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Abstract: Answer set programming (ASP) is a logic programming paradigm under answer set semantics, which
can be utilized in the field of non-monotonic reasoning and declarative problem solving, etc. This paper proposes
and implements a cycle breaking heuristic and a bottom-restricted look-ahead procedure for ASP, and the resulting
system is called LPS. The experimental results show that, relative to other state-of-the-art ASP systems, LPS could
efficiently solve logic programs in phase transition hard-job-regions, and these programs are generally considered
difficult to compute. In addition, by applying the so-called dynamic variable filtering (DVF) technique, LPS could
greatly reduce the search tree size during the computation.
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1 Introduction

Answer set programming (ASP) is a logic programming paradigm under answer set semantics (also called
stable model semantics)™?. In ASP, problems are encoded as logic programs, the corresponding answer sets of the
logic programs give solutions to the original problems. Many applications like non-monotonic reasoning, reasoning
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about actions, declarative problem solving™, can be expressed by logic programs, and then solved by an ASP
system.

Unfortunately, checking whether a logic program has an answer set is NP-compIete[“]. It follows that
computing answer sets for logic programs is a computational hard task. In the last decade, much work has been
devoted to the implementation of ASP, most of these systems like Smodels, DLV®®! are based on backtrack search
algorithms, which essentially construct a binary search tree and have to handle exponential search space. For such
algorithms, heuristics are crucial, good heuristics can significantly improve system performance.

In this paper we propose so-called cycle breaking heuristic for ASP, the idea is motivated by Ref.[7], where
new upper bounds for computing answer sets are obtained through analyzing the number of cycles of a logic
program. In particular, Ref.[7] suggests that a good heuristic should break the most number of even cycles. As we
shall see later, our heuristic matches the purpose quite good. Another important feature of ASP systems is the use of
look-ahead procedures®®, the basic idea is to discover inconsistency before selecting a new branching node, and
then backtrack as soon as possible, avoiding falling into a deep dead end. It has been shown that look-ahead can
greatly speed up the computation, however, it often consumes most of the running time of a system, many restricted
look-ahead procedures are then proposed to reduce the running cost. In this paper we present a look-ahead
procedure for ASP, which restricts the atoms being looked on bottoms. Intuitively, bottoms are the “root” of the
dependency graph of a logic program, the truth values of the atoms outside bottoms depend on those inside,
therefore restricting the looking over bottoms is considered to be a good idea.

The rest of the paper is organized as follows. Section 2 provides some basic concepts of ASP. Section 3
presents the basic algorithm for computing an answer set. Sections 4 and 5 describe the cycle breaking heuristic and
the bottom-restricted look-ahead procedure. In Section 6, the experimental results are presented and some related
work is briefly discussed in Section 7, we draw conclusions and show future directions in Section 8.

2 Preliminaries

A logic program is a finite set of rules of the form: a<b;,...,by,, not c,,...,not c,, where a, b;’s, ¢;’s are atoms.
We call a the head of the rule and the other atoms the body of the rule. For convenience, let Head(r)=a,
Pos(r)={by,...,bn} and Neg(r)={cs,...,co}. A literal is an atom or an atom preceded by not. The former is called a
positive literal and the latter is called a negative literal. If Neg(r)=2 then r is a definite rule. A definite logic
program P is a set of definite rules, by Cn(P) we refer to its unique minimal closure. By At(P) we denote the set of
atoms occurring in a logic program P. The Gelfond-Lifschitz reduct P* of P with respect to a set AcAt(P) is
obtained by deleting each rule reP such that Neg(r)mA=Z, and removing all negative literals in the remaining rules.
Note that a Gelfond-Lifschitz reduct must be a definite program. A set of atoms AcAt(P) is said to be an answer
setlt) of P iff A=Cn(P"). The well-founded model™ of a logic program P is a unique ordered pair I(P)=(I(P)*,1(P)")
in which I(P)" contains atoms which must be true and I(P)~ contains atoms which must be false. The truth values of
atoms which are neither in I(P)* nor in I(P)” are uncertain. Well-founded model can be characterized by operator »p,
which is defined as y(A)=Cn(P"). Note that A;cA, implies 7 (A2)c(Ay), i.e. % is anti-monotone. It follows that
72(A) = 75 (7o (A)) is monotone, the well-founded model of a program P can be represented as (Ifp(y2),gfp(y3) -
At(P))y in which Ifp(y2) is the least fixed-point of »2 and gfp(y2) the greatest fixed-point of 2%, Consider
a logic program P;={c<—not b,b<«—not c,a<}, the answer sets of it are {a,c} and {a,b} while its well-founded model
is ({a}.@). A simplification™ of a logic program P under its well-founded model I(P), denoted by P\I(P), is
obtained by deleting each rule reP such that either Head(r)el(P)* or Pos(r)nI(P) %@ or Neg(r)nI(P)*#>, and
remove all positive literals a where acI(P)* and all negative literals not a in which ae1(P)~ from the bodies of the
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remaining rules.

A dependency graph of a logic program P, denoted by G(P), is a directed graph (V,E) with labeled edges. Let
V=At(P), there is a positive (negative, respectively) edge from node p to node q if there exists a rule reP, Head(r)=q
and pePos(r) (peNeg(r), respectively). A strongly connected component of a directed graph (V,E) is a set of nodes
V'V such that for any u,veV’, there is a path from u to v, and V' is not a proper subset of any such sets. A bottom!”!
is a strongly connected component S of a directed graph, and there is no other strongly connected component S’
such that there is a path from S' to S. Note that a strongly connected component can be computed in linear time?.
An odd (even, respectively) cycle of a dependency graph is a simple cycle containing an odd (non-zero even,
respectively) number of negative edges. Both odd and even cycles are called negative cycles, simple cycles
containing no negative edges are called positive cycles.

Odd cycles and even cycles are of great interest in investigating logic programs. It has been shown that a logic
program which has no odd cycles!*® (called call-consistent program) at least has one answer set, and a logic
program that has no even cycles™™ has at most one answer set. Furthermore, in the latter case, if the well-founded
model of the logic program is also its answer set, then it is the only one, otherwise, it has no answer sets™,
Informally speaking, odd cycles eliminate answer sets while even cycles generate answer sets. Based on these
results, an algorithm for computing answer sets concerning cycles is proposed in Ref.[7], in next section we shall
describe a slightly modified version.

3 Basic Algorithm for Computing Answer Sets

A signed atom a” is an atom a with sign *e{+,—}. Define =———a =a" and —a*=a". Let o be a finite consistent
set of signed atoms, by consistence we mean there is no atom a such that both a*, a” are in o. Define ¢*={b*|b" e o},
similarly, o7={b”|b"e o}. For a set of signed atoms &, let |J|={b|b" e }.

Definition 1™, Let P be a logic program, and o a finite consistent set of signed atoms with |@|cAt(P), let P,
be the program obtained from P by deleting all rules reP which Pos(r)n|o |22 or Neg(r)n|o'|#3, and removing
positive literal a from the bodies of the remaining rules if ac|c’| or negative literal not a if ac|o|.

For instance, let P be P, mentioned in previous section, o={b",c’}, we have P,={b<«,a<}. Intuitively,
|a'|(|o7|, respectively) stands for atoms assumed to be true (false, respectively). Furthermore, consider the
dependency graph G(P,), it is a subgraph of G(P) and there are no edges going out from atoms in |o], in some sense
they break the outgoing edges, we call these atoms breaking nodes.

[11]

Proposition 2. Let P be a logic program, and o a finite consistent set of signed atoms with |olcAt(P).

Suppose S is an answer set of P, |6'|cS and |6 |~S=, then S is an answer of P,,.

Proposition 2 implies that each answer set of P is an answer set of either P{f} or P{a,} where aeAt(P),

however, the inverse generally does not hold. The proposition below shows an interesting property about bottoms.

Proposition 3!, Given a logic program P and its well-founded model I(P), if Q=P\I(P) is not empty, then
every bottom of Q must have a pair of nodes a and b, such that there is a negative edge from a to b.

Proposition 3 shows the existence of a negative cycle in each bottom of the well-founded simplification of a
program, which plays an important role in the proof of theorem 4. Having introduced the above definitions and
propositions, we present our basic algorithm Ans(P) in Fig.1, where ComputeAns(P,) performs binary search,
Bottoms(Q) returns the set of all bottoms of logic program Q and I(P,) returns the well-founded model of P,. The
soundness of the algorithm is guaranteed by the theorem below:

Theorem 4. A logic program P has an answer set if and only if Ans(P) returns True.

Proof: (Sketched) =. By induction on k, the number of odd and even cycles in G(P). For k=0, it is well-known
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P has an unique answer set I(P)*. For k>0, trivial if I(P)" is the answer set of P. Suppose I(P)" is not an answer set

for P, pick a breaking node a from UBottoms(Q) on a negative cycle (such a node always exists). Note that an

answer set of P is either an answer set of P_, or P{a, and both of them have less negative cycles than k, by

{a"} }

induction assumption, ComputeAns(P{m)(ComputeAns(P{a,}), respectively) returns true if P{m (P{a,},
respectively) has an answer set which is also an answer set of Py (i.e. P). Therefore if P has an answer set then
Ans(P) returns true. <. Trivial. O

It has been shown in Ref.[7] that if a program P has at most k even cycles, then P has at most 2 answer sets,
and can be computed in 22O(n*) time, where n is the size of the given program. Moreover, restricting the number of
odd cycles cannot reduce the complexity. These facts imply that ComputeAns(P ) should break the most number of
even cycles when selecting a breaking node, such that the two resulting logic programs have less even cycles and
then easier to compute. In ComputeAns(P,), we pick breaking nodes from bottoms which at least break one negative
cycle, unfortunately, whether it breaks an even cycle is an NP-complete problem!™, we shall propose a heuristic for
this problem in next section.

Procedure Ans(P)

Input: A logic program P;

Output: True if P has an answer set otherwise False.
1. return ComputeAns(Pg);

Procedure ComputeAns(P )

Input: A logic program P;

Output: True if P, has an answer set that is also an answer set of P otherwise False.
. if I(P,)" is an answer set of P, then

if I(P,)" is an answer of Py then return True else return False

.end if

. Q:=PA(P,);

. Pick aeUBottoms(Q) on a negative cycle;

-if ComputeAns(P . ‘}) then return True else return  ComputeAns(P o
ouw{a oAa

oA WN P

)

Fig.1 Basic algorithm for computing an answer set

4 Cycle Breaking Heuristic

From the above sections, we know that choosing a node that breaks many even cycles can significantly speed
up the computation. However, it is very difficult to pick such a node since even deciding whether it breaks one even
cycle is NP-complete. A compromise is to prefer breaking negative cycles, no matter which kind of cycles (odd or
even) they are. In addition, observe that in a directed graph, a node that has more degrees (occurrences) would
probably break more cycles, similar idea has been adopted by the famous MOMS heuristic™™®*” which prefers
picking atoms in shorter open clauses. Based on the above motivations, we propose our heuristic as follows.

Define the length of a rule r to be the number of unassigned literals in its body with respect to well-founded
semantics, denoted by L(r). Let r be a rule containing some unassigned atoms in program P (i.e. open rules), for

each unassigned atom acAt(P) we define w(a)= Y o, w,@)= > o, w@)= Y o .
head (r)=a aePos(r) aeNeg(r)

These functions calculate the weights contributed by different occurrences of atom a, more precisely, they
calculate the weights of a when it is a head, positive literal and negative literal respectively. The value of « is
empirically set to 5, means that every 5 occurrences of an atom in a length i+1 rule are counted as 1 occurrence in
rule which has length i, this value is obtained by a large number of experimenting, and adopted by many
researchers!*®¢], The evaluation function w(a) is defined as: w(a)=w,(a)+w,(a)+Sws(a) where 3 is an empirically
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good value used to emphasize negative edges since we prefer breaking negative cycles, this value could be modified
when dealing different logic programs. In this paper we use a fixed value £=1.3. LPS selects a breaking node a such
that w(a) is the greatest, moreover, if wp(a)>ws(a) then it first branches a, otherwise it first branches not a.
Alternating branching order is employed by most ASP systems and has been proved quite useful in some instances.

This function is applied on bottoms, since picking a node from a bottom at least breaks one cycle (since
bottoms are strongly connected components), furthermore, since there exists at least one negative cycle in each
bottom of the well-founded reduction of a program, so the heuristic is expected to efficiently break negative cycles
and therefore greatly reduce the depth of the search tree.

For example, let P,={a<-not b,b<-not a,c<a,c«-b}, its dependency

. . . L . a b
graph is shown in Fig.2, it is easy to see it has one bottom {a,b}. In the
binary search if we first pick c then the truth values of a,b are still not + +
determined, however, if we first choose an atom from the bottom {a,b}, then c

an answer set is immediately derived. Note that in the latter case, the only )
. . Fig.2 Dependency graph of P,
even cycle of the program is broke when we choose a or b according to our

heuristic.

5 Bottom-Restricted Look-Aheads

The essential of look-ahead™®® is to discover a dead end as early as possible, thus avoid large scale
backtracking. Simply speaking, before choosing a new node in the binary search, look-ahead procedure assumes
true and then false for an unassigned atom and performs consistency checking, if both checkings are inconsistent,
the search backtracks since there is a contradiction, else if exactly one of the checking is consistent then it picks the
atom with the consistent value, otherwise the procedure looks at next unassigned atom. As mentioned before,
look-ahead procedure is computational expensive, since for each unassigned atom the consistency checking is
performed twice. In LPS look-ahead is applied on bottoms instead of all unassigned atoms, thus called
bottom-restricted look-ahead. Intuitively, bottoms are the “root” of the dependency graph of a program, the truth
values of the atoms outside bottoms depend on those inside. A large program may have small bottoms, therefore
looking on bottoms is believed strong enough to discover many contradictions in advance.

We implemented two versions of bottom-restricted look-ahead in LPS: one adopts so-called static variable
filtering (SVF) while another one adopts dynamic variable filtering (DVF). These two techniques are originally
proposed in SATI® where they appear to have different performances. Roughly speaking, look-ahead with SVF at
most looks every atom once and then return to the binary search, however, if an atom is picked during the looking,
then the current partial model is changed and new information about the contradiction may be inferred, so
look-ahead with DVF looks unassigned atoms repeatedly until no contradictions could be discovered.

Bottom-restricted look-ahead with DVF is shown in Fig.3 and the SVF version could be obtained by removing
the Do-Until loop. The function Conflict(P,{|c"|,|o7])) in Fig.2 is from Ref.[5], it returns true when P has no answer
set S such that |o"|<S and |o”|cAt(P)\S, the mechanism behind it is to expand the current partial model {|c|,|o7|) by
some sophisticated inference rules and see whether |c'|n|o |#@, if so then the current partial model is consistent,
details about this function could be found in Ref.[5]. In Fig.4, we present the improved basic algorithm for LPS,
which integrates the bottom-restricted look-ahead and the cycle breaking heuristic.

To see how look-ahead procedure speeds up the computing, consider a program P;={a;<«-not by,b;<not
ay,...ap<not by,by,<not a,cenot c}. P; has no answer sets and n+l bottoms (Fig.5), without look-ahead
procedure, in the worst case the algorithm may has to go through 2" partial models before it is sure that there is no
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answer sets, however, if we enable look-ahead procedure, the algorithm can return false at one step since conflict
checking is performed on each bottom thus the rule c<—not c is discovered to be unsatisfiable for any partial model.
In this extreme example, the look-ahead procedure saves exponential time.

Procedure Look-ahead(P,)
Input: A logic program P;
Output: Alogic program P, if no dead end is discovered otherwise False.

1. do

2. 0:=0;, Q:=P\(P,);

3. for each aeUBottoms(Q)

4. if Conflict(Pg,{ o[ {a}.|c]) &&

5. Conflict(Pg,{|o'],| o |w{a})) then

6. return False;

7. else if Conflict(Pg,( o[ w{a},|c])) then
8. o=ou{a};

9. else if Conflict(Pg,(|c’|,|o |u{a})) then
10. o=ou{a’};

13.  endif

14.  end for

15. until o'=0

16. return P,

Fig.3 Bottom-Restricted look-ahead with DVF

Procedure ComputeAns(P,)
Input: A logic program P;
Output: True if P, has an answer set that is also an answer set of P otherwise False.
. if Look-ahead(P ,)=False then return False
. P,:=Look-ahead(P,);
Lif I(P,)" is an answer set of P, then
if I(P,)" is an answer of Py then return True else return False
end if
. Q:=PAI(PL);
. Pick aeUBottoms(Q) such that w(a) is the greatest
. If wy(a)>ws(a) then b:=a” else b:=a”
. if ComputeAns(P ,_¢v3) then return True else return ComputeAns(P ouq—b3)

© o N UAWN P

Fig.4 Basic algorithm integrated with cycle breaking heuristic and bottom-restricted look-ahead

alObl an<> bn

Fig.5 Dependency graph of P

6 Experimental Results

In this section we compare LPS with ASP systems Smodels, DLV and Nomore++2°. The platform is a
Celeron4 1.7GHz PC with 256M memory, running Fedora 2.4.22. LPS is compiled by g++ version 3.3.2 with
optimization parameter —O3. In all tables, times are in second, tree means the search tree size, i.e. the number of the
breaking nodes. We first experiment randomly generated benchmarks?Y. Let k-LP(N,L) be the classes of programs
that have N atoms and L rules with fixed length k, the authors of Ref.[21] discovered so-called hard-job-regions:
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classes with L/N=4~6, i.e. these programs are generally difficult to solve. The following experiments are done with
3-LP(200,L) classes, which are considered to be moderate, i.e. they would not be too easy to distinguish the systems
and too hard to compute.

The first benchmark consists of 282 programs from 11 classes where L/N=3~8 with a step of 0.5, following the
“easy-hard-easy” pattern. Results are described in Table 1, LPS (SVF) outperforms other solvers in the regions of
L/N=4.5~7 which fully cover the hard-job-regions, in easy-job-regions, Smodels is the best one. Note that LPS
(DVF) has the smallest search tree size during the experiment (DLV provides no information about the search tree)
and the running times are quite close to LPS (SVF).

Table 1 Experimental results on “easy-hard-easy” pattern

UN | #num Smodels LPS (SVF) LPS (DVF) Nomore++ DLV
Time Tree Time Tree Time Tree Time Tree Time Tree
3 25 2.51 706 19.71 6181 15.58 386 26.41 387 68.85 -
3.5 24 29.54 7007 100.13 | 21415 88.97 1552 | 144.11 | 1725 748.37 -
4 24 115.27 | 22086 | 191.18 | 33332 | 174.74 | 2495 | 344.13 | 3282 | 1599.78 -
4.5 23 348.81 | 46266 | 237.89 | 31411 | 257.73 | 2476 | 548.36 | 4080 | 2100.10 -
5 27 257.70 | 35223 | 207.74 | 22820 | 218.33 | 1808 | 551.25 | 3424 | 1832.41 -
55 26 234.63 | 24454 | 187.55 | 16902 | 241.01 | 1333 | 586.01 | 2951 | 1420.56 -
6 26 144.04 | 13275 | 118.27 | 8878 | 144.07 | 747 | 415.85 | 1766 | 630.84 -
6.5 24 74.95 5825 66.42 4301 92.33 371 | 273.92 | 980 268.54 -
7 27 35.78 2548 35.74 1947 49.70 182 140.81 439 107.20 -
7.5 28 16.11 1088 23.98 1116 34.43 110 92.10 254 55.40 -
8 28 8.5 540 16.93 677 22.58 72 56.51 145 33.73 -

From the above results, it is natural to conjecture that LPS may work more efficient in hard-job-regions, so we
select three hard classes with L/N=4.5, 5 and 5.5, for each class we experiment 1000 programs, the top 10 hard
programs (according to Smodels) are shown in Tables 2~4 respectively. As we expected, LPS completely
outperforms other systems on these top hard programs, where LPS (SVF) solved 24 out of 30 programs with the
minimal times, and LPS (DVF) outperforms LPS (SVF) on the remaining 6 programs, and still, LPS (DVF)
possesses the smallest search tree sizes.

We analyzed some hard programs and found that they contain complicated bottoms, it follows that the cycles
occurring in these components are quite complex. They seem to be the reason why these instances are so difficult to
solve. In some sense, the experimental results support our conjecture that LPS performs better than other systems in
hard-job-regions. Furthermore, LPS (DVF) can efficiently prune the search space, thus has the minimal search tree
sizes, this is mainly because LPS (DVF) chooses most breaking nodes during look-ahead instead of binary search.

Table 2 Top 10 out of 1000 hard programs, k=3, N=200, L/N=4.5

Instance Smodels LPS (SVF) LPS (DVF) Nomore++ DLV
No. Time Tree Time Tree Time Tree Time Tree Time Tree
095 1122.85 | 165489 | 212.30 | 37953 | 314.33 | 3042 | 937.07 7246 | 1625.67 -
303 798.74 | 162475 | 384.66 | 49971 | 523.74 | 4190 | 951.59 7226 >3600 -
198 778.73 | 129200 | 167.66 | 22098 | 187.73 | 1783 | 350.82 2700 | 1938.20 -
703 635.92 | 113574 | 129.63 | 17838 | 136.12 | 1430 | 270.96 2230 627.89 -
536 598.45 53235 | 394.81 | 47904 | 398.52 | 3683 | 966.46 7747 >3600 -
400 561.42 71972 | 392.93 | 59896 | 499.34 | 4507 | 1348.54 | 10671 | 2262.15 -
540 516.70 51230 | 148.94 | 18566 | 122.32 | 1470 | 280.82 2121 588.04 -
695 493.15 58198 | 208.11 | 26933 | 192.13 | 1741 | 289.39 2178 2359.9 -
700 426.55 64440 | 340.29 | 50340 | 382.31 | 3712 | 914.39 6741 | 2390.54 -
592 367.32 62212 | 175.79 | 21790 | 206.08 | 1790 | 376.80 2890 | 1544.44 —
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Table 3 Top 10 out of 1000 hard programs, k=3, N=200, L/N=5

Instance Smodels LPS (SVF) LPS (DVF) Nomore++ DLV
No. Time Tree Time Tree Time Tree Time Tree Time Tree
174 779.34 | 93711 | 156.29 | 17549 | 195.98 | 1449 | 801.88 | 4250 | 2107.70 -
263 774.74 | 101593 | 286.10 | 34440 | 430.23 | 3063 | 648.61 | 3877 | 2748.91 -
021 691.43 | 103662 | 164.72 | 19392 | 209.54 | 1599 | 626.59 | 4250 | 1563.71 -
574 653.86 | 96238 | 139.36 | 16483 | 128.51 | 1192 | 388.87 | 2461 | 993.45 -
953 619.80 | 56523 | 207.76 | 27351 | 205.26 | 2250 | 694.94 | 3976 | 720.61 -
444 604.15 | 50463 | 126.99 | 14833 | 160.70 | 1616 | 562.09 | 3771 | 1525.78 -
529 603.35 | 78678 | 277.26 | 34310 | 445.43 | 2331 | 693.48 | 4306 | 1559.89 -
028 587.69 | 70425 | 376.70 | 41145 | 448.02 | 3265 | 891.20 | 5478 | 1748.90 =
196 553.17 | 72574 | 100.78 | 12306 | 119.61 | 1066 | 578.18 | 3659 | 1328.63 E
076 535.12 | 56781 | 266.77 | 33033 | 354.12 | 2766 | 584.74 | 3619 | 1557.45 L

Table 4 Top 10 out 1000 hard programs, k=3, N=200, L/N=5.5

Instance Smodels LPS (SVF) LPS (DVF) Nomore++ DLV
No. Time Tree Time Tree Time Tree Time Tree Time Tree
255 817.47 | 63135 | 351.13 | 40027 | 500.73 | 3060 | 970.41 | 4858 >3600 -
214 683.31 | 73163 | 143.70 | 13261 | 188.16 | 1135 | 618.79 | 2857 | 1051.08 -
396 649.78 | 64759 | 70.84 7171 86.96 871 802.62 | 4133 | 1826.96 -
567 624.98 | 58082 | 236.67 | 24210 | 311.78 | 1987 | 1275.24 | 7038 | 2091.13 -
534 546.12 | 61502 | 202.66 | 17859 | 74.31 670 214.27 | 1106 | 235.80 -
233 439.80 | 39295 | 108.60 | 8480 | 152.77 | 794 558.04 | 2857 | 1393.03 -
409 408.06 | 41100 | 236.06 | 24718 | 329.77 | 2117 | 875.90 | 4941 | 1939.24 -
929 400.39 | 50450 | 280.71 | 27233 | 342.84 | 2078 | 617.15 | 3428 | 1107.26 -
855 379.38 | 34575 | 189.74 | 16482 | 147.48 | 1343 530.13 2990 651.68 -
182 348.43 | 20305 | 124.17 | 13879 | 195.94 | 1190 | 681.01 | 3406 | 566.30 —

Table 5 presents experimental results on some real-world benchmarks. Roughly speaking, the performance of

LPS is close to other systems, though it is not the most efficient one in terms of running time. This is reasonable,
since ASP is NP-Complete, the cycle breaking heuristic and the bottom-restricted look-ahead would not be efficient
for all benchmarks. Moreover, Smodels is highly optimized for real-world applications, it is not surprising that it is
the best one in Table 5. A good result is that, LPS (DVF) still appear more efficient than other systems in terms of
tree sizes.

Table 5 Experimental results on bounded model checking

#Rule Smodels LPS (SVF) LPS (DVF) Nomore++ DLV
Instance f#Atom Time Tree Time Tree Time | Tree | Time | Tree | Time | Tree
DP-8 691 1112 0.16 9 0.47 26 3.82 9 0.97 12 4.42 -
DP-10 1103 | 1790 2.12 296 12.77 339 16.73 89 | 14.31 116 | 28.43 -
DP-12 1611 | 2628 | 347.97 | 103557 | 429.36 | 82456 | 903.77 | 9931 | 565.47 | 32073 [ 677.33 | —

Elavator-1 1103 | 1596 | 0.34 17 241 55 5.30 19 | 3.32 15 3.54 -
Elavator-2 3195 | 4465 | 4.58 38 26.39 72 37.12 22 | 2111 35 [ 4375 | -
Elavator-3 7824 | 10660 | 149.14 130 | 221.23 | 166 | 241.18 | 59 [198.43| 107 | 5659 | -
Elavator-4 6437 | 8957 |1164.34| 1384 |1613.22| 1928 |1825.12| 279 |907.11| 796 |>3600 | -
Hartstone-50 | 854 | 1138 2.17 142 4.45 173 5.03 77 | 3.92 103 5.63 -
Hartstone-75 | 1254 | 1663 | 10.94 192 15.77 203 2354 | 99 | 16.68 | 188 | 3455 | -
Hartstone-100 | 1654 | 2188 | 26.25 242 35.34 | 277 38.91 66 | 21.11 | 139 | 58.13 | -

7 Related Work

In this section we briefly discuss features of other ASP system. Smodels uses several sophisticated inference
rules for characterizing answer sets, during the binary search, it chooses an atom which maximizes the current
partial model and restricts look-ahead by removing some unassigned atoms if they have been derived during
consistency checking. DLV is designed and optimized for disjunctive logic programs!®??, this may explain why
DLV appears not so good during the above experiments since all programs are not disjunctive. Several heuristics are
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incorporated into DLV, one of these heuristics looks close to ours, however, the most important difference is that
the heuristics in DLV do not concern the heads at all, while in our heuristic the heads do contribute to the evaluation
function. For restricting the look-ahead, DLV defines so-called look-ahead equivalent literals, i.e. if two literals are
look-ahead equivalent, then it is sufficient to only look one of them thus avoiding unnecessary looking.
Nomore++2% is an operator-based system, it adopts several semantics operators to compute answer sets and treats
heads and bodies as equitably computational objects. It follows that its look-ahead not only perform on atoms but
also on bodies, Ref.[20] shows that this hybrid look-ahead may save exponentially many choices on some instances.
The heuristics in Nomore++ are operator-based and runtime configurable, by combing different semantics operators
with choice operator, Nomore++ could enable several heuristics during the computation. It is worth to mention
some SAT-based ASP systems like®®], which compute answer sets by SAT solvers. Generally speaking, SAT-based
ASP systems are more efficient than the systems shown above, however, SAT-based ASP systems do not concern
any ASP heuristics or implementation techniques at all, thus beyond the scope of this paper.

8 Conclusions and Future Directions

We present an ASP system called LPS, which employs a bottom-restricted look-ahead procedure together with
an effective cycle breaking heuristic. The experimental results show that in phase transition hard-job-regions, LPS
generally performs better than other ASP systems, i.e. LPS is good at solving random hard programs to some extent.
Further, LPS with DVF (dynamic variable filtering) appears to be an efficient ASP system in terms of search tree
size, this means DVF is theoretically a good approach for reducing search space.

It is worth to point out that random hard phenomena get more attention in recent years, they are believed to
have strong connections with cryptography® (hard random propositional formulas or logic programs could be
considered as one-way functions). Since LPS is good at solving random hard instances, it could be applied to the
area of cryptography in addition to real-world applications. Our future work will focus on improving LPS, some
advanced techniques like conflict recording'®!, non-chronological backtracking!?® will be added, and various
heuristics for real-world applications will also be studied in LPS.
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