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Abstract: The notion of quantum secure direct communication (QSDC) has been introduced recently in quantum
cryptography as a replacement for quantum key distribution, in which two communication entities exchange secure
classical messages without establishing any shared keys previously. In this paper, a quantum secure direct
communication scheme using quantum Calderbank-Shor-Steane (CSS) error correction codes is proposed. In the
scheme, a secure message is first transformed into a binary error vector and then encrypted (decrypted) via quantum
coding (decoding) procedures. An adversary Eve, who has controlled the communication channel, can't recover the
secrete messages because she doesn't know the deciphering keys. Security of this scheme is based on the assumption
that decoding general linear codes is intractable even on quantum computers.
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1 Introduction

Quantum key distribution provides a novel way to obtain ultimate security based on quantum mechanics, which
cares about agreeing classical keys between two communication entities over quantum channel!®. Different from
qguantum key distribution, quantum secure direct communication permits important messages to be communicated
directly without establishing a random shared key to encrypt them. QSDC can be used in some specia
environments, with an example where it is difficult to establish a session key between two communication parties.
As a secure QSDC scheme, it requires that the secure messages encoded in the quantum states should not leak to an
eavesdropper Eve even if she has controlled the communication channel. A “good” QSDC scheme also expects that
no additional classical messages are needed to exchange between communication entities except the encoded
quantum messages.

Several QSDC protocols have been addressed recently. In 2002, Beige et al. proposed a QSDC scheme based
on sigle-photon two qubit states’?. In their scheme, the secure message can be read only after a transmission of an
additional classical message for each qubit. Bostrém and Felbingeer addressed a Ping-Pang QSDC protocol™® using
Einstein-Podolsky-Rosen (EPR) pairs as quantum information carriers, in which the secure messages can be
decoded during the transmission and no final transmission of additional information is needed. However, Wojcik
proved that, in this scheme, Eve can get a part of the secure message with some probability, especially in a noisy
quantum channel. Recently, Deng et al. put forward a quantum one-time-pad based QSDC scheme!®, in which
batches of single photons were used to serve as a one-time-pad to encode the secret messages. However, al the
existed QSDC schemes need to publicize some additional classical messages to check out whether there exist
eavesdroppers over the quantum communication channel.

In this paper, we propose a new QSDC scheme using quantum CSS cades, after the initials of the inventors of
this class of codes. In the proposed scheme, we suppose that the channel between communication entities is
noiseless. In this scheme, the receiver Bob sends some quantum states encoded using quantum CSS codes. Alice
transforms the secure messages into some error vectors and applies these errors on the qubits and sends them to
Bob. Bob receives the messages and recovers the secure messages. Security of this scheme is based on the fact that
decoding an arbitrary linear code is NP-hard and Goppa codes have efficient decoding algorithm.

2 Preliminaries

2.1 Quantum CSS codes®™

The constructions of quantum CSS codes rely heavily on the properties of classical error-correcting codes.
Here, we first review the basic definitions of binary classical linear codes. Let's consider vectors and codes over the
field F; including two elements, one and zero. The number of one'sin a binary vector v over F; is called Hamming
weight, noted as w(v). Hamming distance d(v,u) between two binary vectors v and u is w(v+u), which denotes the
number of bits differing from each other between v and u. A binary linear code C is an [n,K] linear code over the
finite field F,, or an [n,K] code, for short. If C has minimum distance d, which denotes the minimum distance
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between two distinct codewords, then C is called an [n,k,d] linear code over F,. A linear code C is always specified
by an n by k generator matrix G whose entries are all zeroes and ones. The generator matrix G maps k bits of
information to a set of binary vectors of length n, called codewords. Binary linear codes can be alternatively (but
equivalently) formulated by so called parity matrix, which is used to perform error-correction. The parity matrix H
of alinear code [n,K] is an (n—k)xn matrix such that H,=0 for all those and only those vectors x in the code C. The
rows of H are n—k linearly independent vectors, and the code space is the space of vectors that are orthogonal to all
of these vectors.

A qguantum error correcting code (QECC) Q:[[n.k,d]] is a 2%dimensional subspace of the Hilbert space c” .t
is a way of encoding k-qubit quantum states into n qubits (k<n) such that any error in s[%} qubits can be

measured and subsequently corrected without disturbing the encoded states. d is called the minimal distance of Q.
Quantum CSS codes can be constructed by using classical linear codes.

Theorem 11, Suppose that there exist two classical binary linear codes C;=[n,ky,d1],C,=[n.k,,d2], and C;* C,
(so that n<k;+k;). Then there exists a QECC Q:[[nk =k +k,—n,min{d;,d,}]]. A set of its basis states can be
expressed as

1
|%)=Th > lw+viweC,/C (1)
27 VEClL

Let G;,H; be the generator matrix and parity check matrix of C; respectively, (i=1,2). Without loss of generality,

H
we may assume that G, —[ Dlj , here therank of D isk =k, +k, —n. Then each k-qubit basis state

m)=m,.... mg(me F,) 2
can be encoded into a quantum codeword
1 1
l6)=— 2 IV+m-D)=—— > |v+m~D(1)+...+mD(k)> ©)
27 ngf 27 VeClL

where D? is the j'th row of D, 1<j<k.
Quantum errors will occur when quantum states are transmitted over quantum channels. There are three basic
errors on a qubit: bit error, phase error and their composition, which can be described by Pauli matrices

[O 1) [1 0] (O —ij
O = 10, = ’ O—y =1 (4)
10 0 - i 0

For any ac{x\y,z}, r=(ry,....r)e F,', let ol''=6l®...@ "  where

w1 )1, if =0
& ‘{aa, if 1 -1 ®)

respectively:

[X] 5[Z

ol@, here X=(x1,....x), Z=(%,...z,)eF) .For

[X] ;2]
x Oz -

Then every error on n qubits can be represented ase=o;

X

convenience, we also use binary vector e=(X|Z) to describe the error e=o;

2.2 Goppa codes

Goppa codes are an important class of linear codes, some of which can meet the Gilbert-Varshamov bound.
Goppa codes have been widely used to construct public-key encryption systems and message authentication codes
since they have a fast decoding algorithm and a large number of nonequivalent classes'”. Here we only consider
binary Goppa Codes.
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Definition 1. Suppose g(2) is a polynomial of degreet over finite fields Fon-Let
L ={¥o 71V 1} < Fy (6)

such that |L|=n and g()=0 for 0<i<n-1.Then the Goppa code /{L,g(2)) with Goppa polynomial g(2) is defined to be
the set of codewords

n-1
%=%&w&oeq

S _omod g(z)} @)
i=0 277

From the above definitions, it's easy to know that Goppa code 71L,g(2)) is uniquely determined by g(z) and L.

It can also be proved that 7{L,g(2)) has parameters [n,k>n—mt,d>t+1]™*Y. By some computing results over finite

fields we know that Goppa codes have a large number of nonequivalent classes, which makes it possible to

construct cryptosystems by using Goppa codes.

3 TheProposed Quantum Secur e Direct Communication Scheme

This section describes a QSDC scheme using quantum CSS codes introduced in Section 2. In the scheme, Alice
transforms a secure message p into a binary error vector and then encrypts it via quantum coding procedures. Bob
can recover the message because he has the fast decoding algorithm of the error correction codes. The scheme is
specified as follows.

Let C=71L;,8i(2)=[n,k;,d;] (i=1,2) be both binary Goppa codes such that C;" C,, d=min{dy,d;}, the Hamming

weight of the error vectors t= L%J , k=Kk +k,—n. We assume that the quantum channel used in this scheme is

noiseless channel.
Step 1. Encoding

H
Bob randomly chooses a generator matrix G; and parity check matrix H; of C; (i=1,2) such that G, :[ Dlj'

here the rank of D isk = k; + k, —n.He then randomly prepares a basis state |m) such that me F) and encodesiit into
|c) using quantum CSS codes Q according to equation (3). Bob acts some error €=(X'|Z’) on |c) as

| " v+m-D+X") (8)

2 VeClL
Such that w, (€) SB} t= {mm{dl,dz} l} d; and d, are defined as the same as in Theorem 1. Bob keeps the

matrix G;,C;,D (i=1,2) and the bits string €, m as his private keys and sends |y) to Alice over public quantum
channel.

Step 2. Encryption
Suppose that Alice has a privacy message p in hand and wants to transmit it to Bob securely. She firstly applies

=w,(e") < {12} . Alice

receives Bob's qubits | ) and applieserror €” onthem as

V)=€ )= g T D wrmDaX+ X" ) ©

2 2 veCl

Alice sends | /') back to Bob.
. (N
For quantum CCS codes, there are 3 .[t"J error vectors whose Hamming weight is t”. Borrowing the idea

from Ref.[12], we can construct one-to-

Z")
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. (N
and integer p if they satisfy 0<p<3' (t”j :

513

Then, an algorithm can be devised to transform any integer p described above into a quantum error vector €
using the order-preserving mapping induced by the lexicographic order of the vectors and the natural order of the

integers.
Algorithm 1.
se|p/3 [iuetivep
0« v-3 -\_p/3‘"J
fori=1,...,t"{
if @>2.3™" then {
b=2; u«1; vi«<1}
eseif 3™ '<p<2.3™

then {

bi«-0; ui«0; vi<1;}
i=1

for j=1,...,N{

" L

S« [s—[Nt: jj}t" <« (t"-D);

else xj7<—0;zj7<—0;

}
Step 3. Decoding

N =i
if sz[ j] then X/ < u;zf Vi «i+1;

Let H®,H{ represent the i’th row of H, respectively, 1<i<n-k,1< j<n-k,. Bob receives the guantum

state |y’) and measures the eigenvalues of aLHl(')] and o—LHg)] (say (-1)* and (-1)9, z(i),x(j)eF,) respectively.

After that, Bob obtains the syndromes Y; and Y5, i.e.
=1y a<i <nakg
o=y 1< <n-k,
Y1=(z(2),...,2(n-kK7)), Y>=(x(1),...,x(n-ky))
Bob computes Z=(z,...,2,), X=(Xg,..-,X,)€ F,' such that
HyZ'=Y,
HoX'=Y,

(10)

(11
(12)

(13)
(14)

Bob obtains the error vector e=(X|Z) and recovers |m') by decoding the quantum codes |y'). He measures |m’)
using computationally basis {|0),/1)} and compares the measurement result m’ with his original bits m. If m=m’, he

believes that eavesdropping happens in the quantum channel. Otherwise, he computes €" = (X"

performs Algorithm 2 to recover Alice’s secrete bits p.
Algorithm 2.
ue—t", i«0;
for j=1,...,N{
b,=0;
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it (X=Dv(Z =1 then{

N_ i
s<—[s+( o Jj}t'&—(t”—l);

if (x{=D)A(z]=1 then{
bi:2;}
elseif (x{ =) A(z]=0) then{
bi=l;}
else b=0;}
i=i+1;}
t i .
k= Z:izoq 3
p=s3"+k.

4 Analysis

4.1 Correctness

Theorem 2(Correctness). Supposing all the entities involved in the scheme follow the protocol, then Bob
obtains Alice's secret messages p correctly.

Proof: The correctness of this scheme can be easily seen by inspection. In the absence of intervention and noise
over quantum channel, Bob and Alice add some errors € and €" on the encoded messages respectively in the
encoding and encryption phases. Because the summation of the numbers of error positions of € and €" is not
larger than t, which can be corrected without disturbing the quantum states. Bob can obtain Alice's secret message p
by computing €= €'+e and performing Algorithm 2 in the end of the decoding phase. By comparing the decoded
bits m' with m, Bob can detect the existence of eavesdropper in the communication channel.

4.2 Security against eavesdropping

In this subsection, we consider an adversary Eve who has controlled the quantum channel linking Alice and
Bob and tries to recover the plaintext p that Alice has sent to Bob. Supposing Eve knows the parity check matrix H;
and H,, she can obtain the error vectors if she can compute X and Z from Egs.(13),(14). We know that resolving
Egs.(13),(14) equals to the problem of decoding general linear codes, which is an NP-C problem!*?. Though
guantum algorithms are shown exponentially faster than classical ones when coping with some problems, such as
integer factor and discrete logarithm problem!®®, it is widely believed that NP-C problems are still intractable by
quantum (probabilistic) polynomial-time Turing machines*”. We know that the Goppa codes used in the proposed
scheme are uniquely decided by polynomials g(Z) and ordered sets L. Therefore, if Eve wants to get the fast
decoding algorithm of Goppa codes C;,C,, she must find g(z) and L. However the computational complexity of
quantum Grover search algorithm to obtain g(z) and L by the key C,,H; is O((2™n!)Y?), and it is still infeasible to
break this cryptosystem by quantum searching algorithm in polynomial time. In fact, Eve doesn’'t know the matrix
Hi,H, and G, because the generation matrices G;,G, and the parity check matrices Hy,H,, are Bob's private keys.
Therefore, the difficulties of Eve's recovering of the secret messages are at least as decoding the general linear
codes.

The essential difference between this scheme with the EPR protocol, Ping-Pong protocol and one-time-pad
based protocol is that it doesn’t need to establish a quantum entangled channel and doesn’t need to exchange (or
broadcast) any additional classical messages to detect the existence of eavesdropper. In the proposed scheme,
eavesdropping can be detected just by comparing some recovered bits m' and Bob's original bits m.
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5 Conclusions

Error correcting codes have been widely used to construct cryptosystems in modern cryptography. In this
paper, a QSDC scheme is proposed using quantum CSS codes. In the proposed scheme, Alice can securely transmit
some classical messages to Bob over an authenticated quantum channel without establishing any pre-shared keys
and transforming any additional classical information. In this scheme, Alice firstly maps her secure messages to
some error vector and applies this error on the encoded states that Bob sent to her. Eve cannot recover the plaintext
because she knows nothing about Bob's secrete keys. The security of the proposed scheme is based on the fact that
decoding general linear codes is NP-C problem and Goppa codes have efficient decoding algorithm.
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