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Abstract: Because of the rules of dynamic directive nesting and binding, some of the thread context in OpenMP 
programs can only be totally determined at runtime. However, by compiling time static analysis, nesting type can be 
partly determined and this information can be passed to other compiling phases to guide later translation and 
optimizations. Since the binding and nesting may span the procedure boundaries through calls, local and global 
analyses are not enough. It is the interprocedural analysis that provides the most required ability. By integrating 
information into traditional interprocedural analysis, the nesting type information of procedures is propagated along 
call graphs. And later translation and optimization phases can bind this global information with local information 
inside the procedure to determine the nesting types at compiling time. The results demonstrate that in typical 
science and engineering workload the nesting type is highly determinable at compiling time, and the application of 
this information may achieve less runtime overhead and the reduced code size. 
Key words: OpenMP; compiler; interprocedural analysis; global nesting type; OpenMP translation 

摘  要: 由于指导语句动态嵌套与绑定规则的存在,OpenMP 程序中线程的一些上下文只能在运行时刻才能

完全确定.然而,通过编译时刻的静态分析可以部分确定指导语句的嵌套类型,这些信息可以用于指导后续的编

译与优化.由于函数调用的存在,嵌套与绑定常常会跨越过程边界,除了通常的局部和全局分析之外,还需要过
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程间分析的支持.通过在通常的过程间分析的基础上附加信息,可以使得嵌套类型信息在过程调用图中进行传

播.将这些全局信息与过程内的局部信息结合起来,就可以在编译时刻确定语句的嵌套类型.结果表明,编译时

刻的嵌套类型分析可以有效地确定通常的科学与工程计算程序中指导语句的嵌套类型,基于嵌套类型的翻译

与优化可以同时减少运行时开销和目标代码长度. 
关键词: OpenMP;编译;过程间分析;全局嵌套类型;OpenMP 翻译 
中图法分类号: TP314  文献标识码: A  

1   Introduction 

In OpenMP, directives, especially parallel regions, may be lexically nested in other directives according to 
some specific rules. This is called nesting rules. Because of nesting and procedure calls, some directives have 
semantic relationship with other directives. This is called directive binding. Inside a procedure, the binding happens 
according to static scoping rules. In order to ease the parallelization process of sequential programs, the OpenMP 
standards[1] introduce dynamic binding and dynamic nesting rules to enable the incremental development feature 
and to let the programmers keep their focus on a local procedure other than the global structure of the whole 
program. Mainly, dynamic binding and nesting rules specify the necessary behavior of directives when calls occur 
and directives are involved in the callee and the call sites of the callers. The binding semantics are implemented 
through the cooperation of OpenMP compilers and OpenMP runtime systems. 

The following simple example illustrates the case of dynamic nesting and binding (see Code 1). In the 
example, parallel region directive 2 is (lexically) nested and bound to directive 1, and directive 3 in function foo() is 
dynamically nested and bound to directive 1, through the call to foo at call site 1. 

 #pragma omp parallel /*1. normal parallel */ 
{ 
#pragma omp parallel /*2. nested parallel*/ 
  { 
  } 
  foo( ); /* call site 1 */ 
} 

foo( ) 
{ 
#pragma omp for  /*3. orphaned for */ 
  { 
  } 
} 

Code 1  Dynamic nesting and dynamic binding 
 

The directive structures in OpenMP are executed by threads. According to different contexts, these threads may 
be the initial master thread in a sequential execution mode, or in the top level thread team, or in a nested thread 
team. These are called the execution mode of code blocks in this paper. Generally, different execution modes stand 
for different execution contexts, and maintain different amount of internal data structures, which represent the 
context. So making distinction between these execution modes may achieve better performance. This is the 
motivation of this paper. Since execution mode closely relates with nesting type, analysis to infer the nesting type is 
quite helpful to improve target code quality, both for OpenMP translation and OpenMP optimization. 

In this paper, we show that a proper static analysis phase may be quite able to discover this binding and nesting 
type information of OpenMP constructs. Since the problem mainly exists because of the existence of calls, analysis 
that can handle calls and across procedure boundaries is critical to extract such kind of information. In this paper, an 
analysis is introduced based on the traditional interprocedural control flow analysis. When the call graph is built up 
when the interprocedural analysis is enabled, additional information collected by a local nesting type analysis is 
tagged to call nodes and the information is propagated among call graph to establish a nesting type call graph. 

Nesting type information for multiple calls of a specified procedure may then be combined together to 
determine the procedure nesting type. Later phases can combine this global information with local information to 
determine the directive nesting type accurately. 
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The information obtained by static analysis can be used to guide later translation and optimizations. There are 
several cases where this information can be useful. First of all, by making such distinction between different 
binding types, more efficient translation can be done, since less stuff code is required to handle extra contexts. 
Secondly, with the extra information, more restrict use cases are assumed, and thus more aggressive optimizations 
are possible. Moreover, by summarizing the binding type information of a specific procedure, we can present the 
programmer a view of how consistent the procedure is during the parallelization process, and thus can further adjust 
the arrangement of OpenMP directives in the program. 

This paper is organized as follows. The idea of binding type classification and the algorithms to determine the 
binding type at compiling time is introduced in Section 2. In Section 3, applications of this analysis are discussed. 
Section 4 comes with comments about related works. In Section 5, the summary is presented. 

2   Determining Nesting Types by Compiling time Static Analysis 

The problem is to determine how some interested directives, if not all, are nested in the scope of the whole 
program. In fact, in most of the cases we are only interested in whether these directives are nested in some parallel 
regions. For programs that comprise of many procedures distributed in many files, the task can be viewed as two 
subtasks. First we should determine the global context for all the directives in a procedure, i.e., determine how a 
procedure (i.e., all calls to the procedure), or every call to this procedure is nested. Then we can use this global 
context to determine the nesting type of individual directives in this procedure. Before we can discuss the 
algorithms solving this problem, a refinement of these free-used terms is required. 

2.1   Nesting types of directives, calls and procedures 

For each OpenMP directive in a procedure, it can be lexically nested in some other directives. Since every 
parallel region may create a new group of threads, the enclosing parallel region declaration directive is of most 
interests. For a given directive, we define the lexical nesting level of this directive as the number of levels of its 
enclosing parallel directives. In fact, this definition can be extended to other none-OpenMP constructs, since it may 
also make sense to some post-translation optimizations. But since in this paper, mainly the directive translation and 
optimizations at directive level are considered, and other constructs can be well related to some directives, we only 
consider directive lexical nesting level here. According to the lexical nesting level, directives can be categorized 
into three classes. 

Definition 1. For a directive with lexical nesting level n, if n=0, the directive is lexically orphaned; if n=1, the 
directive is lexically normal; if n>1, this directive is said to be lexically nested. 

These lexical properties are also called local nesting types of directives, since they represent how directives are 
nested in the scope of the procedure they are in. Since we are considering the global nesting properties of the 
directives, this definition must be extended to the scope of the whole program. To simplify the definition, we can 
selectively inline related procedures, so that all the nesting parallel directives are now in our scope, and the global 
nesting type now turns out to be the local nesting type in the new inlined procedure. 

Definition 2. The global nesting level of a directive is the local nesting level of the corresponding directive in 
an ideally all-inlined program. 

Similarly, the global nesting type can be defined. Different from local nesting type, we add a fourth type called 
global undetermined, since in practical the expansion of the program is not always possible because the existence of 
loops in call graphs. Because call statements are now in our consideration, the idea of nesting level and nesting type 
are extended beyond directives to all statements. 

Definition 3. For a statement (or block of statements) with global nesting level N, if N=0, the statement is 
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globally orphaned; if N=1, the statement is globally normal; if N>1, the statement is globally nested. In cases that 
the value of global nesting level cannot be determined, the statement is said to be of a global nesting type of 
globally undetermined. 

Like the definition of local nesting types, these global nesting properties of statements are called global nesting 
types of statements. For calls, the global nesting types form the global nesting-calling context of all statements 
contained in the procedure body. Further more, since a procedure may be called at many call sites, the global 
nesting types of calls to a given procedure can be combined into a single type. This is called the global nesting type 
of procedures in this paper. 

For every instance of call to a given procedure, the local nesting types of the directives lexically contained in 
are the same, so if we can determine the nesting context of a given call or all the calls to a given procedure, we can 
determine the global nesting types of all contained directives. 

2.2   Basic idea of nesting type inference 

The call relationship of procedures can be represented by a static call graph at compiling time. By combining 
the local nesting type information of calls along a specific path in the static call graph, we can determine the global 
nesting types of a call that ends this path. This is the basic idea that drives the algorithms in this paper. 

Now we take the OpenMP directives into consideration. Figure 1 illustrates the basic idea of the nesting type 
analysis. The local nesting information in subroutine a is used to set up the nesting context for calls to subroutines b 
and c. These nesting contexts are then used to determine the global nesting types of directives in b and c. 

Subroutine a 
!$omp parallel 
  call b 
!$omp end parallel 
call c 
end 
 

subroutine b 
!$omp do 
!$omp end do  
!$omp parallel 
!$omp end parallel 
end 

subroutine c 
!$omp do 
!$omp end do  
!$omp parallel 
!$omp end parallel 
end 

a 

b c

do Parallel do Parallel

Normal 

Nested 

Orphaned 

Call graph

Fig.1  Inferring nesting types
 

The framework of the nesting type analysis is given in Fig.2. The nesting type analysis algorithm comprises a 
local nesting type analysis, an interprocedural nesting type analysis, and a combination phase. The local nesting 
type analysis algorithm is the basic algorithm underlying all three parts: the interprocedural part uses it to step 
forward along call graphs, and the combination phase uses it to infer the nesting types for directives in leaf 
functions. 
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Local nesting type analysis 

Procedures 

Directive  
summaries 

Global nesting type analysis 

Whole 
program 

IPA

 
Call 

graph 

Nesting type analysis 
(combination) 

 
Nesting type call graph 

Translation and  
optimization phases 

Fig.2  The framework of nesting type analysis  

2.3   Local nesting type analysis 

The local nesting type analysis summarizes the directives' nesting information for individual procedures. Since 
many OpenMP directives are block-scoped and can be nested, in the IR(intermediate representation) of compiler, 
these directives are also represented as regions, and these regions can be further nested. The whole procedure is 
organized as a tree with the procedure entry as the root, and the local nesting type analysis works in a top-down and 
hierarchical manner beginning with the root node. The algorithm is illustrated using pseudo-code 2. Function 
transNT() translates a local nesting level into a nesting type, and function isParallel() judges whether a statement is 
a parallel region directive. 

procedure GetBlockNestingTypes 

rootNode: in, the Root of an IR tree 

currentNestingLevel: in, integer  

NTMap: out, statements × NestingType 

begin 

newLevel: integer = currentNestingLevel 

tempNT: Nestingtype 

if rootNode is a leaf node then 

 tempNT = transNT(currentNestingLevel) 

 NTMap[rootNode]= tempNT 

else 

  if isParallel(rootNode) then 

   newLevel = newLevel + 1 

  endif 

   for each child p of rootNode 

     GetBlockNestingTypes(p,newLevel,NTMap)  

   endfor 

 endif 

end 

 

procedure LocalNTAnalysis 

 rootNode: in, Root of procedure’s IR tree 

 NTMap: out, statement × NestingType 

begin 

 getBlockNestingType(0, newLevel, NTMap) 

end 

Code 2  Local nesting type analysis algorithm  

2.4   Interprocedural nesting type analysis 

With the local nesting type analysis, the interprocedural nesting type analysis works on the static call graph to 
infer the global nesting type for interested directives in the whole program. A static call graph can typically be 
derived after an interprocedural analysis phase in the compiler. 

The Interprocedural nesting type analysis algorithm walks through the static call graph top down in a 
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wavefront manner, starting from the main entrance of the whole program. When stepping forward along a specific 
path, the algorithm combines the local nesting type information with the global context so far established. The 
combination process is described by a state transition model depicted in Fig.3. In Fig.3, local nesting types of 
directives in current node (represents a procedure) are represented as states, and the global nesting type of the node 
(representing a call or a procedure) is treated as input. The target state is the global nesting type of these directives. 
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Undetermined

 
Nested 
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Nested 
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Undetermined 

Orphan
Orphan Normal
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Fig.3  State transition model for nesting type combination 
 

The global nesting type analysis algorithm is illustrated in pseudo-code (see code 3). 
procedure walkCGOneStep 

node: in, Node of call graph 

NTMap: in, Map of local nesting type 

callNTMap: out, Calls × NestingTypes 

procNTMap: out, Procedures × NestingTypes 

begin 

currentNT: NestingTypes 

if all incoming edge’s NT available then 

  procNTMap[node] = combineNT(node) 

endif 

else 

  procNTMap[node] = undetermined 

endif 

  currentNT = procNTMap[node] 

for each edge p from node 

 callNTMap[p] = STM_NT(currentNT,NTMap[p]) 

endfor 

end 

procedure walkCG 

entryNode: in, Entry of call graph 

NTMap: in, Map of local nesting type 

callNTMap: out, Calls × NestingTypes 

procNTMap: out, Procedures × NestingTypes 

begin 

 walkCGOneStep(entryNode, NTMap,  

               callNTMap, procNTMap) 

 while there are nodes unannotated do 

  if there are some ready nodes then 

   select p from the ready nodes 

   WalkCGOneStep(p, NTMap, callNTMAP, procNTMap) 

  else 

   select q from the unannotated nodes 

   WalkCGOneStep(q, NTMap, callNTMAP, procNTMap) 

  endif 

 enddo 

end 

Code 3  Interprocedural nesting type analysis algorithm 
 

A few functions are used in this algorithm. STM_NT() stands for the state transition model mentioned in Fig.3, 
and it simply uses the STM to determine a new global nesting type from the context and the local nesting type. 
Function combineNT() is used to combine all the global nesting types of calls to a specific procedure into the 
procedure’s global nesting types. The rules are just simple: if all incoming edges of a node have the same nesting 
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type, the node inherits it, or the nesting type of this procedure is set to be undetermined. 
In procedure WalkCG, nesting type information is propagated in a wavefront way by first selecting ready nodes 

that are nodes with all incoming edges processed. For all recursive calls, the global nesting types are generally 
undeterminable, and thus they will have some undetermined incoming edges. By a late selection strategy, the loop in 
Call Graph is handled in a simple way. 

The combination phase is just the same as what the function walkCGOneStep() does. But the range of the 
considered statements is all interested statements and statement regions rather than calls and OpenMP directives. 

Further improvements can be made on the base of this baseline algorithm. A major one is using the condensed 
call graph other than the detailed call graph. In this case, the work of combineNT() and related iterations can be 
removed away from the algorithm. By splitting nodes in the call graph, procedure cloning can be implemented to 
support multi-versioning of the OpenMP translation, and this will be discussed in next section. 

2.5   The determinability of directive nesting type 

For OpenMP programs written in FORTRAN, the nesting types are highly determinable by utilizing nesting 
type analysis. Figure 4 gives the result on seven benchmarks out of NPB3.0 OpenMP benchmark[2], which 
represents a large class of science and engineering applications. For each benchmark, the total OpenMP directive 
number, the determinable directive number, and the determinable directive number without IPA are given. It shows 
that the compiling time nesting type analysis can determine the nesting types of all OpenMP directives since the 
computation structures in these benchmarks are highly regular. The figure also shows that the ability heavily 
depends on the IPA, since without IPA, only a small amount of direct nesting types can be determined in two of the 
seven benchmarks (CG and EP). 

Nesting type analysis for NPB3.0-OMP
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Fig.4  Static determinability of directive nesting types  

3   Applications of Global Nesting Type Information 

3.1   Nesting type information guided OpenMP translation 

The nesting type information obtained by nesting type analysis can be used to determine the translation types 
in OpenMP translation. Like nesting types, translation types are just a classification of directives in OpenMP 
translation and optimization modules to produce more efficient codes, e.g., corresponding to the four global nesting 
types, there can be also four translation types: sequential, top-level, nested and normal translation. They represent 
different translation and optimization strategies for the same type of directives under different contexts. The 
relationship between nesting types and these translation types is depicted in Table 1. 
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Table 1  Map from nesting type to translation type 
Nesting type Translation type 

Globally orphaned Sequential translation 
Globally normal Top level translation 
Globally nested Nested translation 

Globally undetermined Normal translation 

A simple example can explain why this translation type classification gets benefits (see Code 4). A piece of 
OpenMP code skeleton is given in (a), and the four versions of code skeleton after translation according to different 
translation types are presented in (b)−(e). 

#pragma omp parallel 
{ 
  some_code(); 
} 
 (a)OpenMP block 
 
/* all directives stripped off, 
   executed in sequential mode */ 
  some_code_after_translation(); 
 (b)sequential translation 
 
/* executed only by master */ 
omp_fork(..., thread_func) 
thread_func(...) 
{ 
  some_code_after_translation(); 
} 
 (c)translation for top-level group 

/* executed by group masters */ 
omp_fork2(..., thread_func) 
thread_func(...) 
{ 
  some_code_after_translation(); 
} 
 (d)nested translation 
 
/* must handle undetermined  
   contexts */ 
if (in_parallel() == 0) {  
   omp_fork(...) 
} 
else { 
   omp_fork2(...) 
} 
 (e)normal translation 

Code 4  Translation skeletons for different contexts  

The benefits of translating directives according to their runtime context mainly come from the elimination of 
unnecessary code, as shown above in the cases of (b)−(d). In addition, by disambiguating between the top-level 
thread group and the nested thread groups and translating the code into different sets of runtime calls, the runtime 
library can visit internal data structures more efficiently. After all, the average OpenMP programs spend most of 
their execution time in the normal case of only one group of threads. Figure 5 shows the reduction in code size 
when the OpenMP translation module is presented with the nesting type information for NPB3.0-OMP. The effect is 
represented as the reduction percentage of the assemble file size, not the target binary file size. 
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Fig.5  The code size reduction percentage when utilizing nesting type information 

It is hard to measure the improvement in performance for the utilization of nesting type analysis, since besides 
factors inside the OpenMP compiler, a corresponding runtime library should also be built up to carry such kind of 
comparison. But in code 4, we have shown that by utilizating such kind of information, some stuff code can be 
eliminated. Moreover, this information may enable further optimizations that are otherwise impossible. 
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3.2   Nesting type information for the guided OpenMP translation 

The dynamic binding and nesting rules enable the programmer to view the parallelization process as a local 
affair and thus to parallelize the program in an incremental manner. However, in an integrated development 
environment (IDE), information about a procedure's calling contexts may help to answer questions such as whether 
this procedure is properly arranged to perform best for all its call sites. A simple tool may simply present the results 
of the nesting type analysis by highlighting those globally undetermined directives as candidates that may be 
produced by improper parallelization actions. 

More important, since automatical parallelization tools which typically process programs procedure by 
procedure often introduce calling contexts, the information provided by nesting type analysis is thus more useful for 
later optimizations. 

3.3   Nesting type information for the guided OpenMP translation 

In the above discussion, when the calling contexts of the same procedure are not consistent, the global nesting 
type analysis will set the global nesting type of this procedure to be globally undetermined. However, by node 
splitting in the call graph, the global nesting type can be explicitly determined. This means the procedure in the 
original program to be replicated, or the translated procedure to be cloned. 

A tradeoff should be made between the code size and the gain from the improved translation strategy. Since the 
benefit of the latter factor is not easy to model, a set of heuristics may be developed to make decisions such as 
whether to clone a specific procedure. 

4   Related Work 

There are several other OpenMP compilers designed in the last five years and available for research 
community. They are all source-to-source translators, stressing on portability and targeting various goals. 
OdinMP/CCp[3], which translates C-programs written in OpenMP to POSIX threads, was designed to provide a 
portable public domain implementation of OpenMP. The translation strategies adopted in OdinMP are rather direct 
and simple. Nearly no optimization is implemented. PCOMP, the portable compilers for OpenMP[4], implemented 
upon Polaris, a parallel compiler, is mainly used as a part of a unified parallel compilation systems using OpenMP 
as the intermediate language. Also, context information is not considered during the translation. NanosCompiler[5], 
derived from Parafrase-2, concentrates on the implementation of OpenMP extensions to exploit multiple levels of 
parallelism and automatic work generation. Its tasks are managed totally at runtime, not like the work in this paper. 
The Omni OpenMP compiler[6] and its descendant[7], as part of the RWCP project, were developed for SMP clusters. 
Optimizations for software implemented coherence scheme do exist in this compiler[8], but not for the language 
itself. The compiler, together with the runtime library, simply uses a unified thread model, and doesn’t make 
differences between top level and nested level of thread groups as described in this paper. To summarize these 
implementations, directive classification and related analysis, like the work described in this paper, are not used in 
these systems. Moreover, although typically IPA is extensively studied and implemented for optimization compilers 
that exploit instruction level parallelism, the usage of it in OpenMP compilation is rather new. 

Among the above compilers, the Omni OpenMP compiler gets the best performance that is comparable with 
some commercial compilers[9]. So we use this compiler to justify the implementation of the framework inside 
ORC2.0[10] by comparing the performances, again, on NPB3.0 OpenMP suite. The experiments are done on a 
4-Itanium2-900MHz SMP box, with 4GB memory and running Linux. The performance result is depicted in Fig.6. 
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Fig.6  Performance comparison on NPB3.0 OpenMP FORTRAN suite. Mops/s means Mega-operations per 
second, the metric defined by NPB, and the higher, the better. orf90 is our OpenMP compiler based on
ORC2.0[11], and omf77 is Omni OpenMP compiler(1.4a). The individual benchmark name is in a form like BT.w.
BT is the application name, and w stands for a problem size. Both with –O3 enabled 
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5   Summary 

In semantics, every parallel region can be viewed as a multithreaded region, and the nesting relationship 
between these multithreaded regions forms a partial order in the set of all multithreaded regions of a program. It's 
just part of the execution context of these multithreaded regions. Generally, for compilers that explicitly handle 
multithreaded programs, such kind of information is critical to perform multithread aware analysis and 
optimizations. This information can be explicitly expressed as a specific form of the intermediate representation 
(IR) in the compiler, just like Ref.[12], or as tag information to normal intermediate representation (non-multithread 
aware), like the work described in this paper. 

Nesting type analysis mentioned in this paper tries to use compiling time analysis to collect static information 
to approximate the true execution context information that we are caring about. Local information is combined 
together to get the global view about a procedure, or calls to a procedure by an interprocedural analysis, which in 
fact relies on the common IPA, which does interprocedural control flow analysis to build up the static call graph. 
The ability to cross procedure boundary empowers the analysis to determine a large amount of directive nesting 
type in OpenMP programs. However, since the dynamic call graph can not always be constructed at compiling time, 
theoretically the nesting type analysis can only determine the nesting type of part of these directives. 

Although the problem of determining nesting type is raised during OpenMP translation and optimization, it can 
be viewed as a kind of effort to do thread-aware analysis and optimizations. Indeed, this is just our ongoing work to 
build up a suitable framework for a thread-aware optimization compiler. 
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