1000-9825/2005/16(02)0194 ©2005 Journal of Software %% 1 % R Vol.16, No.2

OpenMP #ESIEAI 2 FHHRELBMETS I RNEA
AR, #4K, ZRI, IRA

(BERE HHNREESBARR @k SO0, 100084)

Static Analysis of OpenMP Directive Nesting Types and Its Application

CHEN Yong-Jian", SHU Ji-Wu, LI Jian-Jiang, WANG Ding-Xing

(Institute of High Performance Computation, Department of Computer Science and Technology, Tsinghua University, Beijing
100084, China)

+ Corresponding author: Phn: +86-10-82611515 ext 1950, Fax: +86-10-82861400, E-mail: chenyj99@mails.tsinghua.edu.cn

Received 2003-12-18; Accepted 2004-07-21

Chen YJ, Shu JW, Li JJ, Wang DX. Static analysis of OpenMP directive nesting types and its application.
Journal of Software, 2005,16(2):194-204. http://www.jos.org.cn/1000-9825/16/194.htm

Abstract: Because of the rules of dynamic directive nesting and binding, some of the thread context in OpenMP
programs can only be totally determined at runtime. However, by compiling time static analysis, nesting type can be
partly determined and this information can be passed to other compiling phases to guide later translation and
optimizations. Since the binding and nesting may span the procedure boundaries through calls, local and global
analyses are not enough. It is the interprocedural analysis that provides the most required ability. By integrating
information into traditional interprocedural analysis, the nesting type information of procedures is propagated along
call graphs. And later translation and optimization phases can bind this global information with local information
inside the procedure to determine the nesting types at compiling time. The results demonstrate that in typical
science and engineering workload the nesting type is highly determinable at compiling time, and the application of
this information may achieve less runtime overhead and the reduced code size.

Key words: OpenMP; compiler; interprocedural analysis; global nesting type; OpenMP translation

#H B B THRFEIHERE LY TIN5/, OpenMP 425 F 4209 —sk F T LR GEAEEATH Z) 5 8
T A AR T B AT S iE BT 2] 6935 S AT VT VAR oA B AE FiE é?é’waé A X ETAR TFHRFEEN %R
FLHHA ST EEARNNGGFERESHLT TAEATEAR K T BB A By AT I E BT

* Supported by the National Natural Science Foundation of China under Grant No.69933020 (IH 5 [#k Fl 22 3£ 4x)

CHEN Yong-Jian was born in 1977. He is a Ph.D. candidate at the Institute of High Performance Computation, Tsinghua
University. His current research interests include compilation and optimization for high performance computation and high performance
computer architecture. SHU Ji-Wu was born in 1969. He is an associate professor at the Institute of High Performance Computation,
Tsinghua University. His research areas are large scale science and engineering computing, parallel and distributed processing and
software, cluster communication, parallel simulation and SAN. LI Jian-Jiang was born in 1972. He is a Ph.D. candidate at the Institute of
High Performance Computation, Tsinghua University. His current research interests include optimization and performance tuning tools for
high performance computation, parallel algorithm for science and engineering computation. WANG Ding-Xing was born in 1937. He is a
professor and doctoral supervisor at the Institute of High Performance Computation, Tsinghua University. His current research areas are

parallel and distributed computer system.

© kR

http:/ www. jos. org. cn

47Kk 2 :0penMP 45535 &) & B B R A 69 S 047 B) 195

AZ 18] AT 04 A B A B F 09 AR IR AT G S ah W AR & T DMRAF A R AE & A AR A B #ATH
H A By 12 8 5 1TAZ A 69 B 3015 B th O AR SR T A i I 2 A0 3R 4 0 i R R 45 R St o
AR S TUAR ZH B EGHFE TR ERFTIRFEHORELER A TFHAEA i
BARACT A R iR B AT T4 A B AR A KR

KHEIR: OpenMP;%hiF il 42] 47, 4 By # & AL OpenMP #45F

FESEHHES: TP314 SCEKFRIRED: A

1 Introduction

In OpenMP, directives, especially parallel regions, may be lexically nested in other directives according to
some specific rules. This is called nesting rules. Because of nesting and procedure calls, some directives have
semantic relationship with other directives. This is called directive binding. Inside a procedure, the binding happens
according to static scoping rules. In order to ease the parallelization process of sequential programs, the OpenMP
standards!"! introduce dynamic binding and dynamic nesting rules to enable the incremental development feature
and to let the programmers keep their focus on a local procedure other than the global structure of the whole
program. Mainly, dynamic binding and nesting rules specify the necessary behavior of directives when calls occur
and directives are involved in the callee and the call sites of the callers. The binding semantics are implemented
through the cooperation of OpenMP compilers and OpenMP runtime systems.

The following simple example illustrates the case of dynamic nesting and binding (see Code 1). In the
example, parallel region directive 2 is (lexically) nested and bound to directive 1, and directive 3 in function foo() is

dynamically nested and bound to directive 1, through the call to foo at call site 1.

#pragma omp parallel /*1. normal parallel */ foo()
f
{ {
#pragma omp parallel /*2. nested parallel*/ #pragma omp for /*3. orphaned for */
{
} }
foo(); /* call site 1 */ }
¥

Code 1 Dynamic nesting and dynamic binding

The directive structures in OpenMP are executed by threads. According to different contexts, these threads may
be the initial master thread in a sequential execution mode, or in the top level thread team, or in a nested thread
team. These are called the execution mode of code blocks in this paper. Generally, different execution modes stand
for different execution contexts, and maintain different amount of internal data structures, which represent the
context. So making distinction between these execution modes may achieve better performance. This is the
motivation of this paper. Since execution mode closely relates with nesting type, analysis to infer the nesting type is
quite helpful to improve target code quality, both for OpenMP translation and OpenMP optimization.

In this paper, we show that a proper static analysis phase may be quite able to discover this binding and nesting
type information of OpenMP constructs. Since the problem mainly exists because of the existence of calls, analysis
that can handle calls and across procedure boundaries is critical to extract such kind of information. In this paper, an
analysis is introduced based on the traditional interprocedural control flow analysis. When the call graph is built up
when the interprocedural analysis is enabled, additional information collected by a local nesting type analysis is
tagged to call nodes and the information is propagated among call graph to establish a nesting type call graph.

Nesting type information for multiple calls of a specified procedure may then be combined together to
determine the procedure nesting type. Later phases can combine this global information with local information to

determine the directive nesting type accurately.

© hEE

AT hupy/ www. jos. org. cn

196 Journal of Software #AFFIR 2005,16(2)

The information obtained by static analysis can be used to guide later translation and optimizations. There are
several cases where this information can be useful. First of all, by making such distinction between different
binding types, more efficient translation can be done, since less stuff code is required to handle extra contexts.
Secondly, with the extra information, more restrict use cases are assumed, and thus more aggressive optimizations
are possible. Moreover, by summarizing the binding type information of a specific procedure, we can present the
programmer a view of how consistent the procedure is during the parallelization process, and thus can further adjust
the arrangement of OpenMP directives in the program.

This paper is organized as follows. The idea of binding type classification and the algorithms to determine the
binding type at compiling time is introduced in Section 2. In Section 3, applications of this analysis are discussed.

Section 4 comes with comments about related works. In Section 5, the summary is presented.
2 Determining Nesting Types by Compiling time Static Analysis

The problem is to determine how some interested directives, if not all, are nested in the scope of the whole
program. In fact, in most of the cases we are only interested in whether these directives are nested in some parallel
regions. For programs that comprise of many procedures distributed in many files, the task can be viewed as two
subtasks. First we should determine the global context for all the directives in a procedure, i.e., determine how a
procedure (i.e., all calls to the procedure), or every call to this procedure is nested. Then we can use this global
context to determine the nesting type of individual directives in this procedure. Before we can discuss the

algorithms solving this problem, a refinement of these free-used terms is required.
2.1 Nesting types of directives, calls and procedures

For each OpenMP directive in a procedure, it can be lexically nested in some other directives. Since every
parallel region may create a new group of threads, the enclosing parallel region declaration directive is of most
interests. For a given directive, we define the lexical nesting level of this directive as the number of levels of its
enclosing parallel directives. In fact, this definition can be extended to other none-OpenMP constructs, since it may
also make sense to some post-translation optimizations. But since in this paper, mainly the directive translation and
optimizations at directive level are considered, and other constructs can be well related to some directives, we only
consider directive lexical nesting level here. According to the lexical nesting level, directives can be categorized
into three classes.

Definition 1. For a directive with lexical nesting level n, if n=0, the directive is lexically orphaned; if n=1, the
directive is lexically normal; if n>1, this directive is said to be lexically nested.

These lexical properties are also called local nesting types of directives, since they represent how directives are
nested in the scope of the procedure they are in. Since we are considering the global nesting properties of the
directives, this definition must be extended to the scope of the whole program. To simplify the definition, we can
selectively inline related procedures, so that all the nesting parallel directives are now in our scope, and the global
nesting type now turns out to be the local nesting type in the new inlined procedure.

Definition 2. The global nesting level of a directive is the local nesting level of the corresponding directive in
an ideally all-inlined program.

Similarly, the global nesting type can be defined. Different from local nesting type, we add a fourth type called
global undetermined, since in practical the expansion of the program is not always possible because the existence of
loops in call graphs. Because call statements are now in our consideration, the idea of nesting level and nesting type
are extended beyond directives to all statements.

Definition 3. For a statement (or block of statements) with global nesting level N, if N=0, the statement is

© rhiEpk

http:/ www. jos. org. cn

47Kk 2 :0penMP 45535 &) & B B R A 69 S 047 B) 197

globally orphaned; if N=1, the statement is globally normal; if N>1, the statement is globally nested. In cases that
the value of global nesting level cannot be determined, the statement is said to be of a global nesting type of
globally undetermined.

Like the definition of local nesting types, these global nesting properties of statements are called global nesting
types of statements. For calls, the global nesting types form the global nesting-calling context of all statements
contained in the procedure body. Further more, since a procedure may be called at many call sites, the global
nesting types of calls to a given procedure can be combined into a single type. This is called the global nesting type
of procedures in this paper.

For every instance of call to a given procedure, the local nesting types of the directives lexically contained in
are the same, so if we can determine the nesting context of a given call or all the calls to a given procedure, we can

determine the global nesting types of all contained directives.
2.2 Basic idea of nesting type inference

The call relationship of procedures can be represented by a static call graph at compiling time. By combining
the local nesting type information of calls along a specific path in the static call graph, we can determine the global
nesting types of a call that ends this path. This is the basic idea that drives the algorithms in this paper.

Now we take the OpenMP directives into consideration. Figure 1 illustrates the basic idea of the nesting type
analysis. The local nesting information in subroutine a is used to set up the nesting context for calls to subroutines b

and c. These nesting contexts are then used to determine the global nesting types of directives in b and c.

Subroutine a subroutine b subroutine ¢
1$omp parallel 1$omp do 1$omp do

call b 1$omp end do 1$omp end do
1$omp end parallel 1$omp parallel 1$omp parallel
call ¢ 1$omp end parallel 1$omp end parallel
end end end

1
1 1
1 1
, 11 h !
, Call grap ! Q Normal
i | X
: : I/ \‘
i ' \. , Nested
1 1

| | <
/ ~
¥ Y__ A
e X Orphaned
\ Parallel) Parallel
N 7

Fig.1 Inferring nesting types

The framework of the nesting type analysis is given in Fig.2. The nesting type analysis algorithm comprises a
local nesting type analysis, an interprocedural nesting type analysis, and a combination phase. The local nesting
type analysis algorithm is the basic algorithm underlying all three parts: the interprocedural part uses it to step
forward along call graphs, and the combination phase uses it to infer the nesting types for directives in leaf

functions.

© rhiEpk

http:/ www. jos. org. cn

198 Journal of Software #AFFIR 2005,16(2)

1
Whole Procedures ! Translation and
program ! optimization phases
1

S e N S .

Local nesting type analysis

1
1 IPA
-
L Nesting type analysis
Call Dlrectl\fe (combination)
graph summaries

~z ~ _~

Global nesting type analysis E : Nesting type call graph

Fig.2 The framework of nesting type analysis

2.3 Local nesting type analysis

The local nesting type analysis summarizes the directives' nesting information for individual procedures. Since
many OpenMP directives are block-scoped and can be nested, in the IR(intermediate representation) of compiler,
these directives are also represented as regions, and these regions can be further nested. The whole procedure is
organized as a tree with the procedure entry as the root, and the local nesting type analysis works in a top-down and
hierarchical manner beginning with the root node. The algorithm is illustrated using pseudo-code 2. Function
transNT() translates a local nesting level into a nesting type, and function isParallel() judges whether a statement is

a parallel region directive.

procedure GetBlockNestingTypes for each child p of rootNode
rootNode: in, the Root of an IR tree GetBlockNestingTypes(p,newLevel, NTMap)
currentNestingLevel: in, integer endfor
NTMap: out, statements x NestingType endif
begin end
newLevel: integer = currentNestingLevel
tempNT: Nestingtype procedure LocalNTAnalysis
if rootNode is a leaf node then rootNode: in, Root of procedure’s IR tree
tempNT = transNT(currentNestingLevel) NTMap: out, statement x NestingType
NTMap[rootNode]= tempNT begin
else getBlockNestingType(0, newLevel, NTMap)
if isParallel(rootNode) then end

newLevel = newLevel + 1

endif
Code 2 Local nesting type analysis algorithm

2.4 Interprocedural nesting type analysis

With the local nesting type analysis, the interprocedural nesting type analysis works on the static call graph to
infer the global nesting type for interested directives in the whole program. A static call graph can typically be
derived after an interprocedural analysis phase in the compiler.

The Interprocedural nesting type analysis algorithm walks through the static call graph top down in a

ERCRTFIFFIIT https// www. jos. org. en

47Kk 2 :0penMP 45535 &) & B B R A 69 S 047 B) 199

wavefront manner, starting from the main entrance of the whole program. When stepping forward along a specific
path, the algorithm combines the local nesting type information with the global context so far established. The
combination process is described by a state transition model depicted in Fig.3. In Fig.3, local nesting types of
directives in current node (represents a procedure) are represented as states, and the global nesting type of the node

(representing a call or a procedure) is treated as input. The target state is the global nesting type of these directives.

Orphan Orphan
Orphan
Undetermined
Undetermined
Normal
Nested Nested
Undetermined
Normal Normal
Orpahan Orpahan
Nested Undetermined Nested

Undetermined

Fig.3 State transition model for nesting type combination

The global nesting type analysis algorithm is illustrated in pseudo-code (see code 3).
procedure walkCGOneStep procedure walkCG
node: in, Node of call graph entryNode: in, Entry of call graph
NTMap: in, Map of local nesting type NTMap: in, Map of local nesting type
calINTMap: out, Calls x NestingTypes calINTMap: out, Calls x NestingTypes
procNTMap: out, Procedures x NestingTypes procNTMap: out, Procedures x NestingTypes
begin begin
walkCGOneStep(entryNode, NTMap,

calINTMap, procNTMap)

currentNT: NestingTypes
if all incoming edge’s NT available then

procNTMap[node] = combineNT(node) while there are nodes unannotated do

endif
else

procNTMap[node] = undetermined
endif

currentNT = procNTMap[node]

for each edge p from node

callNTMap[p] = STM_NT(currentNT,NTMap[p])

endfor

end

if there are some ready nodes then
select p from the ready nodes
WalkCGOneStep(p, NTMap, calINTMAP, procNTMap)
else
select q from the unannotated nodes
WalkCGOneStep(q, NTMap, calINTMAP, procNTMap)
endif
enddo

end

Code 3 Interprocedural nesting type analysis algorithm

A few functions are used in this algorithm. STM_NT() stands for the state transition model mentioned in Fig.3,

and it simply uses the STM to determine a new global nesting type from the context and the local nesting type.
Function combineNT() is used to combine all the global nesting types of calls to a specific procedure into the

procedure’s global nesting types. The rules are just simple: if all incoming edges of a node have the same nesting

© PR

http:/ www. jos. org. cn

200 Journal of Software #AFFIK 2005,16(2)

type, the node inherits it, or the nesting type of this procedure is set to be undetermined.

In procedure WalkCG, nesting type information is propagated in a wavefront way by first selecting ready nodes
that are nodes with all incoming edges processed. For all recursive calls, the global nesting types are generally
undeterminable, and thus they will have some undetermined incoming edges. By a late selection strategy, the loop in
Call Graph is handled in a simple way.

The combination phase is just the same as what the function walkCGOneStep() does. But the range of the
considered statements is all interested statements and statement regions rather than calls and OpenMP directives.

Further improvements can be made on the base of this baseline algorithm. A major one is using the condensed
call graph other than the detailed call graph. In this case, the work of combineNT() and related iterations can be
removed away from the algorithm. By splitting nodes in the call graph, procedure cloning can be implemented to

support multi-versioning of the OpenMP translation, and this will be discussed in next section.
2.5 The determinability of directive nesting type

For OpenMP programs written in FORTRAN, the nesting types are highly determinable by utilizing nesting
type analysis. Figure 4 gives the result on seven benchmarks out of NPB3.0 OpenMP benchmark®, which
represents a large class of science and engineering applications. For each benchmark, the total OpenMP directive
number, the determinable directive number, and the determinable directive number without IPA are given. It shows
that the compiling time nesting type analysis can determine the nesting types of all OpenMP directives since the
computation structures in these benchmarks are highly regular. The figure also shows that the ability heavily
depends on the IPA, since without IPA, only a small amount of direct nesting types can be determined in two of the
seven benchmarks (CG and EP).

Nesting type analysis for NPB3.0-OMP

160 M Total

140 E Determinable
O Without-IPA

120

Directives number

LU BT CG EP FT MG SP

Fig.4 Static determinability of directive nesting types

3 Applications of Global Nesting Type Information

3.1 Nesting type information guided OpenMP translation

The nesting type information obtained by nesting type analysis can be used to determine the translation types
in OpenMP translation. Like nesting types, translation types are just a classification of directives in OpenMP
translation and optimization modules to produce more efficient codes, e.g., corresponding to the four global nesting
types, there can be also four translation types: sequential, top-level, nested and normal translation. They represent
different translation and optimization strategies for the same type of directives under different contexts. The

relationship between nesting types and these translation types is depicted in Table 1.

© hEE

AT hupy/ www. jos. org. cn

47k 4 :0penMP 45535 &) & B B R A 09 S 047 B) 201

Table 1 Map from nesting type to translation type

Nesting type Translation type
Globally orphaned Sequential translation
Globally normal Top level translation
Globally nested Nested translation
Globally undetermined Normal translation

A simple example can explain why this translation type classification gets benefits (see Code 4). A piece of

OpenMP code skeleton is given in (a), and the four versions of code skeleton after translation according to different

translation types are presented in (b)—(e).

#pragma omp parallel
some_code();
}
(a)OpenMP block

/* all directives stripped off,
executed in sequential mode */
some_code_after translation();
(b)sequential translation

/* executed only by master */
omp_fork(..., thread_func)
thread_func(...)
{
1

some_code_after translation();

/* executed by group masters */
omp_fork2(..., thread_func)
thread_func(...)

{

some_code_after_translation();
(d)nested translation

/* must handle undetermined
contexts */

if (in_parallel() == 0) {
omp_fork(...)

else {
omp_fork2(...)
¥

h (e)normal translation
(c)translation for top-level group

Code 4 Translation skeletons for different contexts

The benefits of translating directives according to their runtime context mainly come from the elimination of
unnecessary code, as shown above in the cases of (b)—(d). In addition, by disambiguating between the top-level
thread group and the nested thread groups and translating the code into different sets of runtime calls, the runtime
library can visit internal data structures more efficiently. After all, the average OpenMP programs spend most of
their execution time in the normal case of only one group of threads. Figure 5 shows the reduction in code size
when the OpenMP translation module is presented with the nesting type information for NPB3.0-OMP. The effect is

represented as the reduction percentage of the assemble file size, not the target binary file size.

Code reduction percentage (%)

LU BT CG EP FT MG SP

Benchmark
Fig.5 The code size reduction percentage when utilizing nesting type information
It is hard to measure the improvement in performance for the utilization of nesting type analysis, since besides
factors inside the OpenMP compiler, a corresponding runtime library should also be built up to carry such kind of

comparison. But in code 4, we have shown that by utilizating such kind of information, some stuff code can be

eliminated. Moreover, this information may enable further optimizations that are otherwise impossible.

© PR

http:/ www. jos. org. cn

202 Journal of Software #AFFIK 2005,16(2)

3.2 Nesting type information for the guided OpenMP translation

The dynamic binding and nesting rules enable the programmer to view the parallelization process as a local
affair and thus to parallelize the program in an incremental manner. However, in an integrated development
environment (IDE), information about a procedure's calling contexts may help to answer questions such as whether
this procedure is properly arranged to perform best for all its call sites. A simple tool may simply present the results
of the nesting type analysis by highlighting those globally undetermined directives as candidates that may be
produced by improper parallelization actions.

More important, since automatical parallelization tools which typically process programs procedure by
procedure often introduce calling contexts, the information provided by nesting type analysis is thus more useful for

later optimizations.
3.3 Nesting type information for the guided OpenMP translation

In the above discussion, when the calling contexts of the same procedure are not consistent, the global nesting
type analysis will set the global nesting type of this procedure to be globally undetermined. However, by node
splitting in the call graph, the global nesting type can be explicitly determined. This means the procedure in the
original program to be replicated, or the translated procedure to be cloned.

A tradeoff should be made between the code size and the gain from the improved translation strategy. Since the
benefit of the latter factor is not easy to model, a set of heuristics may be developed to make decisions such as

whether to clone a specific procedure.

4 Related Work

There are several other OpenMP compilers designed in the last five years and available for research
community. They are all source-to-source translators, stressing on portability and targeting various goals.
0dinMP/CCp™, which translates C-programs written in OpenMP to POSIX threads, was designed to provide a
portable public domain implementation of OpenMP. The translation strategies adopted in OdinMP are rather direct
and simple. Nearly no optimization is implemented. PCOMP, the portable compilers for OpenMP™! implemented
upon Polaris, a parallel compiler, is mainly used as a part of a unified parallel compilation systems using OpenMP
as the intermediate language. Also, context information is not considered during the translation. NanosCompiler',
derived from Parafrase-2, concentrates on the implementation of OpenMP extensions to exploit multiple levels of
parallelism and automatic work generation. Its tasks are managed totally at runtime, not like the work in this paper.
The Omni OpenMP compiler'® and its descendant!”, as part of the RWCP project, were developed for SMP clusters.
Optimizations for software implemented coherence scheme do exist in this compiler™™, but not for the language
itself. The compiler, together with the runtime library, simply uses a unified thread model, and doesn’t make
differences between top level and nested level of thread groups as described in this paper. To summarize these
implementations, directive classification and related analysis, like the work described in this paper, are not used in
these systems. Moreover, although typically IPA is extensively studied and implemented for optimization compilers
that exploit instruction level parallelism, the usage of it in OpenMP compilation is rather new.

Among the above compilers, the Omni OpenMP compiler gets the best performance that is comparable with
some commercial compilers®. So we use this compiler to justify the implementation of the framework inside
ORC2.01" by comparing the performances, again, on NPB3.0 OpenMP suite. The experiments are done on a

4-Itanium2-900MHz SMP box, with 4GB memory and running Linux. The performance result is depicted in Fig.6.

© hEE

AT hupy/ www. jos. org. cn

47k 4 :0penMP 45535 &) & B B R A 09 S 047 B) 203

5000 M orf0
Oomf77
1500 -
£ 1000 -
=
500
0 | mm

BTw CGa FTa MGa SPw LUw EPa

Fig.6 Performance comparison on NPB3.0 OpenMP FORTRAN suite. Mops/s means Mega-operations per
second, the metric defined by NPB, and the higher, the better. orf90 is our OpenMP compiler based on
ORC2.0M, and omf77 is Ommni OpenMP compiler(1.4a). The individual benchmark name is in a form like BT.w.
BT is the application name, and w stands for a problem size. Both with —O3 enabled

5 Summary

In semantics, every parallel region can be viewed as a multithreaded region, and the nesting relationship
between these multithreaded regions forms a partial order in the set of all multithreaded regions of a program. It's
just part of the execution context of these multithreaded regions. Generally, for compilers that explicitly handle
multithreaded programs, such kind of information is critical to perform multithread aware analysis and
optimizations. This information can be explicitly expressed as a specific form of the intermediate representation
(IR) in the compiler, just like Ref.[12], or as tag information to normal intermediate representation (non-multithread

aware), like the work described in this paper.

Nesting type analysis mentioned in this paper tries to use compiling time analysis to collect static information
to approximate the true execution context information that we are caring about. Local information is combined
together to get the global view about a procedure, or calls to a procedure by an interprocedural analysis, which in
fact relies on the common IPA, which does interprocedural control flow analysis to build up the static call graph.
The ability to cross procedure boundary empowers the analysis to determine a large amount of directive nesting
type in OpenMP programs. However, since the dynamic call graph can not always be constructed at compiling time,

theoretically the nesting type analysis can only determine the nesting type of part of these directives.

Although the problem of determining nesting type is raised during OpenMP translation and optimization, it can
be viewed as a kind of effort to do thread-aware analysis and optimizations. Indeed, this is just our ongoing work to

build up a suitable framework for a thread-aware optimization compiler.

Acknowledgement The work described in this paper is supported by Intel’s university research funding, and

partly supported by the Gelato project initiated jointly by HP and Intel.

References:
[1] OpenMP Architecture Review Board. OpenMP FORTRAN Application Program Interface Version 2.0, November 2000. OpenMP
C and C++ Application Program Interface version 2.0, March 2002. http:/www.openmp.org
[2] Jin H, Frumkin M, Yan J. The OpenMP implementation of NAS parallel benchmarks and its performance. Technical Report, Report
NAS-99-011, NASA Ames Research Center, 1999.
[3] Brunschen C, Brorsson M. OdinMP/CCp-a portable implementation of OpenMP for C. Concurrency: Practice and Experience, 2000,
12(12):1193-1203.

© kR

http:/ www. jos. org. cn

204 Journal of Software #RAFFIR 2005,16(2)

[4] Seung JM, Seon WK, Voss M, Sang IL Eigenmann R. Portable compilers for OpenMP. In: Proc. of the Workshop on OpenMP
Applications and Tools (WOMPAT2001). Purdue University, West Lafayette, Indiana, 2001. 11-19.
[5] Ayguade E, Marc G, Labarta J. NanosCompiler: A research platform for OpenMP extensions. In: Proc. of the 1st European
Workshop on OpenMP (EWOMP’99). Lund, Sweden, 1999. 27-31.
[6] Sato M, Satoh S, Kusano K, Tanaka Y. Design of OpenMP compiler for an SMP cluster. In: Proc. of the 1st European Workshop on
OpenMP (EWOMP’99). Lund, Sweden, 1999. 32-39.
[71 Sato M, Harada H, Hasegawa A. Cluster-Enabled OpenMP: An OpenMP compiler for the SCASH software distributed shared
memory system. Scientific Programming, 2001,9(2-3):123-130.
[8] Satoh S, Kusano K, Sato M. Compiler optimization techniques for OpenMP programs. Scientific Programming, 2001,9(2-3):
131-142.
[91 Kusano K, Satoh S, Sato M. Performance evaluation of the omni OpenMP compiler. In: Valero M, et al. eds. Proc. of the Workshop
on OpenMP: Experiences and Implementations (WOMPEI2000). Berlin: Springer Verlag, 2000. 403—-414.
[10] Open Research Compiler. http://ipf-orc.sourceforge.net
[11] Chen Y], Li JJ, Wang SY, Wang DX. ORC-OpenMP: An OpenMP compiler based on ORC. In: Voss M, ed. Proc. of the Int’l Conf.
on Computational Science 2004. Berlin: Springer-Verlag, 2004. 414-423.
[12] Tian XM, Bik A, Girkar M, Grey P, Saito H, Su E. Intel OpenMP C++/FORTRAN compiler for Hyper-Threading technology:
Implementation and performance. Intel Technology Journal, 2002,6(1):36—46.

ke sk sk 3k sk sk sk sk sk sk sk sk sk sk sk 3k skok skok

F 1 EPEDERARRLNAMITS(CSCA 2005)
fiE 3C 18 A
2005 4F 9 H 23-25 H dbx

CSCA 2005 I THEAL o N LA A SRR BUN TR B2 B0, At A8@ R K b 43308 FRAL B B AR 1) 8, R
B TEHER) 53 FEHARBE T A TS IR, AR BERH AR S R A0S IR AR R 2 RAE U, A SR 43 28 5 i 43 W
AR5 R FH 3 T I P e P) A R DG B P R R . SIS R SOl LT S R Y CIET, 38T IEaUH R, 2
R VPRE R 227518 SCRIBF S AR 518 30 TRATTUUAE A7 5% 43 S A B0 43 BT SUSR 1) de 0 BB PE B R, 0 43 ZRRVEIHE 4 B 1y Js 2
T3 Sk LA R s U) 552 B 45

ERIEE CRRRT NREED:

S RBARIAMI IS BN, BB, WEHAR, PLS HAAEBIRISI, BMmEHAR, ZH%52EA Preference %
2], 252K, Multimode JKM YL, ZRIERIEIRGM, 73 FMBRTLL IS

GUBAH I 73 NI AR . BRI Foh 328, UG MBS, Web BT 4 RMRAE, W) fp o i 2y FERIZR S,
BHMBR R, TN R38R e U i 43 24

SRBARN M RAT. GRb. RE . THE. KU, BERE MRTRE, BRI, EWERE. B, &k
SRR, R E 27 25E

BREESR: (1) WO R AR RIITITORA, 1 CE R 30, KA word SCAHHERR, 18 3CHS I (U SEHUIT I 5 A i) BT “ A
FHHNT P IR B SRR E SR 7 Chttp//erad.ictac.en) BE, RIS 2005 458 1 WIHAT. (2) SUVGEICRAM LR,
AT SO, AT — M R A B (M http://crad.ict.ac.en M3 FE), fEE B —SFFMTFIRMAERII KRS EEA, HA
PR RMIR L, SBEA T,

R R Y] 2005-04-25, S T3 0 H) 2005-05-25, & 3CHEAC H AT 2005-06-10

KFE R 100044 LR AR AT BRARN: HR

% 010-51688451, f%HE.: 010-51840526, E-mail: fztian@center.njtu.edu.cn

ERCRTFIFFIIT https// www. jos. org. en

	Introduction
	Determining Nesting Types by Compiling time Static Analysis
	Nesting types of directives, calls and procedures
	Basic idea of nesting type inference
	Local nesting type analysis
	Interprocedural nesting type analysis
	The determinability of directive nesting type

	Applications of Global Nesting Type Information
	Nesting type information guided OpenMP translation
	Nesting type information for the guided OpenMP translation
	Nesting type information for the guided OpenMP translation

	Related Work
	Summary

