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Abstract:  Two algorithms for evaluation of regular quad-mesh interpolatory subdivision surfaces are proposed. 
Algorithms are designed based on the parametric m-ary decomposition and construction of matrix sequence. The 
weights of the control points on the initial mesh can be obtained, through direct computation of the basic function 
values by multiplying the finite matrix sequence corresponding to the decomposition number sequence. Algorithm-I 
is based on 2D subdivision masks while the other is based on tensor-product. Numerical experiments show that the 
algorithms are efficient with low storage cost. 
Key words:  interpolatory subdivision scheme; evaluation; matrix sequence; parametric m-ary decomposition; 
 tensor-product 

摘  要: 提出了两种正则四边形网格插值细分曲面的求值算法.算法基于参数 m-进制分解和构造矩阵序列,通过

参数分解数列对应的矩阵乘积得到基函数值,得到初始网格上对应控制点的权值,从而实现插值细分曲面求值.算法

1 基于 2D 细分掩模,算法 2 基于张量积.数值实验表明,算法高效且低存储. 
关键词: 插值细分格式;求值;矩阵序列;参数 m-分解;张量积 

The recursive subdivision scheme produces a visually pleasing smooth surface in the limit by repeating 
refinement through a fixed set of rules on a user-specified control mesh. In general, it’s difficult to evaluate an 
arbitrary point on the limit subdivision surface. But in many applications such as fitting, reparameterization and 
resampling, it is required to evaluate points on the subdivision surfaces at an arbitrary domain location. 
                                                             

∗ Supported by the National Natural Science Foundation of China under Grant No.60673006 (国家自然科学基金); the Program for 

New Century Excellent Talents in University of the Ministry of Education of China under Grant No.NCET-05-0275 (国家教育部新世纪

优秀人才支持计划); the INBRE Grant (5P20RR01647206) from NIH, USA 
Received 2007-04-30; Accepted 2007-11-23 



 

 

 

苏志勋 等:基于参数分解的正则四边形插值细分曲面的快速求值 19 

 

The study on evaluation of subdivision surfaces begins with J. Stam’s work which focused on the analytic 
expression for Catmull-Clark and Loop subdivision surfaces[1,2]. Both of above subdivision schemes are 
approximating, which are derived from bi-cubic B-spline and 3-direction quartic box-spline respectively. Afterwards 
some researchers have done more work on the evaluation of the subdivision surfaces generated by approximating 
schemes[3−5] with the aid of eigenbasis functions, spline theory, special techniques around extraordinary points and 
etc. 

The interpolatory subdivision scheme is widely used due to its behavior of preserving old vertices on the initial 
mesh. 1-4(binary) and 1-9(ternary) splitting schemes are two kinds of classical schemes. Butterfly scheme for 
triangular meshes (Dyn, et al.[6]; Zorin[7]) and Kobbelt’s interpolatory scheme for quadrangular meshes (Kobbelt[8]; 
Li, et al.[9]) are motivated by a 4-point binary interpolatory subdivision scheme (Dyn, et al.[10]). Ternary 
interpolatory subdivision scheme for triangular meshes (Hassan, et al.[11]) and ternary subdivision scheme for 
quadrangular meshes (Li, et al.[12]) are derived from an interpolatory subdivision for curves(Hassan, et al.[13]). 
Unlike approximating schemes, the geometry of the limit surface obtained via interpolatory subdivision schemes 
does not have closed-form analytic expression even for a regular mesh, so it is very difficult to evaluate limit 
surfaces generated by the interpolatory schemes. In previous work we have presented an algorithm for evaluation of 
univariate interpolatory subdivision curves based on parametric m-ary decomposition and construction of matrix 
sequence. In this paper, an extended algorithm and a modified algorithm to evaluate interpolatory subdivision 
surfaces for regular quadrangular meshes will be discussed. 

In Section 2, we describe the preliminary knowledge on the quad-mesh interpolatory subdivision schemes. 
Section 3 presents the detailed formulation of the algorithm for evaluating the regular quad-mesh interpolatory 
subdivision surfaces based on the 2D subdivision masks. Section 4 gives a modified algorithm based on the 
tensor-product behavior corresponding to the subdivision schemes. The numerical examples and results are 
presented in Section 5. 

1   Preliminaries 

Subdivision surfaces are defined by iteratively refining an initial mesh 0M so that the sequence of increasingly 
faceted meshes 1M , 2M , … converge to some limit surface M ∞ . Each subdivision scheme S is associated with a 
mask { : }sa a R Zα α= ∈ ∈ , where s=1 in the curve case and s=2 in the surface case. The (stationary) subdivision 

scheme is a process which recursively defines a sequence of control points { : }k k sP p Zα α= ∈ by a rule of the form 
with a mask { } si i Z

a a
∈

= , 

 1 , {0,1,2,...}
s

k k
M

Z

p a p kα α β β
β

+
−

∈

= ∈∑  (1) 

where M is an s s× integer matrix such that lim 0n
n M −

→∞ = . The matrix M is called a dilation matrix. Binary (or 

dyadic) and ternary subdivision schemes are schemes with the matrices M=2I and M=3I, respectively, where I is 
the s s× identity matrix. For the sake of simplicity, we only consider the symmetric stationary interpolatory 
schemes[14,15]. Then we can get 
Interpolatory: 0 1, 0,if 0Ma a β β= = ≠ ; 

Symmetric: i ia a−= .The width of support is 2N + 1, such that { , }N Nβ ∈ − , where , ,sN Z M mI m Z+∈ = ∈ . 

Let E be a complete set of representatives of the distinct cosets of /s sZ MZ . Then sZ is the disjoint union 
of ,sMZ Eγ γ+ ∈ . Also, it is easy to know that the set : ,n sM Z n Nα α− ∈ ∈ is dense in sR . 

In general, the subdivision scheme S here converges uniformly, that is 
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s

M
Z

a Eγ α
α

γ−
∈

= ∈∑  (2) 

We take the ternary subdivision schemes as an example. For the univariate case, with a dilation matrix 
3M m= = , Hassan, et al.[13] have proposed the 4-point scheme 

 1
3 , {0,1,2}k k

i i j j
j Z

p a p i+
−

∈

= ∈∑  (3) 

with the rule 
1

3 ,k k
i ip p+ =  
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1
3 1 1 3
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k k
i j i j

j
p a p+

+ + −
=−

= ∑  (4) 

1
1

3 2 2 3
2

k k
i j i j

j
p a p+

+ + −
=−

= ∑ . 

And the mask of the ternary subdivision scheme is 5 5
5 3 0 2 1 1 2 0 3 5{ } { , ,0, , ,1, , ,0, , }ka α α α α α α α α− −= , where 

0 / 6 1/18α µ= − − , 

1 / 2 13/18α µ= + , 

2 / 2 7 /18α µ= − + , 

3 / 6 1/18α µ= − . 

Hassan, et al.[13] showed that the scheme is 2C for 1 1
15 9

µ< < . For the regular quad-mesh, Li, et al. [12] have 

proposed the subdivision scheme with a dilation matrix M=3I, s=2, 

 
2

1
3

k k
i i j j

j Z

p a p+
−

∈

= ∑  (5) 

where {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}i ∈ , with the mask { } { }ij i ja a a= ⋅ . Li, et al.[12] showed that 

2C for 1 1
15 9

µ< < in the regular case. Fig.1 illustrates the refinement process and control points associated with a 

given face F. Black points denote new face vertices, and gray points denote new edge vertices. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Coding method of the control point set 
0

P associated with the given face F 
The symmetric stationary subdivision scheme S with a mask a, satisfies the following refinement equation 
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 ( ) ( )
N

S j S
N

t Mt jφ α φ
−

= −∑  (6) 

where , ,s sN j Z t R∈ ∈ . 
The limit basis function ( )tφ associated with S can be obtained by refining the following vector with the mask 

{ }a  
..., ( 1,0),...,( 1,0),(0,1),(1,0),..., ( ,0),...N N− + −  

Firstly, we consider the univariate case. For 2K points m-ary subdivision scheme S, which satisfies refinement 
equation (6) with s = 1, we define 
 : 4 2L K= −  (7) 

And we construct square matrices of size L 

 (1 ) / 2( ) ,l ij L L ij mi j l L mT T T a× − + + −= =  (8) 

where 0,1,..., 1l m= − . 

For the regular quad-mesh subdivision scheme S obtained from above univariate case, which satisfies 

refinement equation (6) with s = 2, we construct square matrices of size 2L  
 2 21 2, ( )l l L L

T Tηξ ×
=  (9) 

where 1 2, 0,1,..., 1l l m= − . We decomposeη and ξ as follows: 

1 1* ( 1)L i jη = − + ; 2 2* ( 1)L i jξ = − + , 

and denote vectors 1 1 2 2 2 1( , ),( , ),( , ),( , )i j i j l l L L by , , ,l Lη ξ respectively, and then
1 2,( )l lT ηξ is defined as 

 
1 2, (1 ) / 2( )l l m l m LT aηξ η ξ− + + −

=  (10) 

We define the initial vector in the case of s = 1, 

( ) ( ( / 2 1 ),..., ( ),..., ( / 2 ))Tt L t t L tΦ φ φ φ= − + + + , (0) ( ( / 2 1),..., (0),..., ( / 2))TL LΦ φ φ φ= − + , 
and in the case of s = 2, the initial vector 1 2( , )t tΦ  of dimension L2 is defined as 

1 1 1 2 1 1 1 2( ( , ), ( , 1 ),...,L t L t L t L tφ φ+ + + + + 1 1 2 2 1 1 1 2( , ), ( 1 , ),...,L t L t L t L tφ φ+ + + + +  

1 1 2 2 1 1 1 2( 1 , ), ( 2 , ),...,L t L t L t L tφ φ+ + + + + + 2 1 1 2 2 1 2 2( , ), ( , ))TL t L t L t L tφ φ+ + + + , 
where 1 / 2 1L L= − + and 2 / 2L L= . (0,0)Φ is defined as 

1 1 1 2 1 1 1 2 2 1 2 2( ( , ),..., ( , ), ( 1, ),..., ( 1, ),..., ( , ),..., ( , ))TL L L L L L L L L L L Lφ φ φ φ φ φ+ + . 

Then for an arbitrary parameter t, we can get the following conclusion from the refinement equation (6), 

 
1 2

1 1 2 2
, 1 2, ( , )l l

t l t l T t t
m m

Φ Φ+ +⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (11) 

where 1 2, 0,1,..., 1l l m= − , and the matrix
1 2,l lT is defined by equation (10). 

For an arbitrary parameter 2[0,1)t ∈ , we decompose it in the m-ary system as follows: 

 1 1 2 2
1 1

;j j
j j

j j
t k m t k m

∞ ∞
− −

= =

= =∑ ∑  (12) 

and sequences 1{ }jk and 2{ }jk can be obtained, where {0,1,..., 1}.ijk m∈ −  

By defining the operator σ as 

 1
1

2
, 1,2j

i i i ij
j

t t k m k m iσ
∞

− −

=

= − = =∑  (13) 

we have 

 
1,1 2,1,

1
( ) ( )k k

i
t T tΦ Φ σ

∞

=

= ∏  (14) 

Using equations (12), (13) and (14) recursively, we get 
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1, 1 2, 1,

1
( ) (0),  

n i n i

n

k k
i

t T nΦ Φ
− + − +

=

= → ∞∏  (15) 

2   Evaluation Algorithm-I 

Now we describe the evaluation problem precisely. Given a face Fj on the control quad-mesh and a point in the 
face Fj with parameters 1 2( , )t t , where 1 2, [0,1)t t ∈ , find the value of the subdivision surface 1 2( , )f t t at this point 

corresponding to the subdivision scheme S. 
The limit surface generated by S can be written in terms of the basic limit function as[3] 

 0 0( ) ( )j S
j

S P t p t jφ∞ = −∑  (16) 

where 2
1 2( , ) ,Tt t t j Z= ∈ , and 0 0{ }jP p= is the initial control point set. 

By the finite support of S and its symmetric property, we can get the limit surface corresponding to the face jF , 

 
/ 2 / 20 0

/ 2 1 / 2 1
( ) ( )

L L

Sj
L L

S P t p t jφ∞

− + − +

= −∑ ∑  (17) 

where
0 0

,{ , , [ / 2 1, / 2]}i jP p i j L L= ∈ − + is the control points vector corresponding to F, and L is defined by the 

equation (7). The function values 2( ), [ / 2 1, / 2]S t j j L Lφ − ∈ − + can be obtained from equation (15). 

Now, we give the evaluation algorithm-I as follows. 
Algorithm-I: 
Step 1. For the subdivision scheme S satisfying the equation (6), we construct m m× square matrices 1, 2l lT via 

equation (9); 
Step 2. Given parameters 1 2( , )t t , where 1 2, [0,1)t t ∈ , we decompose them in the m-ary system by equation (12), 

and get the number sequence 1 2 1{ , }n
i i ik k = , where n represents the given depth; 

Step 3. The matrix T is constructed by
1, 1 2, 1,

1
n i n i

n

k k
i

T T
− + − +

=

= ∏ ; 

Step 4. The column ( 1) / 2L L − of the matrix T corresponds to the basis function 

values 2( ), [ / 2 1, / 2]S t j j L Lφ − ∈ − + , and we denote 

21, ( 1) / 2 , ( 1) / 2
: ( ,..., )L L L L L

A T T− −
= ; 

Step 5. The location of 1 2( , )t t in the limit surface corresponding to S can be obtained,
0

1 2( , )f t t AP= , where
0

P is 
defined as 

 
1 1 1 1 2 2

0 0 0 0
, 1, 2 ,( , ,..., )T

L L L L L LP p p p+ +=  (18) 

where 1 / 2 1L L= − + and 2 / 2L L= . In the case of ternary quad-mesh subdivision schemes (Li, et al.[12]), Fig.1 

illustrates the details of control points
0

P corresponding to face F. 

3   Evaluation Algorithm-II 

In this section, we will deal with regular quad-mesh interpolatory subdivision schemes constructed based on 
tensor-product such as the schemes proposed by Kobbelt[8] and Li, et al.[12]. 

Based on the limit function Sφ of a convergent univariate subdivision scheme S, the basic limit function of the 

related tensor-product scheme S S× can be constructed as 
 1 2 1 2( , ) ( ) ( )S S S St t t tφ φ φ× =  (19) 
Then, the limit surface generated by S S× from the initial control points P0 is 
 

2

0 0
1 2 , 1 2

( , )

( ) ( , ) ( ) ( )i j S S
i j Z

S S P t t P t i t jφ φ∞

∈

× = − −∑  (20) 
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Consequently, we give the algorithm-II based on the tensor-product. Firstly we can get the / 2
1 / 2 1{ ( )}L

S Lt iφ − +−  

and / 2
2 / 2 1{ ( )}L

S Lt jφ − +− , then have the 1 2{ ( , ) : , [ / 2 1, / 2]}S S t i t j i j L Lφ × − − ∈ − +  via the equation (19). 

The evaluation algorithm-II is given as follows. 
Algorithm-II: 
Step 1. For the univariate subdivision scheme S satisfying the refinement equation (6), where m Z∈ . We 

construct m square matrices lT via equation 

( 1) / 2( ) ,l ij L L ij mi j l L mT T T a× − + + −= = ; 

Step 2. Given parameters 1 2,t t where 1 2, [0,1)t t ∈ , we decompose them in the m-ary system via equation (12), 

and get the number sequences 1 1{ }n
i ik = , 2 1{ }n

i ik = , where n represents the given depth; 

Step 3.  The matrices 1T , 2T are constructed by
1, 1 2, 1

1 1
1 , 2

n i n i

n n

k k
i i

T T T T
− + − +

= =

= =∏ ∏ ; 

Step 4. The column / 2L of the matrices 1T , 2T corresponds to the basis function values  

1( ), [ / 2 1, / 2]S t i i L Lφ − ∈ − + ; 2( ), [ / 2 1, / 2]S t j i L Lφ − ∈ − +  
respectively, and we denote 

1, 1, / 2 , / 2 1, 1, / 2 , / 21 : ( 1 ,..., 1 ), 2 : ( 2 ,..., 2 )L L L L L L L LA T T A T T= = . 
Then the weight vector A is defined as 

1,1 1,2 2,1 ,: (( 1 2) ,( 1 2) ,..., ( 1 2) ,...,( 1 2) )T T T T
L LA A A A A A A A A= . 

Step 5. The location of 1 2( , )t t in the limit surface corresponding to S S× can be obtained,
0

1 2( , )f t t AP= , 

where
0

P is defined by equation (18). 
 

 
 
 
 
 
 
 
 
 

Fig.2  The quad-mesh data for resampling (2500 vertices, 2401 faces) 

4   Numerical Examples 

By taking quad-mesh ternary interpolatory subdivision[12] scheme as the subdivision example, we compare the 
time-consuming performances of the dynamic stencil method[16] with that of the algorithms proposed in this paper. 
All the computations have been preformed on a Pentium(R) 4 CPU 2.40GHz PC by using VC++6.0 codes based on 
half-edge data structure. Fig.2 presents a regular quad-mesh on which we implement resampling with different 
evaluation algorithms. 

Table 1  Runtime of algorithm based on dynamic stencil method 
Number Subdivision depth Runtime (ms) Errors 

100 5 3 625 10−3 
 10 7 641 10−5 
 15 11 704 10−8 

Table 1 gives the runtime results corresponding to the dynamic stencil subdivision evaluation method with 
different numbers of sampling points, subdivision depths and error estimation (The error here (hereafter) is defined 

as 1 2 1 2 2( , ) ( , )t t t t′ ′− , where 1 2( , )t t denotes the given parameter, 1 , , 1,2n j
i j i jt k m i−

=′ = =∑ , and n denotes subdivision 
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depth. For the ( 1)kC k ≥ subdivision schemes, the error stated above can reflect the accuracy of the algorithms). 
 The method dynamically constructs the 2-ring of the face F with the similar idea in[16] which deals with Loop 
subdivision scheme. Most of operations are dependent on the mesh data structure. 

Table 2 shows the runtime results corresponding to algorithm-I with different numbers of sampling points and 
subdivision depths respectively, where algorithm-I is based on 2D subdivision masks. From Table 2, we can find 
that algorithm-I is more efficient than the dynamic stencil method for its static processing method independence of 
mesh data structure. 

Table 2  Runtime of algorithm-I based on 2D subdivision masks 
Number Subdivision depth Runtime (ms) Errors 

1 000 5 406 10−3 
 10 922 10−5 
 15 1 437 10−8 

10 000 5 4 140 10−3 
 10 9 297 10−5 
 15 14 453 10−8 

Table 3 shows the runtime results corresponding to algorithm-II based on tensor-product. In this case, much 
more sampling points are evaluated. From Table 3, we find that algorithm-II performs even better than algorithm-I, 
for its small matrices 6 6× with less storage. 

Table 3  Runtime of algorithm-II based on tensor-product 
Number Subdivision depth Runtime (ms) Errors 
10 000 5 31 10−3 

 10 78 10−5 
 15 109 10−8 

100 000 5 422 10−3 
 10 812 10−5 
 15 1 203 10−8 

5   Conclusions 

In this paper, we have demonstrated two algorithms for evaluating subdivision surfaces generated by regular 
quad-mesh interpolatory subdivision schemes. Algorithms proposed in this paper are independent of the mesh data 
structure, and most of the operations in our algorithms are the calculations of the finite matrix sequences. Therefore, 
many exhausting works such as computing the neighborhoods are avoided. Our algorithms can be implemented 
easily with low storage. The numerical results show that they are more efficient compared with the dynamic stencil 
subdivision evaluation method. Especially, algorithm-II based on tensor-product has more advantages as mentioned 
in section 5. Algorithm-I can be generalized to non-symmetric or non-tensor-product quad-mesh interpolatory 
subdivision schemes. However, algorithms proposed in this paper can only be implemented for the regular 
quad-mesh case. 

For the irregular mesh case, the evaluation near extraordinary points can be carried out by applying the 
subdivision process locally via the dynamic stencil method until the evaluation point has a sufficiently large regular 
neighborhood. 

In the future work, we will consider the question of evaluation derivatives of surfaces generated by 
interpolatory subdivision schemes and more efficient evaluation algorithms to process arbitrary topology mesh. 
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