2 of Line2 can be rectified by the

advanced message modification. If the condition on aaa;j does not hold, we change the j-th bit of the corresponding

message M to rectify it, and change some other message words to produce a partial collision in the first round of

Line2. A sample for correcting aaas ; is given in Table 4.
In Line2, the rectifiable conditions are as follows: aaas; (i=7,12,16), ddds; (i=7,14,16), cccs; (i=7,14,16,19),
bbbs; (i=14,16,19), aaas 14, @das, 19, dddg 25, ddds 26, CCCs 26, DD 25, BDDg 26, @8A7 25, B8A7 26, CCC7 26, BBAg 32, AAds 3.

There are 21 conditions of Linel in Table 3. For a 512-bit messages M, after the two types of modifications, there

are 6 remaining conditions of Line2 in Table 3 that need to be satisfied. Therefore M, M'(M’'=M + AM) consist of a

collision with probability 272", It is easy to see that the complexity of finding (M,M') does not exceed 22* 32-step
reduced RIPEMD-128 computations. We give a 1024-bit collision (M, |[|M,M |[M’) for the first 32-step reduced
RIPEMD-128 in Table 5. M;,M,M’ are all hashed by the first 32-step reduced RIPEMD-128.

© PEBRERETUR

http:/ www, jos. org. cn

-

%45 7%, RIPEMD-128 5-#7

Table 3 A set of sufficient conditions for collision of 32-step reduced RIPEMD-128

2447

Step Line 1 Line 2
by, =1,b,;=0 (i=3,4)
1 a; aaa,; =1(i=2,3,11,13), aaa,; =0 (1=4,12)
2 d, ddd,; =1(i=2,3,11,12,13,28,30), ddd,; =0 (1=4,5,12,24,...,27,29,31)
3 c cee,; =1 (1=13,15,22,24,25,26), ccc,; =0 (i=9,11,12,27,...,31)
4 by bbb; =0 (i=9,...,13,15,17,22,24,...,30), bbb, ;, =1, bbb,; =ccc,; (1=2,3,4)
5 a, aaa,, =1 (1=10,11,12,24,28,30), aaa,; = 0 (i=9,13,14,17)
ddd,, =1(i=10,13,14,24), ddd,, =0 (i=11,12,17,20,22,27,28,30),
6 d: ddd,, = aaa,; (1=15,22,24,...,27,29,31)
7 s cee,, =1(i=12,14,20,22,27), cec,, =0 (i=11,13,16,17,24), cce, , = ddd, ,
8 b, bbb,; =1(1=16,17), bbb, ,, =ccc, , , bbb,; =0 (i=18,20,22,27)
9 a3 aaa, s =1, aaa,; =bbb,; (i=11,...,14,24) aaa,; =0 (1=3,16,17,19,21,27,32)
10 ds ddd,, =1(1=3,18,19,27,32), ddd,, = aaa,, (i=20,22) ddd,, =0 (i=1,6,17,21,31)
11 I cec,, =1 (i=1,6,19,21,31), cee,; =0 (i=3,30,32) cce, , = ddd,
12 bs bbb, ,, =1, CCCy; = bbb, ; (1=17.18), bbb,; =0 (i=1,3,6,19.21,31)
13 a aaa,; =1 (i=3,19,21), aaa,; =0 (i=1,12,30,31) aaa, ,, =bbb, ,,
14 d, dd,, =aa,, +1 ddd, , =aaa, , , ddd,, =1 (1=1,3,31)
15 Cs ¢c, =0, cc,,,=dd,,, cee,; =1(i=1,31), ccc,; =0 (1=3,12), ccc,,, =ddd, ,,
16 b, bb,,, =1, bb,, =0 bbb, =0 (1=1,7,12,31)
17 as aa;,, =0, aa, =1 aaa;, =0, aaa;;, =0, aaa;,, =0
18 ds dd;,, =1 ddd;, =1, ddd,, =1, ddd; , =0
19 Cs CCs,y =0 cec,; =1 (1=7,14,16), ccc,,, =0
20 bs bb;,, =0 bbb, =0, bbb, =0, bbb, , =1
21 as aa,, =1 aaa,,, =0, aaa,, =0
22 de aa,, =dd,,, ddd;; =0 (1=19,25,26)
23 Cq Gy =0 CCCq,5 =0, CCCy o =1
24 bs bb,,, =0 bbb, ,; =1, bbb ,, =1
25 as aa,,, =1 aaa,,; =0, aaa, ,, =0
26 d; dd, ., =aa,., ddd, ,; =1, ddd, ,, =1
27 cy cC,,, =0 cce,,, =0,ccc,,, =0
28 b, bb, ;, =0 bbb, ,, =0
29 ag aa, =1 aaa,,, =0
30 dg dd,,, =0 ddd, ,, =0
31 [CCp, =0
Table 4 Message modification for correcting aaas ;
Moaiy
17 ms 7 m, < (ddd,[5]>>>7) - ddd, — I (aaa,,bbb,,ccc,) — 0x50a28be6 ddd,[5],aaa,, bbb, ccc,
18 mis 8 m,; < (ccc, >>>8) —ccc, — 1(ddd,[5],aaa,, bbb,) — 0x50a28be6 cce,,ddd, [5],aaa;, bbb,
19 ms 11 m, < (bbb, >>>11) - bbb, — I (ccc,,ddd,[5],aaa,) - 0x50a28be6 bbb, ,ccc,,ddd,[5],aaa,
20 m, 14 m, « (aaa, >>>14)—aaa, — I (bbb, ccc,,ddd;[5]) — 0x50a280e6 aaa, bbb, ccc,,ddd,[5]
21 My 14 m,, < (ddd, >>>14) —ddd, — I (aaa,,bbb;,ccc,) — 0x50a28be6 ddd,,aaa, ,bbb,,ccc,

©

http:/ www, jos. org. cn

2448 Journal of Software #1324k Vol.19, No.9, September 2008

Table5 A collision of the first 32-step reduced RIPEMD-128. H is the hash value without message padding
0x0587ab92,0x2cd3a579,0x7989cala,0x1b8148¢3,0xdc532138,0xd7c68b2b,0x9569259a,0xb7015533,

Mo 0x462354d1,0x59£2c00f,0x5810a92¢,0xa4abc9e9,0xb6 1c35be,0x 5eb8bb5b,0xacts 181£,0xc7769005

M 0x848cab86,0x16327¢14,0x2d7d37d2,0x74f42427,0xdc33493¢,0xd3c48f2b,0x9¢7d395¢,0xb7fddd32,
0x029€e4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x10130778,0x67dalcOc

Mo 0x0587ab92,0x2c¢d3a579,0x7989cala,0x1b8148¢3,0xdc532138,0xd7¢68b2b,0x9569259a,0xb7015533,
0x462354d1,0x592¢00£,0x5810a92¢,0xa4abc9¢9,0xb61¢c35be,0x5eb8bb5b,0xacf5181f,0xc7769005

M 0x848cab86,0x16327¢14,0x2d7d37d2,0x74f42427,0xdc33493¢,0xd3¢c48f2b,0x9¢7d395¢,0xb7fddd32,
0x029¢4313,0x90eee605,0x4cb78228,0xd4abd22b,0x75a373e5,0x785710d8,0x11130778,0x67dalcOc

H 0xe7fe9b03,0x59ceb5a7,0x542a0994,0xc7calca9

5 Conclusions

In this paper, we find a pair of collisions on the first 32-step reduced RIPEMD-128 by using Wang’s modular
differential method. To break the total RIPEMD-128 (64 steps), it is necessary to look for better differential

characteristics and to modify most of the sufficient conditions of the differential characteristics.

Acknowledgement We are greatly indebted to our supervisor Professor Xiaoyun Wang who gave us many

elaborate instructions.

References:
[1] Rivest RL. The MD4 message digest algorithm. In: Menezes A, Vanstone SA, eds. Proc. of the Advances in Cryptology -
CRYPTO’90. LNCS 537, Berlin, Heidelberg: Springer-Verlag, 1991. 303-311.
[2] Rivest RL. The MD5 message-digest algorithm. Request for comments (RFC 1321), Internet activities board, Internet privacy task
force, 1992. http: // www.fags.org/rfes/rfes 1321 html
[3] Zheng Y, Pieprzyk J, Seberry J. HAVAL—-An one-way hashing algorithm with variable length of output. In: Jennifer S, Zheng YL,
eds. Proc. of the Advances in Cryptology, Auscrypto’92. LNCS 718, Berlin, Heidelberg: Springer-Verlag, 1993. 83—-104.
[4] Dobbertin H. RIPEMD with two round compress function is not collision-free. Journal of Cryptology, 1997,10(1):51-69.
[5] Dobbertin H, Bosselaers A, Preneel B. RIPEMD-160: A strengthened version of RIPEMD. In: Gollmann D, ed. Proc. of the FSE
1996. LNCS 1039, Berlin, Heidelberg: Springer-Verlag, 1996. 71-82.
[6] Wang XY, Yu HB, Lisa Y. Efficient collision search attacks on SHA-0. In: Shoup V, ed. Proc. of Crypto’05. LNCS 3621, Berlin,
Heidelberg: Springer-Verlag, 2005. 1-16.
[71 Wang XY, Lisa Y, Yu HB. Finding collisions on the Full SHA-1. In: Shoup V, ed. Proc. of the Crypto’05. LNCS 3621, Berlin,
Heidelberg: Springer-Verlag, 2005. 17-36.
[8] Dobbertin H. Cryptanalysis of MD4. In: Gollmann D, ed. Proc. of the FSE 1996. LNCS 1039, Berlin, Heidelberg: Springer-Verlag,
1996. 53-69.
[91 Wang XY, Lai XJ, Feng DG, Chen H, Yu XY. Cryptanalysis for hash functions MD4 and RIPEMD. In: Cramer R, ed. Proc. of the
Eurocrypt2005. LNCS 3494, Berlin, Heidelberg: Springer-Verlag, 2005. 1-18.
[10] Wang XY, Yu HB. How to Break MD5 and other hash functions. In: Cramer R, ed. Proc. of the Eurocrypt2005. LNCS 3494, Berlin,
Heidelberg: Springer-Verlag, 2005. 19-35.
[11] Wang XY, Feng DG, Yu XY. An attack on hash function HAVAL-128. Science in China (Series F), 2005,48(5):545-556.
[12] Yu HB, Wang XY, Yun A, Park S. Cryptanalysis of the full HAVAL with 4 and 5 passes. In: Robshaw M, ed. Proc. of the FSE
2006. LNCS 4047, Berlin, Heidelberg: Springer-Verlag, 2006. 89—110.

Mt B 325 3% Sk
(1] Fhz B, T I HAVAL-128 FIRERE L A ERHA(E 5),2005,35(4):405-416. http://www.ilib.cn/I-zgkx-ce.2005.04.html

WANG Gao-Li was born in 1982. She is a
Ph.D. candidate at the Shandong University.
Her current research areas are cryptography,
etc.

WANG Mei-Qin was born in 1974. She is
an assistant professor at the Shandong
University. Her current research areas are
computer network security, cryptography,
etc.

© PEBREBAIHTUR hupy/www. jos. org. en

