1000-9825/2004/15(Suppl.)0157 ©2004 Journal of Software ¥ ## % i Vol.15, 7]

—#E-TF ELF BFrX R AT E A EOS MHHIEZ
BEW, Ku# R R

(bR k% SHHRFE RERELREJLE  100080)
On Building Reusable EOS Components from ELF Object Files

TENG Qi-Ming’, CHEN Xiang-Qun, ZHAO Xia

{Operating System Laboratory, Institute of Software, Peking University, Beijing 100871, China)
+ Corresponding author: E-mail: tgm@cs.pku.edu.cn, http://os.pku.edu.cn
Received 2004-01-16; Accepted 2004-03-29

Teng QM, Chen XQ, Zhao X. On building reusable EOS components from ELF object files. Journal of
Software, 2004,15(Suppl.):157~163.

Abstract: In this paper, an approach to generate reusable components from ELF object files is presented.
Compared with other software component encapsulation techmologies, building reusable software component
directly from binary form ELF files is a straightforward process. Symbol tables and relocation information
encapsulated in ELF files can be automatically reprogrammed into a self-contained reusable entity. By augmenting
the component with syntactic interface descriptions, ambiguity caused by duplicate names in ELF files is eliminated.
Binary code scanning is employed to enhance the safety of the component. Further, to prevent unintentional or
hostile modifications, the component is signed with an MD35 fingerprint.

Key words:  software reuse; software component; embedded operating system; object file

# B kT —#HEFELF BiLd4 A @4 TEA RN Tk FE EOS M8 TRFER 1T
A SR AL A ELF B A7t A T LA it A A (R ME CELF 2080l 00 B A M
MR ELF # X, % .8 34 5 B0 3k 2484 P HEU A R B EFNMSRRBTHOAXLEHBRL, Kis A4
A MDS5 LA SHEA T LA EOSHH P &8 % ELF L4 R BAKIE AR T AP H TP LR,
#IREF. AHAKGTHRMESIINGE

KENE: M A MR N KR R B AR

Due to the two main drawbacks ioherent in pure micro-kemnel operating system design, i.e., poor performance
and inability to tailor servers to applications demands and needs, an alternative way to construct extensible

+ Supported by the National HighTech Research and Development Plan of China under Grant No2002AA1Z2301 (B F & A
FRRHRI(363)

TENG Qi-Ming was born in 1975. He is a Ph.D. candidate at the Institute of Sofrware, Peking University. His research interests
are operating system and software engineering CHEN Xiang-{Qun was born in 1961. She is a professor and post-graduates sapervisor of
the Institute of Software, Peking University. Her current research areas are operating system and sofiware engineering ZHAO Xia was
born in 1972, She is a Ph.D. candidate at the Institute of Software, Peking Univergity. Her rescarch areas are operating system and
software engineering.

© PHEBRESSAHITON  htps/www. jos. org. cn



158 Journal of Software BRI 2004,15(Suppl)

operating system is to investigate better architectural abstractions that enable finer granularity in OS components.
Although the community has brought forward many ideas with prototype systems around the “extensible” operating
system approach, issues related to the efficient, flexible, safe extensions are still to be addressed!™,

In this paper, we introduce an approach to produce reusable software components directly from compiled cade,
.namely, an ELF object file. The organization of this paper is as following: In Section 1, we present the primary
fchallenges in producing reusable EQS components from object files; in Section 2, an overview of the binary format

of ELF object files is given; Details on conversion along with additional considerations about the usage scenario are
presented in Section 3; related works related to drafting extensions into OS kernel is introduced in Section 4; the
initial lessans obtained and future works are given in Section 5.

1 Introduction

The background of this research is an on-going project to investigate feasible approaches to construct
component based embedded operating systems. The aim is to introduce the CBSD (Component Based Software
Development) process into embedded application developments, in hope that the target system features a flexible
structure and ability to be customized in various application fields. In such an embedded system, there might exist
no memory protection supports by hardware, available resources (power, RAM etc) are strictly constrained.
However, when compared with general operating system requitements are more application specific, e.g. some
applications require real time capability, while others not. The move towards extensible embedded operating
systems is an evolutionary step on the path from monolithic kemels to microkernel architectures. Related researches
indicate that, along with adding functionality, extensible systems can provide applications with the ability to
override policy decisions™, In his work, Christopher proposed taxonomy of grafts and of grafting architectures. One
of the conclusions drawn from his work is that by controlling compiled languages and patching binary codes, one
can provide software protection while enjoying the feasibility brought by drafting extensions into the kernel®].

Thus, the question becomes that how to inject extensions into the kernel that can

{3 enable new functionalities without compromising system religbility

O enable new paradigm to construct EOSes without imposing too much burden on developers

O enable flexible customization to systems without apparently degrading the overall performance

Our solution to these problems is to semi-automatically convert object files from legacy systems into a
standard format, which is described in Section 3. By supporting flexible late binding, dynamic loading and
unloading, trusted components (e.g. conventional services such as scheduler, drivers) can interact with each other
via direct calls, while untrusted components (e.g. user applications) can interact with service components with
indirect bindings.

2 Evaluation of the ELF Format

The ELF (stands for Executable Linking Format) was originally developed and published by UNIX System
Laboratories (USL) as part of the Application Binary Interface (ABI}. It is a replacement to the A.OUT format used
by older versions of UNIX systems. The ELF standard is intended to streamline software development by providing
developers with a sct of binary interface definitions that extend across multiple operating environments'*, The Tool
Interface Standards committee (TIS) has selected the evolving ELF standard as a portable object file format that
works across multiple 32-bit environments for a variety of operating systems. The ELF is widely accepted in the
UNIX family operating systems and others,

The standard is divided into three parts: 1) ELF general; 2) Processor Specific; 3) Operating System Specific.
There are three main types of objéct files in ELF, namely:

© PEBEEERSLIIFUN  htpd/ www. jos. org. cn



B F.—# AT ELF B 424657 £ M EOS M4l 5% 159

Q A relocatable file contains code and data suitable for linking with other object files to create an executable

or a shared object file.

Q  An executable file holds a program suitable for execution on an operating system.

Q A shared object file contains code and data suitable for dynamic linking purpose.

Our concern is focused on the relocatable file format, which is the immediate output of a compiler (e.g. the
Gnu Compiler Collection, GCC). Created by the assembler and link editor, object files are binary representations of
programs intended to execute directly on a processor. When compared with source code representations, binary
format of the program is free of lexical, syntactic tricks such as compiler specific directives, macros, inline
functions, configure and building scripts. The internal organizations of control flow and data flow are determined,
and thus exhibit a suitable candidate for a raw black-box component.

2.1 Object file format

The general layout of an ELF object file is given in ELF header General information,
Fig.1. General information is given in the ELF header e i ouch as: Signature,
part, while information about all sections is organized as - Version, Machine,

. . Section 1 Size, Entry etc.
a table as the last part. Each type of section has its own Scction 2
record or data format, details about which can be found
in Ref.[4].
[4] . . . Section n

Among these sections, we are most interested in the

“text”, “.data”, “rodata”, “.bss”, “.strtab”, “.symtab”,
“rel.text”, “rel.data”, “rel.rodata” sections (Table 1).
( ) ——P»| - Section header table

From these sections, we can extract the following
information: Section Headers &

O size and content of the code, data, read only name | type | flags | addr | offset | ......
f1
P

data of the object .text | PROG al ol
size of the uninitialized data of the object .data | PROG a2 02
name and entry of each global/local functions | ...

name and location of all global/local variables . | I ! l ]

Uooo

name and referenced location of all external Fig.! General layout of a ELF

functions and/or variables, and the way to

resolve it when linked with other object file(s)

Q initial value for initialized data and read only data

Based on the information provided by the object file itself, linkers can generate executable programs and/or

relocatable objects (i.e. composite components).
2.2 Cons of ELF object files

Conventional tool chains put much more emphasis on compilers than on linkers, with the latter often left
stupid, simple tasks, i.e. symbol resolving, relocating etc. This is due to the implicit assumption that the compiler
has already done every thing related to program semantics well. When encountering conflicted names or unresolved
symbols, the linker just exits with a complaint.

© PEREEBAPETFON  httpd/ www, jos. org. cn



160 Journal of Software ¥AtFi  2004,15(Suppl.)

Table 1 Significant sections

name type attribute note

text SHT PROGBITS SHF_ALLOC + SHF_EXECINSTR program code

.data SHT_PROGBITS SHF_ALLOC + SHF_WRITE program data (initialized)

.rodata SHT_PROGBITS SHF_ALLOC program data (read only)

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE program data (not initialized)
.symtab SHT_SYMTAB (SHF_ALLOC) symbols

.strtab SHT_STRTAB (SHF_ALLOC) names of all symbols
.rel.text SHT_REL(A) relocation info for code section
.rel.data SHT_REL(A) relocation info for initialized data

.rel.rodata SHT REL(A) relocation info for read only data

Although it is possible to develop an equiva'llent format which might be simpler than ELF, the fact that an
object is not intended for being used by third parties restricts its expressiveness. The major shortages of the ELF
format are: 1) Data type information is rarely left in the file. From the object file, only the size of a particular
variable can be obtained so that viable type-safe linking is almost impossible. 2) Signatures of functions are often
removed by the compiler (if the source code is written using C, for example). This prohibits composition of
modules containing functions whose names are identical, but implementing distinct functionalities. 3) Due to the
lack of global information, an ELF object file does not distinguish external variables from functions explicitly.

To make an ELF object file into a self-contained reusable software entity, we have to augment it with syntactic
knowledge that can be used by a run-time component manager for successful binding.

3 Conversion of ELF Object Files into Reusable Components

3.1 The target format

In this subsection, we present the intended target format of a reusable binary object file named EBC (ELF
Binary Component). The conversion process will be given in Subsection 3.2. The conceptual image of a reusable
component generated from an ELF file is as shown in Fig.2.

Component

| IntfMember |<———{ —  ImpIMember |

Fig.2 Conceptual diagram of EBC
We look upon a component as a container for one or more implementation(s) of some interface(s). To correctly

operate in a target context, a component may require facilities from other entities in the system. These required
(imported) items are referred to as RequMember, which are modeled as a tuple (Intf, Impl, Member). When
requiring a portal from outside of the component, the component can optionally specify the Impl element.
Specifying a NULL Impl element means any implementation that implements the specified interface is acceptable.

A component must have at least one implementation of an interface (otherwise, the component is regarded
useless). For trusted components, the interface member, viz. IntfMember, can be either a variable or a function. This
is a special optimization considering that trusted components can directly access any exported data members of
others. Untrusted components can have only functions as interface members. Since the intended domain is an

embedded system that might have no memory protection supports, the assumption that direct bindings among

© rhiEE

CAHIFFERT  http:/ www, jos, org. cn



M2 F:—# R T ELF B 424697 8 EOS #4414 7 %

161

components are reasonable. However, for those systems that do support memory protection or privilege modes, no
interface can export or import data members directly. In that case, all bindings among components reside in

different protection domains should be done using special
facilities (e.g. trappings, upcalls).

Besides these, we have to deal with problems such as
naming confusion and data integrity. Currently, we are adopting
the C++ name mangling scheme implemented by the GNU
Compiler Collection for function signatures. For example, an
interface item named “IScheduler::Suspend(unsigned int)” is
mangled as “Suspend_10ISchedulerUi”. For convenience, we
want both the original name obtained from ELF file (“Suspend”
in this case) and its mangled name stored in the target EBC file.
To prevent the component from malevolent modification, we
want a MDS fingerprint appended to the EBC file as suggested
in Ref.[5]. The layout of EBC file is given in Fig.3.

3.2 The conversion process

Component header

Relocation
information

Section
contents

MDS5 fingerprint

v

Enhanced interface
based on ELF symbols
r and user input

Contents adapted to
( the revised layout

Contents revised to
> ensured safety

Fig.3 Layout of the EBC file

The conversion process constitutes of five steps as shown in Fig.4. A tool named E2C is specially developed

for integrate the five steps into an interactive environment.

1) Unsafe code scanning: To prevent unauthorized component from issuing privileged instructions such as

ELF object file

User interface I

v

Unsafe code
scanner

SynSpecifier

Interface
specifications
MDS5 generator

Extracted
sections

E2C tool

Fig.4 The conversion process illustrated

EBCobject file

disable interrupt, accessing an I/O port, the code scanner
analyzes the code section of the ELF file. When encountered
unsafe opcode in code streams, a warn will be issued by the
E2C Tool. On IA32 architecture, besides the 28 privileged
instructions are forbidden, IN/OUT instructions are generally
not allowed either.

2) If the object file successfully passed the code validation,
then its original organization is broken by the ELF parser. The
result is a collection of sections, along with some useful general
information.

3) Provided (and required) functions/variables in the object
file are presented to the user for syntactic information
recovering. User can choose to hide specific InyfMember(s)
from outside, as well as to specify alias for elements so that
flexible matching purpose during the runtime binding is

possible.

4) Given the interface specifications and extracted sections, the Blender component performs reprogramming

on the input, emitting a ready-to-use component.

5) The last step is to pass the component through a MDS5 filter. A 128bit fingerprint value computed from the

component is then appended at the end.

Component developer can specify complementary attributes for the component and/or for each IntfMember.

Some attributes are given in Table 2.

AT

http:/ www, jos. org. cn



162 Journal of Sofiware HAFE 2004,15(Suppl.)

Table 2 Complementary attributes
Object Sample attributes & meanings
CP_RELOCATABLE(O=01) 12 component can be relocaied when Toaded, of elee The compone
CP_LOADPHASEI(0x02) gsti?;;:onent must be loaded when imerrupts are still disabled at system
CP_LOADPHASE2(0x04) The component can be loaded when interrupts are enabled. L
CP_DYNAMIC(0x08) :‘:1: ;Tf;::;‘::n:ﬁ xg:ﬁ::twhen the target system has been initialized
CP_PERMANENT{(0x10)} The component that can not be removed once loaded into kemnel.
IMO_EXCLUSIVE(0x01) The function must be entered exclusively. This critical section should be

4 Coroponent

Functional ensured by target system.
interface IMO_NOINTR{0x02) Whether interrupts are allowed when this entry is used.
member When this entry is already entered by a thread of execution, further

IMO_SYNC(0x04)

attempts should be queued.
Damber interface IMA_READONLY(0x01) The data member exported can be read only, no modification is allowed.

IMA READWRITE(0x2) The data member can be modified.

4 Related Work

Building binary components can benefit from the fact that the programming language used to write the source
component is not resiricted. Microsoft COM technology exhibits this feature when orchestrating the interactions
among binary components. Components can be written in C++, Visual Basic or other languages, provided that the
programming language supports calling a function via in-memory pointers'®). However, imposing an indirection on
each call is sometimes not acceptable in embedded systems, particularly those with demanding real-time
requirements.

The SPIN system!” is written in and uses as its extension language, Modula-3'!. Modula-3 is a strongly-typed,
garbage-collected language, designed so that it is impossible for a program to construct a pointer to an arbitrary
memory location, There are still other, systems that introducing language specific support into the operating system
kertiel®l. However, we consider it not a flexible (if feasible) approach to address the reuse problems,

5 Initial Lessons and Future Researches

Through our initial works by converting existing ELF object files into the EBC format, we belicve that reusing
modules from legacy systems is possible. The issues to be addressed include: how to recover the semantics
effectively since the component developer might misunderstand the intended usage of an interface member; how to
extract function level reusable assets from these legacy properties etc. We are curreptly focusing on the
implementation of composite component. Future research will be focusing on a even finer granularity of component
form, i.e. function body extraction.

References:
[1] Margo IS, Christopher S, Keith 3. The case for extensible operating systems. Technical Report TR-156-95, Department of Computer

Science, Harvard University, 1995.

[2] Cheung WH, Anthony H, Loong S. Exploring issues of operating systems structuring: from microkernel to extensible systems.
Operating Systems Review, 1995,29(4):4~16.

(3] Small C, Seltzer M. A comparison of OS extension technologics. In: Proc. of the 1996 USENIX Conf. San Diego, CA, Jan. 1996.
41~54.

[4]1 TIS(Tool Interface Standard) Committee, Executable and Linking Format (ELF) Specification, Version 1.2, May 1995,

[5] Rivest R. The MD5 message-digest algorithm. Network Working Group RFC 1321, April 1952

[6] Microsoft Corp. The Component Object Model Specification. Version 0.9. Redmond, WA, 1995

© PEBEEBRSAIIZ  htupd/ www. jos. org. cn




BB F:—# X T ELF B 4= 469T 2 A EOS Mtk w4 5 ik 163

[7] Bershad B, Savage S, Pardyak P, ef al. Extensibility, safety, and performance in the SPIN operating system. In: Proc. of the 15th
SOSP. Copper Mountain, Co. December 1995.

[8] Nelson G. Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.

(9] Wilson CH, Marc EF, Charles G, ef al. Language support for extensible operating systems. In: Proc. of the Workshop on Compiler
Support for System Software, February 1996.

http:/ www, jos. org. cn




