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Abstract. With XML being the standard for data encoding and exchange over Internet, how to manage XML data
efficiently becomes a critical issue. An effective approach to improve the performance of XML management
systems is to discover frequent XML query patterns and cache their results. Since each XML query can be modeled
as a tree structure, the problem of discovering frequent query patterns can be reduced to frequent structure mining.
However, mining frequent query patterns is much more complex than simple structure mining since we have to
consider the semantics of query patterns. In this paper, we present an approach to discover frequent XML query
patterns efficiently. Compared with previous works, our approach is strictly based on the semantics of XML queries,
its mining results are more precise, and can be more effectively utilized by caching system.
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1 Imtroduction

As XML prevails over Internet as a medium for data exchange end representation, how to process XML
queries efficiently becomes the imperative research issue. Query caching is one of the most promising approaches to
reduce the query processing time. By analyzing the user logs, frequently occurred query patterns can be identified
and their result can be materialized to improve the system efficiency. How to cache XML query result gains its
focus recently!™'"? and finding the frequent query patterns plays a critical role in a XML caching system.

Frequent structure mining (FSM) is a new direction in the field of data mining that has been intensively studied
recently!"*'?). Given a pattern tree (or pattern gre;ph) S and a set of data trees (or data graphs) D={$,,....,5,},
usually denoted as the transaction database, we say S occurs in D if we can find an element $; in D such that there is
certain mapping relationship between § and S;. FSM aims to find the pattern trees (or pattern graphs) that occur
frequently over the set D. Since XML queries can be modeled as trees, the problem of discovering frequent guery
patterns can be reduced to FSM. However, mining frequent query patterns is much more complex than the mining of
simple structures because of the semantic issues of query patterns.

In this paper, we propose an approach for frequent query pattern mining strictly based on the semantics of
XML queries, and present several techniques to optimize the mining process. Through utilization of the rightmost
occurrences of pattern trees in the transaction database, we prove that in order to obtain the frequencies of pattern
trees, only single branch pattern trees need to be matched against the transaction database, and the frequencies of
multi-branch pattern trees can be figured out through reuse of intermediate results. Experiments show that our
method results in substantial performance gains.

The rest of the paper is organized as follows. Basic concepts used in this paper are given in Section 2. Section
3 describes the candidate enumeration method used in this paper. Section 4 presents our approach to discover
frequent query patterns. Section 5 gives the results of the experiment study; Section 6 discusses the related works,

and we conclude in Section 6.

2 Problem Statement

In this paper, we consider selection patterns in the syntax of XPath™, a popular pattern language that are
generally modelied as query pattern treesl’l.

Definition I (Query Pattern Tree). A query pattern tree is a rooted tree QPT=(V,E), where ¥ is the vertex set,
E is the edge set. The root of the query pattern tree is a distinguished node denoted by root(QPT). Each vertex v has
a label, denoted by v.label, whose value is in {“*”} \ tagSet, where the tagSet is the set of all element names in the
context. A distinguished subset of edges representing ancestor-descendant relationships is called descendant edges.

Figure 1 (a)-(d) shows three QPTs QPT|, QPT,, and OPT:.
Descendant edges are shown with dotted lines in diagrams. In
what follows, given a query pattern tree QPT=({V.E), sometimes
we also refer to V and £ with QPT if it’s clear from the context.
Given an edge e=(v,,v;)€ GPT where v, is a child of v,, sometimes

v, will be denoted as a d-child of v, if ¢ is a descendant edge, and (8) QPT, (®) QPT, (c) QPT;
as a c-child otherwise. Given two c-children (or d-children )
respectively) of a QPT node, we say they are duplicate siblings if Fig] Sample QPTs
they share the common label {.

Given a query pattern tree QPT, a roofed subtree RST of QPT is a subtree of QPT such that

root(RST)=root(QFT) holds. One of rooted subtrees of QPT, is shown i Fig.2(a). Given a tree node veQPT,
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subtree(v) denotes the subiree T=(}",E'} of QPT rooted at v. Let QPT be a pattern tree, the size of QPT is defined by
the number of its nodes |QPT|. An R8T of size k+1 will be denoted as a k-edge RST sometimes. An RST will also
be denoted as a single branch RST if it has only one leaf node, and as a multi -branch RST otherwise.
To discover frequent query patterns, one important issue is how to test the occurrence of a tre ¢ pattemn in the
_ transaction database. Intuitively, we need to discover query patierns whose outputs are more likely to be reused by
¥ other queries. The topological mapping method, used by most previous works %), is not applicable to query pattern
mining because for query patterns we must take the semantics into account. The subtree embedding approach used
by Ref[12] is too restrictive since it requires the pattern irees preserve ancestor-descendant relationships. In this
paper, we use the concept of tree subsumption, a sound (but not complete} approach to test containment of query
pattern treesl!.
Deflnition 2(Tree Subsumption). Given two QPTs QPT and QPT’, QPT is subsumed in QPT’, denoted as
QPTcQPT, iff there exists a simulation relation sim between nodes of QPT and nodes of QPT’, such that:
1} {root{QPT), ract(QPT")) esim;
2) v.label = v'.label or ¥'.label = “*", if {v,»")yesim;
3 if {(v;,¥' e sim and v; is a ¢-child of v; in QPT, there must exist some c-child v'5 of v'; in QPT’ such that
{va,¥'5re sim; if {v,,v",) € sim and v, is a d-child of v, in QPT, there must exist some proper descendant v, of V', in
QPT"' such that {v,,V";)esim.
Figure 2 shows the subsumption of RST in QPT,.
Given a transaction database D={QPT} i=1,...,n}, we say RST occurs in
D if R8T is subsumed in a query pattern tree QPT,eD. The frequency of RST,
denoted as Freq(RST), is the total occurrence of RST in D, and
supp(RSTy=Freg(RST)\D| is its support rate. Given a transaction database D
and a positive number 0<oxl called the minimum support, mining the frequent

(a) RST (b) QPT,

Fig.2 Tree subsumption query patterns of D means to discover the set of RSTs of D,
Fp={RST\,...,R5T,}, such that for cach RSTe Fp, supp(RST)20.
For exampie, assume that there are three QPTs QPT,, QFT,, and QPT; in the transaction database as shown in
Fig.1, and o= 0.7, the RST in Fig.2 (a) occurs in three QPTs, thus it’s frequent with respect to this database with
supp(RSTYy=3/4 and Freg(RSTF3.

3 Candidate Generation

In our settings, each data tree is a QPT. Given a transaction database D={QPT|| i=1,...,n}, its global query
pattern tree G-QPT is constructed by merging all QPTs in D. Figure 3 shows an example of G-QPT obtained from
the QPTs in Fig.1 (a), (b), and (c). Note that for each QPT with duplicate siblings s,, ...,s, sharing the common label
[, we need re-label them with 7',....F" respectively before the merging process begins, and re-label them back with /
after the merging process has finished. Clearly, when duplicate siblings are present, the merging result is not uniq ue.
Under such situation we can choose one merging result arbitrarily because it will not influence the succeeding
processing.

The nodes of G-QPT can be numbered from 1 to |G-QPT| through a pre-order
traversal. Because each node of QPTeD is merged with a unique node of the G-QPT,
each node of QPT has the same number as the corresponding node in the G-QPT. For

example, in Figure 1, integers outside of circles are numbers of corresponding tree
nodes. After labeling each node with a number, the representation of QPT; can be
simplified to string format “1, 2, 3, 4, -1, -1, 7, -1, -1” as in Ref.[12]. We will call such

Fig3 G-QPT
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encoding strings as string encodings of QPTs.

As in Ref.[11], in this paper, we only consider pattern trees that are rooted subtrees of some QPTs in the
transaction database. Since each QPT is a rooted subtree of the G-QPT, each pattern tree is also a rooted subtree of
the G-QPT. We enumerate all candidate RSTs with the schema-guided right most expansion method proposed in
Ref.[11]. It’s not difficult to prove that as in Ref.[11], given a k-edge rooted
subtree RST* in equivalence class [RST*"'], each k+1-edge rooted subtree can
be generated with two kinds of operations: the right most leaf node expansion
(RMLNE) of RST*, or the join of RST* and another rooted subtree RST* in the
same equivalence class (sometimes the join of RST* and RST* will be denoted
as RST* X RST*). And all the k+1-edge rooted subtrees will be enumerated in

ascending order.

Figure 4 shows an example of candidates generated from the G-QPT in
Fig.3. Due to the presence of duplicate-siblings, some RSTs are likely to be
enumerated more than once in our settings, which will incur extra expense. For
example, in, RSTs “1, 6, —1” and “1, 9, —1” are equivalent RSTs indeed.
However, due to the space limitation, we will not consider this issue further

Fig.4 Candidate enumeration

and simply process them as different RSTs.

4 Algorithm

In this section we present an Apriori-based algorithm, FQPMiner, to discover frequent RSTs, then propose

several techniques to optimize the mining process.
4.1 Discovering of frequent RSTs

The main framework of our algorithm FQPMiner is shown in Figs.5 and Fig.6. In the algorithm, the notation
RST* denotes a k-edge rooted subtree; Fy is a set of frequent k-edge rooted subtrees. Most of the work is finished in
the function FQPGen (see Figure 6), which uses the schema-guided rightmost enumeration method to enumerate
candidate RSTs level-wise, counts the frequency of each candidate RST, and prunes infrequent RSTs based on the

anti-monotone property of tree subsumption.

Algorithm:FQPMiner(D,minSupp)

Input: D—transaction database

minSupp—the minimum support

Output: the set of all frequent RST sets

(1)F={1-edge rooted subtrees in D};

2)for(k=1; Fird;k++) do

(3)  Fi1=FQPGen(F;, minSupp, D);

@return {F)|i=1,...k-1};

Fig.5 Algorithm to find frequent RSTs
To count the frequency of an RST, a naive solution is to match it against each QPT in the transaction database.

This method will be very inefficient because tree matching is expensive. FQPGen can count the supports of
candidates more efficiently through utilization of transaction IDs. For each RST, FOPGen maintains a TIDList
attribute that contains transaction IDs of QPTs in which the RST occurs. We can easily prove that an RST is
subsumed in a QPT only if all its rooted subtrees are subsumed in the QPT. Hence, only 1-edge RSTs need to be
matched against each QPT in the transaction database. To count the frequency of a k-edge RST RST* (k>1), if RST*
is a single-branch RST, FQPGen need only to match RST* against QPTs whose transaction IDs are in the set
RST*! tidlist, where RST*! is the k-1-edge RSTs that is a rooted subtree of RST* (lines 4-7 of Fig.6). If RST* is a

multi-branch k-edge RST, then FQPGen need only to match RST* against QPTs whose transaction IDs are in the set
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RST, tidlistn RST,.tidlist, where RST, and RST; are k-1-edge RSTs that are rooted subtrees of RST* (lines 8-18 of
Fig.6). To check whether an RST exists in F, we can use the index structure EC-Tree proposed by Ref.[11], with
which the lookup time of the RST is about O(L), where L is the length of the string encoding of the RST.

In the algorithm, Contains (lines 6, 12, and 17) is a function based on the definition of tree subsumption in
Section 3. The basic idea is to look for a simulation between two trees by constructing a relation R and then
removing from R all pairs (u,«') that will violate condition (3) of the definition of tree subsumption. We will not

give its detail because of its strong resemblance with the algorithm presented in Ref.[7].
Algorithm: FQPGen (F;, minSupp, D)
Input: D: transaction database
minSupp: the minimum support
F;: the set of frequent k-edge RSTs
Output: the set of all frequent RST sets
(1) Fenr=¢;
(2) for each rst € F;
3) for each rst’ obtained by expansion of rst

O] if rst’ is a single-branch RST

) " for each transaction te D such that t.triderst.tidlist do
6) if Contains(¢, rst’)

) rst’ .tidliste1.TID;

8) if rst’ is a multi-branch RST generated through RMLNE
) obtain RST} by cutting off one leaf of rst';

(10) tempList = rst.tidlist~ RST,. tidlist;

) for each transaction te D such that t.tid e tempList do
(12) if Contains(t, rst’)

(13) rst' tidliste—t1.TID;

(14) if rst' is generated through join of rst and RST;

Q15) tempList = rst.tidlistr RST. tidlist;

(16) for each transaction te D such that t.tid e tempList do
a7 if Contains(z, rst')

(18) rst' tidliste1.TID;

19) if (Jrst’.tidList|2 minSupp)

20) Fro6=rst;

(21) return Fiyy;

Fig.6 Candidate generation algorithm
4.2 Optimization

In this subsection, we propose a technique for further optimization of the mining process. We prove that
through utilization of rightmost occurrences, multi-branch RSTs needn’t be matched against QPTs even in our
settings.

Definition 3 (Proper Combination). Given an rooted subtree RST and a query pattern tree QPT, where
(V15-..,Vm) is the set of nodes of RST sorted in pre-order, assume that RST ¢ QPT holds and sim is the simulation
relation between their nodes, then the Proper Combinations of sim is the set PC= {(V'1,...,V'w)| Vi€ V', i=l,...,m}
such that for each (V'y,...,v",»€PC: if v; is a c-child of v, v/; must be a c-child of v'y; if v; is a d-child of v, v'; must
be a proper descendant of v';, where j, k are any integers such that 1<j, k<<m holds.

Definition 4 (Rightmost Occurrence). Given an rooted subtree RST and a query pattern tree QPT where the
list L=(v1,...,Vpm,...,Vs) is the set of nodes of RST sorted in pre-order, v,, and v; is the second rightmost leaf and the
rightmost leaf of RST respectively, assume that RSTCQPT holds, sim is the simulation relation between their nodes,
then the rightmost occurrence of RST in QPT is the set rmo(RST,QPT)={(V' m,V')KV'm:V's) is a sub-list of some
proper combination {(V'y,...,V',...,V's) of sim}. Note that if the RST has only one leaf node, then the first element of
its rightmost occurrence should be null. Given an RST, a transaction database D and its global query pattern tree
G-QPT, the rightmost occurrence of RST in D is the set rmo(RST,D)={(u,v,{QPT.tid|for all QPT €D such that (,
v)ermo(RST, QPT)})| (»,v)ermo(RST,G-QPT)}.

Definition 5 (Conditional Rightmost Occurrence). Given a rooted subtree RST and a query pattern tree QPT,

© PEBREBSLHIZOR  htp/ www, jos. org. cn



ML F XML &HE X L8 119

where (¥1,...,¥p,....Vm is the set of nodes of RST sorted in pre-order, and v, is a node of the rightmost branch of RST,
assume that RSTcQPT holds, sim is the simulation relation between their nodes, and {1;,v')esim, we define the
Conditional Rightmost Occurrence satisfying (v, ') esim as the set {V',, | there exists a proper combination of sim
(V' )y iy sV ) such that v =v'}. We denote it as rmoyy;, vyesim(RST, QPT).

For example, given the transaction database composed of OPT, QFPT;, and QFT; as shown in Fig.1 (assume 1,
2, and 3 are their respective transaction IDs), and the global query pattern tree G-QPT in Fig.3, if sim is the
simulation relation between RST “1, 2, 3, -1, 7, -1, -1” and G-QPT, then the proper combinations of sim are {{1, 2,
3, 5, (1, 2, 3, 7)1, the rightmost occurrence of the RST in G-QPT will be {(3, 5), {3, )}, the rightmost occurrence
of the RST in the transaction database will be {(3, 5, {1}}, {3, 7, {2})}. Clearly, the frequency of an RST freq(RST)
= |{tid|tide TIDList, { u, TIDList )e rmo(RST, D)}|.

Lemma 1. Given a transaction database D, its global query pattern tree G-QPT, and two k-edge RSTs RST,,
RST; e[RST*'], let RST*"'= RST, X RST, p is the node of RST*"' not present in RST, (i.e., the rightmost leaf of
RST.), and the junction node g is parent of p, then we have:

1) If RST, is a single branch RST, then mo(RST*', D) = {{ u, «', TIDList,~TIDListy)| (v, u, TIDList,)c
mo(RST,, D), {V, u, TIDList;)c rmo{RST,, D), where 4 € tmoy, g1eim{RST), G-QPT), #'e 1oy, yoesim(RSTs,
G-QPT), and ¢'= G-QPT }.

2) If both RST; and RST; are multi-branch RSTs, and the parent of the rightmost leaf of RST; has only one
child, then rmo(RST*"',D)={{u, w', TIDList,~TIDList;}j (v, #, TIDList;)c rmo(RST,, D), {+, ', TiDListy)c
rmo(RST., D), u<<y’, where u € Mo, y-esm{RET), G-QPT), #'€ oy, 4o esim(BR3T, G-QPT), and ¢’ € G-QPT }.
Here u << V' means V' is the parent (or ancestor respectively) of u if the rightmost leaf of RST, is a c-child (or
d-child respectively) of its parent.

1) Otherwise, rmo(RST*"!, D) = {(», u', TIDList, TIDList;}| (v, u, TIDList;}c rmo(RST,, D), (', u',

TIDList;) < mo(RST,, D), u = v, where # € Moy, peim(RST;, G-QPT), ¢'e Moy gesim(RST,
G-QPT), and ¢' € G-QPT }.

Lemma | can be proved based on the definition of tree subsumption. We will not give the detail due to space
limitation. Based on Lemma 1, all RSTs generated through join operations are not required to match with QPTs.
Now we turn to investigate RSTs generated through rightmost leaf node expansion.

Lemma 2. For any multi-branch k+1-edge rooted subtree RST*' generated through tightmost leaf node
expansion of a k-cdge rooted subtree RST;, there must be another £-edge Tooted subtree RST; which is formed by
cutting off the second rightmost leaf node of RST**' such that the join of RST, and RST; will produce RST*"" itself.
If RST, exists in Fy, then we have: rmo(RST™, D) = {{v, ', TIDList,~TIDList;}| {v, 1, TIDList;)< rmo(RST,, D),
', ', TIDListy)c rmo(RS T, D), o << u}, otherwise, RST*"' must be infrequent.

Based on Lemma | and Lemma 2, we have the following result:

Theorem 1. By using the rightmost occurrence of RST in D, only those single-branch RSTs need to be
matched with QPTs. The frequencies of other RSTs can be computed through reusing intermediate results.

Based on the above discussion, we are in a position to describe our algorithm FOPMinerRMO. Its main
framework is similar to FOPMiner, but the candidate generation algorithm FQPGen is adapted into FOPGenRMO
in Fig.7. FOPGenRMO associates each RST with its rightmost occurrence in the transaction database. Lines 6-7
deal with single-branch RSTs. We use GetRMQ algorithm to match single-branch RSTs against QPTs to obtain their
rightmost occurrences (line 7). GetRMQ is an extension to Contains algorithm used in FOPMiner, but its detail is
net included in this paper. Lines 8-12 cope with multi-branch RSTs generated through RMLNE using Lemma 2,
Lines 13-17 handle RSTs generated through join using Lemma 1. For simplification of representation, only case (1)
of Lemma 1 is illustrated in Fig.7. Line 18 obtains TIDList of a rooted subtree from its rightmost occurrence. Lines
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19-20 check whether the result subtree is frequent, and those frequent ones are added as members into Fy.,.

While expanding an n-edge RST rst, to generate an n+1-edge RST 15t,,,, we obtain the rightmost occurrence
rmo(rst,, D) through computation over rmo(rst,, D) and rmo(rst’;, D), where rst’; is another n-edge RST. We can
prove that rst, < rst’, always holds (definition of order relationship < can be found in Ref[11]), it implies that after

+ the expansion of an RST rst,, its rightmost occurrence rmo{rst,, D) will not be used, hence, needn’t be maintained,
. any longer. Based on the above discussion, FQPGenRMO can remove the rightmost occurrence information as early

as possible (line 21), and the memory cost will be reduced drastically.
Algorithm: FQPGenRMO(F,, minSupp, D} ’
Input: I): transaction database
minSupp: the minimum support
Fy: the set of frequent k-edge RSTs
Qutput: the set of all frequent RST scts
(1) Frar=t;
(2) for each rst € F
(3) for each rst obtained by expansion of rs¢

@ rmo(rst’, D) ={};
(5) if ¥t is a single-branch RST
(6) for each transaction ze D such that t.tid erst.tidlise do
(¢ rmo(rst’, DY = rmo(rst, D) W{GetRMO{rst, 1)}
(8) if re¢' is a multi-branch RST gencrated through RMLNE
{9 obtain R5T; by cutting off the second rightmost leaf of rs¢';
(10) for each pair (<v, u, tidlisty> ermo(rst, D), <+, «', tidlisty>ermo(RST,, D))
{11} ify <<u
(12) rmo(rst, D) = rmo(rst’, DYy w{<v, o', idlishtidlisty>},
(133 if 75t is generated through join of rst and RST, and § is the junction node
{14) GetCondRMO(rst, G-QPT, f, rmo(rst, G-QPT)}, cond-rmoy,
(s . GetCondRMORST, G-QPT, j, rmo(RST;, G-QPT), cond-rmoy);
(16) for each q such that <g, #>e cond-rmo, <gq, u'>€ cond-rmo;
(17} rma(rst', L) = rma(rst', D) O{<u, o', tidlistirtidlistz>|
<v, u, Hdlisty>e rmo(rst, D), <, o', Hidlisty>crmo(RST,, D)};
(18) st’_tidlist={t.TID] t. TIDe tidlist;, <p, tidlist;>e rmo(rst’, D)};
(% if (lrst’ .tidList|> minSupp)
20; Fioge=rst’;
(21) remove rmo{rsi, D),
{22) remove rst. tdiist,
(23) return Frv;

Fig.7 Utilization of rightmost occurrences

Figure 8 shows the algorithm GerCondRMO, which are used for the computation of the rightmost occurrences
of those RSTs generated through join operation (line 14-15 of Fig.7). GetCondRMO obtpins the conditional
rightmost occurrences of an RST in the G-QPT. GetCondRMO uses post-order enumeration of the nodes in RST.
The main loop visits RST nodes in descending order (see line 2 of Fig.8). Assume g is the current RST node. The
algorithm fetches all G-QPT nodes with the same label value as g (line 4). For each fetched node d of the G-QPT,
the algorithm try to match subtree of RST rooted at ¢ against subtree of the G-QPT rooted at 4. Since subtrees of
RST rooted at the child nodes of ¢ have already been matched in preceding loops, the algorithm need only to check
whether for each c-child node (or d-child node respectively) g’ of g, there is a c-child (or descendant) &' of 4, such
that ¢' and & are matched in preceding loops (line 6-13). RST is matched with the G-QPT if the root of RST is
matched with the root of the G-QPT at the ending point (line 25). For each node d of the G-QPT that is matched
with an ancestor node q of the rightmost leaf node (or junction node respectively) of RST, the ancestor-descendant
relationship between & and d' is recorded (line 16-23), where & is a node of the G-QPT that will be matched with
the rightmost leaf node {or junction node respectively) of RST when 4 is matched with ¢. The ancestor-descendant
relationship between d and & will at last be used to obtain conditional rightmost occurrence (line 25-26).
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5 Experiments

In this section, we present experimental results to evaluate the effectiveness of our algorithm on a range of
datasets and parameters. All experiments were performed on a 1.8GHz PC with 512MB RAM, running Windows
2000 Server. The algorithms were implemented in C++.

Algorithm:

GetCondRMO(RST, G-QPT, ¢, rmo, cond-rmo)

Input: RST: a rooted subtree
G-QPT: the global pattern tree
¢: the junction node of RST

o

: the rightmost occurrence of RST in GQPT

cond-rmo: the conditional rightmost occurrence (used for returning result)
Output: the conditional rightmost occurrence
(1)ml.match = rmo; //rml is the rightmost leaf of RST
(2)for all other g € RST /iterate all nodes of RST except for rml in postorder
@) q.match = {};

(4) for
(3)
(6}
N
(8)
(9
(10)
(1)
(12)
(13}
(14)
(15)
(16}
(an
(18)

(19
(20)
(21)
(22)
(23)
24)
(25)
(26)
(27yreturn;

Fig.8

alld & G-QPT such that d.label = g.label
New map;
for all g e children(q)
map.q'= {};
ifg" is a d-child
for &ll & eg’.match such thatd is an ancestor of &
map,.q’ = mapa.qoid'};
if " is a c~child
for alld e g'.match such thatd" is a c-child of d
mapaq = mapsg'id};
if not exist p such that map.p = {}
g.match = g.match w{d};
if g is parent of the rightmost leaf
d.rmo = mapyrmi,
if ¢ is ¢ or & descendant of ¢
and an ancestor of the rightmost leaf except for its paren
drma= {p|p eq.rmo, ¢ emapgrme };
if ¢ is parent of ¢
d.cond = mapg.rme;
if g is an ancestor of ¢ except for its parent
d.cond = {m| m en.cond, n emapgrmc };
delete map.:
if ¢ is the root of RST and 4 is the root of G-QPT
cond-rmo = cond-rmos{<m, n>| med.cond, nem.rmo };

The algorithm to obtain the conditional rightmost occurrence

We use DBLP.dtd as the schemas of XML data sources. Given a DTD, we first construct a G-QPT by
introducing duplicate siblings, descendant edges, and wildcards. Then we generate all RSTs of the G-QPT, and use
Zipf and uniform distribution of RSTs to produce the transaction file of QPTs. Zipf distribution is used since Web
queries and surfing conform to Zipf's law!’], while uniform distribution is used only to see what differences might
happen to our approaches with different QPT distribution. The characteristics of each dataset are listed in Table 1. A
RST with descendant edges takes more time to compare with QPTs than a RST without descendant edges.
Consequently, the number of descendant edges in G-QPT tells the difficulty of tree matching. On the other hand, the
average number of nodes, maximnm depth and fanout of QPTs also show the complexity of the dataset.

Table 1 Properties of datasets

G-QPT QPT in DB .
Datasets #of Max #of Max Avg # of Max Max 100[{33:5’:: (‘IJ:B)
nodes depth d-child fanout nodes depth fanout
Zipf 98 8 24 12 7.4 8 12 3549
Uniform 98 8 24 12 2.2 2 12 4843

Two groups of experiments are performed. The first group of experiments is to show the performance of our
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algorithms at a range of different minimum support values. We use 100K datasets, which contain 100,000 QPTs,
The second group aims to present the scale-up of our algorithms at minimum support value 1%, The total number of
QPTs in each datasets ranges from 50K, 100K, 200K, 300K to 500K.

The performance of FOPMiner and FOPMinerRMO is shown in and. For 100K data set of Zipf distribution,
FQOPMinerRMQ is 5-7 times faster than FQPMiner. The reason is that FQPMiner will match each candidate RST
against QPTs in the transaction database while FOPMinerRMO processes the majority of candidate RSTs without
matching operation. In addition, matching time of single-branch RSTs is much less than that of multi-branch RSTs.
Consequently, FQPMinerRMO takes much less time than FQPMiner. This fact is further confirmed in the data set
of uniform distribution, where FQPMinerRMO can be 8-12 times faster than FQPMiner.

S FQPMiner ~—dr— FPilinerR¥0 [ FeeMiner —t— FupitinoriHo
1200 3500
1000 | 3000 |
L w0 | - 2500 |
£ a0 | & 2000
g [ £ 1500 |
i " (=
400 1000 }
200 500 |
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20 L& 10 a5 0.1 20 L5 LD 0.5 01
Fig.9 Experiment results
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Fig.10 Experiment results
The result of scale-up experiment is shown in. At a given minimum support value 1%, we performed the
experiments by varying the number of transactions(QPTs) in database file DBLP(Zipf) from 50,000 to 500,000.
From the, we find that the execution time of both FQPMinerRMO and FQPMiner algorithms scales almost linearly
with the size of dataset. Meanwhile, we also find that FOPMinerRMO continues to be about 5-7 times faster than
FQPMiner. This fact is further confirmed in the data set of uniform distribution (see), where FQPMinerRMO
continue to be 8-10 times faster than FOQPMiner.

6 Related Work

Data mining is an important research area in the field of knowledge engineering. Recently researchers
gradually shift their focus to mining frequent structures like graphs!®®! or trees™'>"'%!"l, Different from our work,
most previous works assume that transaction database is consisted of simple trees or graphs without descendant
edges or wildcards, and their methods are not directly applicable to our applications since they can’t handle special
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XPath constructs, which would make the computation much more complex.

Reference [12] is more closely related with our works. In its settings, each edge works as a descendant edge. It
maintains prefix matches for each candidate pattern, and proposed a method to compute the prefix matches of
k+1-edge patterns from prefix matches of k-edge pattemns incrementally. Since the support counts of candidate
patterns can be derived their prefix-matches, Ref[12] can get the support counts of candidate pattemms without
matching them against transactions. However, under special cases, the memory cost of prefix matches of a candidate
could be exponential to its size. For instance, given a transaction tree DT composed of a chain of # nodes and a
pattern tree PT composed of a chain of m+1 nodes, where each node is labeled with the same label I, Ref.[12] has to
maintain #!/((n-m)!*m!) prefix matches for the match between PT and DT. Clearly, the algorithm of Refi[12] is
intractable since they have to generate and compare each prefix match.

The discovering of frequent XML query patterns was initially proposed in
Refs.[10,11]. In Refs[10,11], several efficient algorithms are proposed through
utilization of tidLists. However, Refs.[10,11] utilize tidLists based on the following
assumption: if all proper subtrees of a multi-branch pattern tree occur in a data tree,

then the pattern tree itself must also occur in the data tree. The above assumption may
lead to imprecise mining results because based on the semantics of XML gueries, it (®RST,  (B)QPT,
doesn’t hold under certain special cases. For example, although each proper rooted  Fig 11 Inpreciseness
subtree of RST, in Fig.11 is subsumed in QPTs, RST; itself is not.

7 Conclusions

In this paper, we present an efficient algorithm to discover frequent rooted subtrees from XML queries through
utilization of rightmost occurrences. Our method is strictly based on the semantics of XML queries, and we believe
this is very important for effective utilization of the mining results.

Future work includes incremental computation of frequent RSTs. To incorporate the result of this paper into
caching system, an important issue is to guarantee the freshness of the materialized data. The caching system must
guarantee the consistence of the mining result with the history database £). However, if the pattern of user activity
changes at a relatively high rate, the accuracy of the mining result may deteriorate fast. Because re-computation will
incur a high overhead, finding a method to discover frequent RSTs incrementally becomes very important.
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