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Abstract:  This paper studies the security of a newly proposed stream cipher structure based on linear feedback 
shift register, nonlinear feedback shift register and filter Boolean functions. A distinguishing attack on this structure 
is presented. An example is illustrated to show the effectiveness of this attack. This new attack suggests that this 
new stream cipher structure has potential security weakness. 
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摘  要: 对新提议的一种基于线性反馈移位寄存器、非线性反馈移位寄存器和过滤布尔函数的序列密码结构的

安全性进行了研究,对这种结构给出了一种区分攻击.举例子说明了此攻击的有效性.这种新的攻击表明,此种新的

序列密码结构存在潜在的安全弱点. 
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1   Introduction 

Stream ciphers are important encryption algorithms in symmetric encryption system. There are two kinds of 
stream ciphers: synchronous stream ciphers and self-synchronous stream ciphers. Many stream ciphers are used 
widely in real life. The security of stream ciphers has been paid attention to for many years because of their 
importance. Therefore the design and analysis of stream ciphers have been hot research topics. Many old stream 
ciphers are considered insecure because they are broken or nearly broken. Therefore efforts have been made in 
recent years to find secure and fast stream ciphers. 
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In 1999, the European Commission developed a project NESSIE[1]. The main purpose of this project is to call 
for good stream cipher primitives that are obtained after an open call and evaluation. But after several rounds of 
evaluation no secure enough stream ciphers were selected. 

Many designs of old stream ciphers are based on linear feedback shift registers (LFSR) and Boolean functions. 
LFSRs have many advantages, so they are used widely in different circuits. For many years LFSRs have been one of 
the most important components for constructing keystream generators. But LFSRs have a big disadvantage, that is, 
the internal states are linearly dependent. This property can be exploited successfully by algebraic attack. In 2002, 
Courtois N. successfully broke the stream cipher Toyocrypt using algebraic attack for the first time[2]. Later, he 
successfully broke stream ciphers based on LFSRs and Boolean functions also using algebraic attack[3,4]. All these 
facts made the security of old stream ciphers suspected. 

In 2004, ECRYPT—the European Network of Excellence for Cryptology, started a new stream cipher project 
called eSTREAM[5]. The objective of this project is to call for secure and fast stream cipher algorithms. There were 
35 candidate stream ciphers submitted in 2005. Many candidate stream ciphers of the project avoid using old 
designs but adopt new design. Some designs use LFSRs, nonlinear feedback shift registers (NLFSR) and Boolean 
functions such as Grain[6]. It is necessary to analyze the security of these candidate stream cipher structures. 

Distinguishing attack is a method often used in analyzing the security of stream ciphers such as Refs.[7−9]. 
The purpose of distinguishing attack is to try to distinguish the observed keystream from a truly random sequence. 
Distinguishing attack is often weaker than key recovery attack. In some cases distinguishing attack can be turned 
into key recovery attack. Generally, there are two manners to achieve distinguishing attack: the first one is 
distinguishing probability distribution of keystream output from a uniform distribution directly; the second one is 
using linear approximation equations with noticeable biases and parity checks. 

To the authors’ knowledge, there are a few analytical results available about the security of stream cipher 
structure based on LFSRs, NLFSRs and filter Boolean functions. Maximov A. analyzed the security of this 
structure[10]. Berbain C. et al. cryptanalyzed the stream cipher Grain[11]. In this paper, the security of this new stream 
cipher structure will be analyzed. A distinguishing attack on this structure based on the idea similar to that of 
Ref.[8] is given, however, we use a new method different from Ref.[8]. The method in Ref.[8] can not be used to the 
structure considered in this paper. In Ref.[8], the entries of the parity check equation are considered as a vector. In 
this paper, the input variables of the filter Boolean function are considered as a vector. This vector is written as the 
bit-wise XOR of two vectors. Then all these vectors which correspond to the parity check equations are written as 
the bit-wise XOR of two vectors. Using the parity check equations we can deduce that the distribution of all these 
vectors is nonuniform. This is the key to achieve our distinguishing attack. Our attack implies that the newly 
proposed stream cipher structure is vulnerable to distinguishing attack. 

This paper is organized as follows. In Section 2, some necessary preparations for our attack are given. In 
Section 3, our distinguishing attack is described in detail. In Section 4, an example is demonstrated to show the 
validity of our method, and Section 5 gives our conclusion. 

2   Preliminaries 

2.1   Description of structure 

In this paper we consider binary additive synchronous stream ciphers based on LFSR, NLFSR and filter 
Boolean function or some other structures that can be reduced to this structure. The structure is shown in Fig.1. 

Let the length of LFSR be n, the feedback polynomial of LFSR be f(x) and the internal state of LFSR be 
st,st+1,…,st+n−1 at time t, where t≥0. s0,s1,…,sn−1 denote the initial state. Let the length of NLFSR be m, the feedback 
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polynomial of NLFSR be g(x) and the internal state of NLFSR be bt,bt+1,…,bt+m−1 at time t, where b0,b1,…,bm−1 are 
the initial state. h(x) denotes the filter Boolean function. Its input is some internal state bits of LFSR and NLFSR. zt 
is the keystream output at time t. It is the output of the filter Boolean function of some internal state bits at time t. In 
Fig.1, the broken line denotes optional data flow, that is, the internal state of NLFSR may or may not be affected by 
the internal state of LFSR. 

 
g(x) 

 
 
 
 
 
 
 
 

⊕NLFSR LFSR 

h(x)

zt 

f(x)

Fig.1  Structure based on LFSR, NLFSR and filter Boolean function 

2.2   Hypothesis testing 

There are two hypotheses: H0 denotes the hypothesis that the obtained data comes from the considered cipher 
and H1 denotes that the data comes from a random source. Let X1,X2,…,Xk be k independent and identically 
distributed (i.i.d.) random variables from the alphabet X. The distribution of random variable Xi is denoted by 
D(xi)=Pr(Xi=xi), where Pr denotes the probability, xi denotes the observed value, 1≤i≤k. The distribution of 
(X1,…,Xk) is denoted by D(x1,…,xk)=Pr(X1=x1,…,Xk=xk). We use D0 to denote the distribution under the hypothesis 
H0 and D1 under H1. Then we can denote the two hypotheses by H0:D=D0 and H1:D=D1. 

In a hypothesis test, there are two important things that have to be considered. One is how to perform the test 
optimally. The other is how many samples are needed to be observed. The well-known Neyman-Pearson lemma 
gives the answer of how to accomplish the optimal test. 

Lemma 1. Let X1,X2,…,Xk be drawn i.i.d. according to mass function D. Consider the decision problem 

corresponding to the hypotheses H0:D=D0 versus H1:D=D1. Let 0 1
1
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, where c is a fixed 

nonnegative number. Let α=D0( C ) and β=D1(C) be the error probabilities corresponding to C, where C  is the 
complement of C. Let α′ and β′ be any other set with associated error probabilities. If α′≤α, then β′≥β. This says the 
critical region C is optimal. 

For more detailed content about hypotheses testing, refer to Ref.[12]. Set α=β in our attack, so c=1[8]. Then the 
inequality in the expression of C as described above can be rewritten as 
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In order to compute the needed sample number, the notion of statistical distance is introduced in Ref.[13]. 
Definition 1. The statistical distance between two distributions D0 and D1 defined over the finite alphabet X is 

defined as 

0 1| ( ) ( )
x X

D x D xε
∈

= −∑ | . 

If the distributions are smooth, then the sample number N that we need to observe satisfies N≈ε−2[13]. 
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3   Our Attack 

The first step of our attack is to find low-weight multiples of the linear feedback polynomial. The weight of a 
binary polynomial is defined as the number of its nonzero coefficients. These multiples generate the same linear 
output as that of the original linear feedback polynomial. The goal is to obtain a number of polynomial multiples of 
low-weight and of as small degree as possible. This method has been used frequently in cryptanalysis. Let ⊕ denote 
the operation of binary bit-wise XOR and ⊕ denote the sum of bit-wise XOR in the following section. 

3.1   Finding low-weight polynomial multiples 

There are some literatures on finding low-weight multiples of a polynomial. In Ref.[14] an algorithm of 
finding w-weight multiples of the polynomial f(x) of degree d and its time complexity are given. We adopt the 
method in Ref.[14]. It is stated that the critical degree when the multiples of weight w begin to appear is 
(w−1)!1/(w−1)2d/(w−1). The polynomial residue algorithm of finding polynomial multiples in Ref.[14] is as follows. 

Input: A binary polynomial f(x), maximum degree n of polynomial multiples and a positive integer k; 
(1) Compute and store the residues ximodf(x), 1≤i≤n. 

(2) Compute and store all the residues 1ix ⊕…⊕ kix modf(x) for all  combinations, 1≤i1≤…≤ik≤n. 
n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

(3) Find all the 0 and 1 matches of all the residues from step (2) by fast sorting. 
Output: All the polynomial multiples of f(x) of degree at most n and of weight at most 2k+1. 
The time complexity of the algorithm is about O(Tlog2T) with T=nk/k!. In order to obtain Nw,n polynomial 

multiples of weight w, the expected n satisfies n =((w−1)!Nw,n)1/(w−1)2d/(w−1). So the corresponding T is 
1/ 2
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The second step of our attack is to make a distinguishing attack. In the second step two cases are considered. 

3.2   The case that uses one low-weight polynomial multiple 

Suppose that a polynomial multiple of weight w of the feedback polynomial f(x) has been found. This multiple 
corresponds to a parity check equation of weight w 
 st⊕ 1t cs + ⊕…⊕ =0 (1) 

1wt cs
−+

Assume that the input variables of the filter Boolean function h(x) at time t are the internal state bits 
1t as + , 

2t as + ,…,
ut as + , , ,…, , where ai,bj are the positions of the LFSR and NLFSR, 1≤u≤n, 1≤v≤m, t≥0. Then 

the keystream output at time t can be denoted as zt=h(
1t bb + 2t bb + vt bb +

1t as + ,
2t as + ,…,

ut as + , , ,…, ). 
1t bb + 2t bb + vt bb +

These input variables are written as vectors (
1t as + ,

2t as + ,…,
ut as + , , ,…, ). Let 

1t bb + 2t bb + vt bb +

 St= 1 2
, ,..., ,0,0,...,0

ut a t a t a
v

s s s+ + +

⎛ ⎞
⎜
⎜
⎝ ⎠

⎟
⎟  (2) 

Bt=  
1 2

0,0,...,0, , ,...,
vt b t b t b

u

b b b+ + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 Zt=(zt, ,…, ) (3) 
1t cz + 1wt cz

−+

Then (
1t as + ,

2t as + ,…,
ut as + , , ,…, )=St⊕Bt. Using the above notations, Eq.(3) can be denoted as 

1t bb + 2t bb + vt bb +

 Zt=(h(St⊕Bt),h(
1t c+S ⊕ ),…,h( ⊕ )) (4) 

1t c+B
1wt c −+S

1wt c −+B
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From the parity check Eq.(1), we can obtain 
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, where c0=0. Then through Eq.(2) the following 
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So Eq.(4) can be written as 

 Zt=(h(St⊕Bt),h(
1t c+S ⊕ ),…,h(

1t c+B
1

2

0

w

t ci

−

+=
⊕ S ⊕ )) (5) 

1wt c −+B

Now we show that the distribution of Zt is nonuniform in most cases. From Eq.(5) it is obvious that the vector 
(St⊕Bt, 1t c+S ⊕ ,…, ⊕ ) is determined completely by the vectors St,1t c+B

1wt c −+S
1wt c −+B

1t c+S ,…, ,Bt, ,…, 

. There are 2(u+v)w−u possible values of St,
2wt c −+S

1t c+B

1wt c −+B
1t c+S ,…, ,Bt, ,…,  and 2(u+v)w possible values of 

(St⊕Bt,
2wt c −+S

1t c+B
1wt c −+B

1t c+S ⊕ ,…, ⊕ ). This means that when we go through all the possible values of St,1t c+B
1wt c −+S

1wt c −+B
1t c+S ,…, 

,Bt, ,…, , we cannot get all the possibilities of (St⊕Bt,2wt c −+S
1t c+B

1wt c −+B
1t c+S ⊕ ,…, ⊕ ). So the 

distribution of (St⊕Bt,
1t c+B

1− wt c+B
wt c+S

1−

1t c+S ⊕ ,…, ⊕ ) is nonuniform. Generally speaking, the distribution of Zt 1t c+B
1wt c −+S

1wt c −+B

which is generated by these nonuniformly-distributed vectors is also nonuniform. Therefore the nonuniform 
distribution of Zt can be used to make a distinguishing attack. The detailed steps of our distinguishing attack are as 
follows: 

1. Find a low-weight multiple of the linear feedback polynomial f(x). Let the weight be w. 
2. Compute the distribution D0(Zt). 
3. Compute the sample number N needed to be observed. 

4. For t=0,1,…,N, compute 0
2

0

( )log
2

N
t

w
t

DA −
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ Z . 

5. If A>0, then output “cipher”; otherwise output “random”. 
We can compute D0(Zt) by building a trellis to lower computational complexity like Ref.[15]. 

3.3   Creating a trellis 

Now we give a simple example to explain how to create a trellis to compute D0(Zt). Assume that the filter 
Boolean function is 

h(x1,x2,x3)=x1x2⊕x1x3⊕x1⊕x2. 
If a 3-weight multiple of the linear feedback polynomial is considered, we can write 

Zt=(zt, , )=(h(St⊕Bt),h(
1t cz + 2t cz + 1t c+S ⊕ ),h(St⊕1t c+B

1t c+S ⊕ )), 
2t c+B

where St=( , ,0), Bt=(0,0, ). The vectors (St⊕Bt,1ats + 2ats + 1btb + 1t c+S ⊕ ,St⊕1t c+B
1t c+S ⊕ ) are determined 

completely by the vectors St,
2t c+B

1t c+S ,Bt, , . There are 23×3−2=27 possibilities in all. Denote 
1t c+B

2t c+B

0h={(x1,x2,x3)|h(x1,x2,x3)=0}, 
1h={(x1,x2,x3)|h(x1,x2,x3)=1}. 

Then 
0h={(0 0 0),(0 0 1),(1 0 1),(1 1 1)}, 
1h={(0 1 0),(0 1 1),(1 0 0),(1 1 0)}. 

Figure 2 shows how to compute D0(Zt) based on a trellis. For example, when Zt=(1 0 1), according to 0h and 1h, 

all the possibilities of St⊕Bt, 1t c+S ⊕  and St⊕1t c+B
1t c+S ⊕  are as follows 

2t c+B
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St⊕Bt=0 1 0, 0 1 1, 1 0 0, 1 1 0; 

1t c+S ⊕ =0 0 0, 0 0 1, 1 0 1, 1 1 1; 
1t c+B

St⊕ 1t c+S ⊕ =0 1 0, 0 1 1, 1 0 0, 1 1 0. 
2t c+B

Then the possible St, 1t c+S ,Bt, are shown in Fig.2. The line segment between two vectors means that they 

are possible. The number 2 between two vectors means that there are 2 possibilities for . The line segment 
1t c+B

2t c+B

between two vectors without numbers means that there is only one possibility. A curve joined end to end from 
possible to

1t c+B
1t c+S , then to St and then to Bt is a possibility of (St⊕Bt, 1t c+S ⊕ ,St⊕1t c+B

1t c+S ⊕ ). The 

number of all these curves is the number of possible (St⊕Bt,
2t c+B

1t c+S ⊕ ,St⊕1t c+B
1t c+S ⊕ ). When Zt=(1 0 1), the 

2t c+B

number is 20. Then D0(1 0 1)=20/27. 

Zt                    
1t c+B

1t c+S                    St                  Bt 

 
 
 
 
 
 

Fig.2  The trellis used to compute D0(Zt) 

Using this method, we can easily compute the distribution D0(Zt) as shown in Table 1 . 

Table 1  The distribution D0(Zt) 

zt   
1t cz + 2t cz + D0(zt, , ) 

1t cz + 2t cz +

0   0    0 20/27 
0   0    1 12/27 
0   1    0 12/27 
0   1    1 20/27 
1   0    0 12/27 
1   0    1 20/27 
1   1    0 20/27 
1   1    1 12/27 

It is also necessary to compute the number N that we need to observe in our attack. According to D0(Zt), the 
statistical distance ε between D0(Zt) and D1(Zt) is 

0| ( ) 1/8 | 1/ 4
t

tDε = − =∑
Z

Z . 

Then N≈ε−2=24. The number N can further be reduced by the method described below. 

3.4   The case that uses more than one low-weight polynomial multiple 

In this subsection, a method that can decrease N largely is described. More than one low-weight polynomial 
multiple can be used simultaneously to reduce N. Suppose we have found two w-weight parity check equations 

st⊕ ⊕…⊕ =0, 
1cts + 1−+ wcts

ts ⊕ ⊕…⊕ =0. 
wcts + 22 −+ wcts

We use the notations zt, St and Bt to denote the same meaning as Section 3.2. Now let 
 Zt=(zt, ,…, ) (6) 

1ctz + 22 −+ wctz

Then Eq.(6) can be denoted as 
 Zt=(h(St⊕Bt),h(

1t c+S ⊕ ),…,h( ⊕ )) (7) 
1t c+B

2wt c −+S
2 2wt c −+B

1     0 0 0                 0 0 0         2         0 1 0               0 0 0 

0                          1 0 0                   1 0 0 

1     0 0 1                 1 1 0        2  2       1 1 0               0 0 1 
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Like Section 3.2, we can get =
1wt c −+S

1

2

0

w

t ci

−

+=
⊕ S , =St⊕2wt c −+S

1

2 3

0

w

t ci

−

+=
⊕ S , where c0=0. Therefore Eq.(7) can be 

written as 

 Zt=(h(St⊕Bt),h(
1t c+S ⊕ ),…,h(

1t c+B
1

2

0

w

t ci

−

+=
⊕ S ⊕ ),h( ⊕ ),…,h(St⊕1wt c −+B

wt c+S
wt c+B

1

2 3

0

w

t ci

−

+=
⊕ S ⊕ )) (8) 

2 2wt c −+B

Using the same principle as that of in Section 3.2 we know that the distribution of Zt is nonuniform in general. 
The detailed process of our distinguishing attack in this case are as follows: 

1. Find two low-weight multiples of the linear feedback polynomial f(x). Let the weight be w. 
2. Compute the distribution D0(Zt). 
3. Compute the sample number N needed to be observed. 

4. For t=0,1,…,N, compute 0
2 1 2

0

( )log
2

N
t

w
t

DA −
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ Z . 

5. If A>0, then output “cipher”; otherwise output “random”. 
When more than two low-weight polynomial multiples are used, our attack is based on the same idea. 

4   Example 

An example will be given to show the validity of our attack. Suppose the considered cipher structure is the one 
that we discuss in this paper. Assume that the filter Boolean function h(x) is 6-input, 4-degree and 1-resilient as 

h(x)=x6(x1x2x5⊕x1x2x3⊕x1x2x4⊕x2x5⊕x1x5⊕x1x4⊕x3x4⊕x2x4⊕x5⊕x3⊕1)⊕ 
x5(x1x2x4⊕x2x4⊕x1x4⊕x4⊕1)⊕x4(x1x3⊕x1⊕x3)⊕x1x2x3⊕x2, 

where x1, x2, x3, x4 correspond to four internal state bits of LFSR at time t and x5, x6 correspond to two internal state 
bits of NLFSR at time t. 

Here we first consider a 3-weight multiple of the linear feedback polynomial. For a 3-weight parity check 
equation, from the foregoing notations, according to Eq.(5) there is the following equation 

Zt=(zt, , )=(h(St⊕Bt),h(
1ctz + 2ctz + 1t c+S ⊕ ),h(St⊕1t c+B

1t c+S ⊕ )), 
2t c+B

where St=(
1t as + ,

2t as + ,
3t as + ,

4t as + ,0,0), Bt=(0,0,0,0, , ). We compute D0(Zt) using the method explained in 
1t bb + 2t bb +

Section 3.3. The distribution D0(Zt) is shown in Table 2. The statistical distance ε1 between D0(Zt) and D1(Zt) is 
ε1=2−7. So the needed sample number is =16384 to make distinguishing attack. 2

1 1N ε −≈

Table 2  D0(Zt) under the attack in Section 3.2 

zt   
1t cz + 2t cz + D0(zt, , ) 

1t cz + 2t cz +

0   0    0 2032/214 
0   0    1 2064/214 
0   1    0 2064/214 
0   1    1 2032/214 
1   0    0 2064/214 
1   0    1 2032/214 
1   1    0 2032/214 
1   1    1 2064/214 

If two 3-weight multiples of the linear feedback polynomial are considered, we can write 
Zt=(zt, , , , ) 

1ctz + 2ctz + 3ctz + 4ctz +

=(h(St⊕Bt),h(
1t c+S ⊕ ),h(St⊕1t c+B

1t c+S ⊕ ),h( ⊕ ),h(St⊕ ⊕ )). 
2t c+B

3t c+S
3t c+B

3t c+S
4t c+B

The distribution D0(Zt) is computed in Table 3. According to this distribution the statistical distance ε2≈0.0083 

between D0(Zt) and D1(Zt). So the needed sample number 14263 to make distinguishing attack. It is easy 

to see that this result is better than N1. 

2
2 2N ε −≈ ≈
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Table 3  D0 (Zt) under the attack in Section 3.4 
zt    

1t cz + 2t cz + 3t cz + 4t cz + D0(Zt) 
0   0    0    0    0 129152/222 
0   0    0    0    1 130944/222 
0   0    0    1    0 130944/222 
0   0    0    1    1 129152/222 
0   0    1    0    0 130944/222 
0   0    1    0    1 133248/222 
0   0    1    1    0 133248/222 
0   0    1    1    1 130944/222 
0   1    0    0    0 130944/222 
0   1    0    0    1 133248/222 
0   1    0    1    0 133248/222 
0   1    0    1    1 130944/222 
0   1    1    0    0 129152/222 
0   1    1    0    1 130944/222 
0   1    1    1    0 130944/222 
0   1    1    1    1 129152/222 
1   0    0    0    0 133248/222 
1   0    0    0    1 130944/222 
1   0    0    1    0 130944/222 
1   0    0    1    1 133248/222 
1   0    1    0    0 130944/222 
1   0    1    0    1 129152/222 
1   0    1    1    0 129152/222 
1   0    1    1    1 130944/222 
1   1    0    0    0 130944/222 
1   1    0    0    1 129152/222 
1   1    0    1    0 129152/222 
1   1    0    1    1 130944/222 
1   1    1    0    0 133248/222 
1   1    1    0    1 130944/222 
1   1    1    1    0 130944/222 
1   1    1    1    1 133248/222 

5   Conclusion 

The security of a recently proposed new structure of stream ciphers has been studied in this paper. This 
structure is based on LFSR, NLFSR and a filter Boolean function. A distinguishing attack against this structure is 
given. An example is presented to show the validity of our attack, but our method is invalid for Grain because 
D0(Zt) is uniform. But if D0(Zt) is nonuniform when another filter Boolean function is used, our method is valid. 
Our results demonstrate that the new stream cipher structure may suffer heavier security threats than it has been 
revealed, and our method should be taken into account in designing new structures of stream ciphers. According to 
this attack, it is necessary to ensure that D0(Zt) is uniform in designing stream ciphers based on LFSR, NLFSR and 
filter Boolean functions. Otherwise, it suffers the distinguishing attack as described in this paper. 
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