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Abstract: The notion of quantum secure direct communication (QSDC) has been introduced recently in quantum 
cryptography as a replacement for quantum key distribution, in which two communication entities exchange secure 
classical messages without establishing any shared keys previously. In this paper, a quantum secure direct 
communication scheme using quantum Calderbank-Shor-Steane (CSS) error correction codes is proposed. In the 
scheme, a secure message is first transformed into a binary error vector and then encrypted (decrypted) via quantum 
coding (decoding) procedures. An adversary Eve, who has controlled the communication channel, can't recover the 
secrete messages because she doesn't know the deciphering keys. Security of this scheme is based on the assumption 
that decoding general linear codes is intractable even on quantum computers. 
Key words: information security; quantum cryptography; secure direct communication; quantum error 

correction codes 

摘  要: 量子安全直接通信是继量子密钥分配之后提出的又一重要量子密码协议,它要求通信双方在预先不
需要建立共享密钥的情况下就可以实现消息的保密传输.给出了一个新的量子安全直接通信方案,该方案利用
量子 Calderbank-Shor-Steane(CSS)纠错码和未知量子态不可克隆等性质,方案的安全性建立在求解一般的线性
码的译码问题是一个 NP完全问题、Goppa码有快速的译码算法和量子图灵机不能有效求解 NP完全问题的基
础上.在协议中,发送方 Alice 把要发送的秘密消息转化为一一对应的错误向量,把错误向量加到其接收到的、

                                                             
∗ Supported by the National Science Foundation of China for Distinguished Young Scholars under Grant No.60025205 (国家杰出青年

科学基金); the National Natural Science Foundation of China under Grant Nos.60403004, 60273027 (国家自然科学基金); the Graduate 

Innovation Foundation of Chinese Academic of Sciences (中国科学院研究生创新基金) 
Received 2004-10-12; Accepted 2005-05-25 

 



 510 Journal of Software 软件学报 Vol.17, No.3, March 2006   

 
Bob 编码过的量子态上,并发给接收方 Bob.Bob 利用其私钥,通过测量、解码可以得到错误向量,并可以用相应
的算法恢复出秘密消息.控制量子信道的攻击者 Eve 不能恢复出秘密消息,因其不知道 Bob 的密钥.与已有的量
子安全直接通信方案相比,该方案不需要交换任何额外的经典信息和建立量子纠缠信道. 
关键词: 信息安全;量子密码;安全直接通信;量子纠错码 
中图法分类号: TP309   文献标识码: A 

1   Introduction 

Quantum key distribution provides a novel way to obtain ultimate security based on quantum mechanics, which 
cares about agreeing classical keys between two communication entities over quantum channel[1]. Different from 
quantum key distribution, quantum secure direct communication permits important messages to be communicated 
directly without establishing a random shared key to encrypt them. QSDC can be used in some special 
environments, with an example where it is difficult to establish a session key between two communication parties. 
As a secure QSDC scheme, it requires that the secure messages encoded in the quantum states should not leak to an 
eavesdropper Eve even if she has controlled the communication channel. A “good” QSDC scheme also expects that 
no additional classical messages are needed to exchange between communication entities except the encoded 
quantum messages. 

Several QSDC protocols have been addressed recently. In 2002, Beige et al. proposed a QSDC scheme based 
on sigle-photon two qubit states[2]. In their scheme, the secure message can be read only after a transmission of an 
additional classical message for each qubit. Boström and Felbingeer addressed a Ping-Pang QSDC protocol[3] using 
Einstein-Podolsky-Rosen (EPR) pairs as quantum information carriers, in which the secure messages can be 
decoded during the transmission and no final transmission of additional information is needed. However, Wòjcik 
proved that, in this scheme, Eve can get a part of the secure message with some probability, especially in a noisy 
quantum channel[4]. Recently, Deng et al. put forward a quantum one-time-pad based QSDC scheme[5], in which 
batches of single photons were used to serve as a one-time-pad to encode the secret messages. However, all the 
existed QSDC schemes need to publicize some additional classical messages to check out whether there exist 
eavesdroppers over the quantum communication channel. 

In this paper, we propose a new QSDC scheme using quantum CSS codes, after the initials of the inventors of 
this class of codes. In the proposed scheme, we suppose that the channel between communication entities is 
noiseless. In this scheme, the receiver Bob sends some quantum states encoded using quantum CSS codes. Alice 
transforms the secure messages into some error vectors and applies these errors on the qubits and sends them to 
Bob. Bob receives the messages and recovers the secure messages. Security of this scheme is based on the fact that 
decoding an arbitrary linear code is NP-hard and Goppa codes have efficient decoding algorithm. 

2   Preliminaries 

2.1   Quantum CSS codes[6−9] 

The constructions of quantum CSS codes rely heavily on the properties of classical error-correcting codes. 
Here, we first review the basic definitions of binary classical linear codes. Let’s consider vectors and codes over the 
field F2 including two elements, one and zero. The number of one’s in a binary vector v over F2 is called Hamming 
weight, noted as w(v). Hamming distance d(v,u) between two binary vectors v and u is w(v+u), which denotes the 
number of bits differing from each other between v and u. A binary linear code C is an [n,k] linear code over the 
finite field F2, or an [n,k] code, for short. If C has minimum distance d, which denotes the minimum distance 
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between two distinct codewords, then C is called an [n,k,d] linear code over F2. A linear code C is always specified 
by an n by k generator matrix G whose entries are all zeroes and ones. The generator matrix G maps k bits of 
information to a set of binary vectors of length n, called codewords. Binary linear codes can be alternatively (but 
equivalently) formulated by so called parity matrix, which is used to perform error-correction. The parity matrix H 
of a linear code [n,k] is an (n−k)×n matrix such that Hx=0 for all those and only those vectors x in the code C. The 
rows of H are n−k linearly independent vectors, and the code space is the space of vectors that are orthogonal to all 
of these vectors. 

A quantum error correcting code (QECC) Q:[[n,k,d]] is a 2k-dimensional subspace of the Hilbert space . It 

is a way of encoding k-qubit quantum states into n qubits (k<n) such that any error in 
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measured and subsequently corrected without disturbing the encoded states. d is called the minimal distance of Q. 
Quantum CSS codes can be constructed by using classical linear codes. 

Theorem 1[6]. Suppose that there exist two classical binary linear codes C1=[n,k1,d1],C2=[n,k2,d2], and ⊆C⊥
1C 2 
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Let Gi,Hi be the generator matrix and parity check matrix of Ci respectively, (i=1,2). Without loss of generality, 
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where D(j) is the j′th row of D, 1≤j≤k. 
Quantum errors will occur when quantum states are transmitted over quantum channels. There are three basic 

errors on a qubit: bit error, phase error and their composition, which can be described by Pauli matrices 
respectively: 
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Then every error on n qubits can be represented as [ ] [ ]X Z
x ze σ σ= , here X=(x1,…,xn), .For 

convenience, we also use binary vector e=(X|Z) to describe the error 

n
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2.2   Goppa codes 

Goppa codes are an important class of linear codes, some of which can meet the Gilbert-Varshamov bound. 
Goppa codes have been widely used to construct public-key encryption systems and message authentication codes 
since they have a fast decoding algorithm and a large number of nonequivalent classes[10]. Here we only consider 
binary Goppa Codes. 

  



 512 Journal of Software 软件学报 Vol.17, No.3, March 2006   

 
Definition 1. Suppose g(z) is a polynomial of degree t over finite fields . Let mF

2

 mFL n 2110 },...,,{ ⊂= −γγγ  (6) 

such that |L|=n and g(γi)≠0 for 0≤i≤n−1.Then the Goppa code Γ(L,g(z)) with Goppa polynomial g(z) is defined to be 
the set of codewords 
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From the above definitions, it’s easy to know that Goppa code Γ(L,g(z)) is uniquely determined by g(z) and L. 
It can also be proved that Γ(L,g(z)) has parameters [n,k>n−mt,d≥t+1][11]. By some computing results over finite 
fields we know that Goppa codes have a large number of nonequivalent classes, which makes it possible to 
construct cryptosystems by using Goppa codes. 

3   The Proposed Quantum Secure Direct Communication Scheme 

This section describes a QSDC scheme using quantum CSS codes introduced in Section 2. In the scheme, Alice 
transforms a secure message p into a binary error vector and then encrypts it via quantum coding procedures. Bob 
can recover the message because he has the fast decoding algorithm of the error correction codes. The scheme is 
specified as follows. 

Let Ci=Γ(Li,gi(z))=[n,ki,di] (i=1,2) be both binary Goppa codes such that C ⊆C⊥
1 2, d=min{d1,d2}, the Hamming 

weight of the error vectors t= 
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1d , 1 2k k k n= + − . We assume that the quantum channel used in this scheme is 

noiseless channel. 
Step 1. Encoding 

Bob randomly chooses a generator matrix Gi and parity check matrix Hi of Ci (i=1,2) such that , 

here the rank of D is k k .He then randomly prepares a basis state |m〉 such that m∈  and encodes it into 
|c〉 using quantum CSS codes Q according to equation (3). Bob acts some error e′=(X′|Z′) on |c〉 as 
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t , d1 and d2 are defined as the same as in Theorem 1. Bob keeps the 

matrix Gi,Ci,D (i=1,2) and the bits string e′, m as his private keys and sends |ψ〉 to Alice over public quantum 
channel. 

Step 2. Encryption 
Suppose that Alice has a privacy message p in hand and wants to transmit it to Bob securely. She firstly applies 

an algorithm (Algorithm 1) to transform p into a binary error vector )( ZXe ′′′′=′′  such that 
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receives Bob’s qubits |ψ〉 and applies error e ′′  on them as 
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Alice sends |ψ′〉 back to Bob. 

For quantum CCS codes, there are  error vectors whose Hamming weight is . Borrowing the idea 

from Ref.[12], we can construct one-to-one correspondence between this set of quantum error vectors 
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and integer p if they satisfy 0≤p< 3 . 
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Then, an algorithm can be devised to transform any integer p described above into a quantum error vector e’’ 
using the order-preserving mapping induced by the lexicographic order of the vectors and the natural order of the 
integers. 
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Step 3. Decoding 

Let represent the i’th row of H( ) ( )
1 2,iH H j

22 respectively, 11 ,1i n k j n k≤ ≤ − ≤ ≤ − . Bob receives the quantum 

state |ψ′〉 and measures the eigenvalues of ]  and [ )(
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After that, Bob obtains the syndromes Y1 and Y2, i.e. 
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 Y1=(z(1),…,z(n−k1)), Y2=(x(1),…,x(n−k2)) (12) 

Bob computes Z=(z1,…,zn), X=(x1,…,xn)∈  such that nF2

 H1⋅ZT= TY  (13) 1

 H2⋅XT= TY  (14) 2

Bob obtains the error vector e=(X|Z) and recovers |m′〉 by decoding the quantum codes |ψ′〉. He measures |m′〉 
using computationally basis {|0〉,|1〉} and compares the measurement result m′ with his original bits m. If m≠m′, he 

believes that eavesdropping happens in the quantum channel. Otherwise, he computes )( ZXe ′′′′=′′ , =e+e′ and 

performs Algorithm 2 to recover Alice’s secrete bits p. 
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4   Analysis 

4.1   Correctness 

Theorem 2(Correctness). Supposing all the entities involved in the scheme follow the protocol, then Bob 
obtains Alice's secret messages p correctly. 

Proof: The correctness of this scheme can be easily seen by inspection. In the absence of intervention and noise  
over quantum channel, Bob and Alice add some errors e′ and e ′′  on the encoded messages respectively in the 
encoding and encryption phases. Because the summation of the numbers of error positions of e′ and  is not  e ′′
larger than t, which can be corrected without disturbing the quantum states. Bob can obtain Alice's secret message p  
by computing ′= e′+e and performing Algorithm 2 in the end of the decoding phase. By comparing the decoded  e′
bits m′ with m, Bob can detect the existence of eavesdropper in the communication channel. 

4.2   Security against eavesdropping 

In this subsection, we consider an adversary Eve who has controlled the quantum channel linking Alice and 
Bob and tries to recover the plaintext p that Alice has sent to Bob. Supposing Eve knows the parity check matrix H1 
and H2, she can obtain the error vectors if she can compute X and Z from Eqs.(13),(14). We know that resolving 
Eqs.(13),(14) equals to the problem of decoding general linear codes, which is an NP-C problem[10]. Though 
quantum algorithms are shown exponentially faster than classical ones when coping with some problems, such as 
integer factor and discrete logarithm problem[13], it is widely believed that NP-C problems are still intractable by 
quantum (probabilistic) polynomial-time Turing machines[14]. We know that the Goppa codes used in the proposed 
scheme are uniquely decided by polynomials g(Z) and ordered sets L. Therefore, if Eve wants to get the fast 
decoding algorithm of Goppa codes C1,C2, she must find g(z) and L. However the computational complexity of 
quantum Grover search algorithm to obtain g(z) and L by the key C2,H1 is O((2mtn!)1/2), and it is still infeasible to 
break this cryptosystem by quantum searching algorithm in polynomial time. In fact, Eve doesn’t know the matrix 
H1,H2 and G2 because the generation matrices G1,G2 and the parity check matrices H1,H2, are Bob’s private keys. 
Therefore, the difficulties of Eve’s recovering of the secret messages are at least as decoding the general linear 
codes. 

The essential difference between this scheme with the EPR protocol, Ping-Pong protocol and one-time-pad 
based protocol is that it doesn’t need to establish a quantum entangled channel and doesn’t need to exchange (or 
broadcast) any additional classical messages to detect the existence of eavesdropper. In the proposed scheme, 
eavesdropping can be detected just by comparing some recovered bits m′ and Bob’s original bits m. 
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5   Conclusions 

Error correcting codes have been widely used to construct cryptosystems in modern cryptography. In this 
paper, a QSDC scheme is proposed using quantum CSS codes. In the proposed scheme, Alice can securely transmit 
some classical messages to Bob over an authenticated quantum channel without establishing any pre-shared keys 
and transforming any additional classical information. In this scheme, Alice firstly maps her secure messages to 
some error vector and applies this error on the encoded states that Bob sent to her. Eve cannot recover the plaintext 
because she knows nothing about Bob’s secrete keys. The security of the proposed scheme is based on the fact that 
decoding general linear codes is NP-C problem and Goppa codes have efficient decoding algorithm. 
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