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Abstract: During the past two decades Model Checking based on Kripke Semantics Structure has proven its
efficacy and powerful in circuit design, network protoco! analysis, program verification and bug bunting. Recently
there has been considerable research on Model Checking without OBDDs such as using SAT Solver or Bounded
Model Checking (BMC). A Dynamic Kripke Semantics Structure is introduced through allow the AP set changed.
Based on this method, a new direct model checking algorithm is proposed.
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1 Introduction

Given a dynamic semantic Kripke structure M=(S,R,L,4P) that represents a finite state concurrent system and 2
temporal logic formula f expressing some desired specification, find the sets in § that satisfy M, s|= f and this is
called the model checking problem. We notate Mf={s=S|M,s)=f}. Compared to other formal verification techniques
{c.g. theorem proving) model checking is largely automatic. In run-time environment, the transition is obtained
dynamically. The expansion of the model satisfying the specification may not keep the semantic consistency. Thus
the semantic interpretations of different models under the same state are not consistency. The aim by introducing
dynamic Kripke semantic is to introduce a dyﬁamic view of true and false into the verifying of the design of
hardware or software. This paper is organized as follows. In the following section we introduce the definition of the
dynamic semantic Kripke structure. In Section 3 we give an introduction to CTL *T"'"*'*] {ogic and CTL logic. In
Section 4 we give our new direct CTL model checking algorithm. In Section 5 we conclude the paper with some

application examples.
2 The Dynamic Semantic Kripke Structure

Definition 2.1. Let AP be a set of atomic proposition. A Kripke structure M over AP is a four triple M=(S,R.L,
AP) where

1. §is a finite set of states.

2. 8,8 is the set of initial states.

3. RcSxS is a transition relation that must be total, that is, for every state s there is a state 5'e§ such that

R{s.s"). '
4. L:5-2%F ig a function that labels each state with the set of atomic propositions true in that state.
L(sy{plpeAP and p is true in the state s}. Mp={s|seS and p is true in the state s}

Definition 2.2, Let M=(5,R,L,AP) be a Kripke structure, a path in the structure M from a state s is an infinite
sequences 7=s,5,s;... such that s=s, and R(s,s..,.) holds for all />0. We use m to denote the suffix of = starting at s,
that is, 77=5.5,..501...

In the traditional Kripke Semantics Structure the set of atomic proposition AP can’t be changed. Here the set of
atomic proposition AP can be changed dynamically, that is, the new atomic proposition p can be put into AP, so we
get the new set of atomic proposition 4P and a new Kripke structure M,=(5,5,R8.L;) where

1. AP=APU {p}

2. VY geAPcAP|, Mg=Mg

3. ¥ seS, Lis)=L\{s¥/{p}

Lemma 2.3. The above Kripke structure M1 is consistency dynamic expansion of the Kripke structure M, This
kind of Kripke structure is called the Kripke structure with dynamic semantics, notated: McM,. Later the dynamic
Kripke structure is notated: M=(5,5,,R,L,AP) in order to emphasize the importance of the set of atomic proposition.

3 The Computation Tree Logic CTL’

Conceptually, CTL" formulas describe properties of computation trees. Designating a state in a Kripke
structure as the initial state forms the tree and then unwinding the structure into an infinite tree with the designated
state at the root, as illustrated in Fig.1. The computation tree shows all of the possible executions starting from the
initial state.
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Unwind State Graph to obtain Infinite Tree

State Transition Graph or Kripke structure

Fig.1

In CTL® formulas are composed of path quantifiers and temporal operators. The path quantifiers are used to
describe the branching structure in the computation tree. There are two such quantifiers A (for all computation
paths) and E (for some computation tree path). These quantifiers are used in a particular state to specify that all of
the paths or some of the paths starting at that state have some property. The temporal operators describe properties
of a path through the tree. There are five basic operators:

X (next time) requires that a property hold in the second state of the path.

F (eventually or in the future) operator is used to assert that a property will hold at some state on the path.

G (always or globally) specifies that a property hold at every state on the path

U (until) operator is a little bit more complicated since it is used to combine two properties. It holds if there is a
state on the path where the second property holds, and at every preceding state on the path, the first property holds.

R (release) is the logical dual of the U operator. It requires that the second property hold along the path up to
and including the first state where the first property holds. However, the first property is not required to hold
eventually.

There are two types of formulas in CTL": state formulas (which are true in a specific state) and path formulas
(which are true along a specific path). Let AP be the set of atomic proposition names. The syntax of state formulas is
given by the following rules:

If pe AP, then p is a state formula. If fand g are state formulas, then —f, fAg, fvg are state formulas.

If fis a path formula, then Ef and Af are state formulas. Two additional rules are needed to specify the syntax of
path formulas: ’

If fis a state formula, then f'is also a path formula.

If fand g are path formulas, then—f, fag, fvg, XF; Ff, Gf, fUg and fRg are path formulas.

CTL' is the set of state formulas by the above rules. We define the semantics of CTL" with respect to a Kripke
structure M. Recall that a path in M is an infinite sequence of states, 7z=sys;s,... such that for every i>0, (s,s')eR
We use 7 to denote the suffix of 7 starting at si. If fis a state formula, the notation M, s |= f means that fholds at
state s in the Kripke structure M. Similarly, if fis a path formula, M, 7|=f means fholds along path 7 in the Kripke
structure M. The relation |= is defined inductively as follows (assuming that fi and f2 are state formulas and g1 and
£ are path formulas):

1. M, s|=p < pe L(s)

2. M, s|=—+fi & M, sj# fi

3. M, sl=fivz < M, s|=fi or M, s|=f2

4. M, sl=finfz & M, s|=fi and M, sj=2

5. M, sj= Eg1 < there is a path ® from s such that M, 2= g1

6. M, sj= A g1 & for all path rstarting from s, M, 7= g1

1. M, n|=fi < s is the first state of xand M, s |= fi
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8. M, r=—mg1 oM, oz gt

9. M, ni= givg2 < M, 7= g1 or M, n|=g2

10. M, = ging2 < M, = g1 and M, n|=g2

11. M, 7= Xgi <> M, mi}= g1 if n=sos1s2.... then 7Z’=s1s2s3...

12. M, n= Fg1 < there exists a k > 0, such that M, =g

13. M, nj= Gg1 < for all k > 0, such that M, =g

14. M, nl= g1Ug2 <> there is a k > 0, such that M, 7= g2, and for all o< j< k, M, 7= g1

15. M, ni= giRg2 < for all; 2 0, if for every i <j, M, n|# g1 then M, 7j= g2

Computation Tree Logic (CTL) is a restricted subset of CTL" in which each of the temporal operator X, F, G,
U, and R must be immediately preceded by a path quantifier. More precisely, CTL is the subset of CTL' that is
obtained by restricting the syntax of path formulas using the following rule:

If f and g are state formulas, then X, Ff, Gf, f Ug, and f Rg are path formulas. In the specification described by
CTL logic there are ten basic CTL operators: AX and EX, AF and EF, AG and EG, AU and EU, AR and ER. Each of
ten operators can be expressed in terms of three operators EX, EG, and EU:

AXf = EX (),

EFf =E[TrueUf]

AGf = —EF ()

AFf= —EG (—))

A[fUg] = —E[—gU(—fA —g)]A —EG—g

A[fRg] =— E[—fU—g]

E[fRg] = A[—fU—g]

4 Direct Model Checking Algorithm Based on Dynamic Kripke Semantic Structure

Given a dynamic semantic Kripke structure M =(S, R, L, AP) and assume that S={s1,52,53,....sn} and
AP={p1p2....pm}. We use a matrix to represent R and a vector to represent Mf

R =(r[i,j])n x n if R(si,s/) is true then r[i,/] =1 otherwise r[i,/]=0

Mf=(m[i])n, if fis true in state si then m[i] =1 otherwise m[i]=0

Especially to the atomic proposition pj, Mpj=(m[il}s if pje L(si) then m[i]=1 otherwise m[i]=0

Io =(Mp1, Mp2, Mp3,..., Mpm)

When a dynamic semantic model M =(S, R, L, AP) is given R, Mpj, Io is determined. If a new atomic
proposition, for example pm+1, is needed to add to AP, a new model M1 is got. When we want to calculate Mf
={seS| M, s|= f} we start from the shortest, most deeply nested sub formula of f and work outward to include all sub
formulas of f. For example, when the sub formula fi has been processed, we have got Mfi. Then we use a new
atomic proposition, e.g. pm+1, to replace fi in fand get a new formula f| pm+1-> 1. Therefore the satisfaction of the
new formula f] pm+1-> 21 in model M1 is consistency with the satisfaction of fin model M. When we get a new model
M from M by setting AP1= AP U { pm+1 } the satisfied states set are not changed, i.e. M, s|=fiff. M, sl= A pmio A
(Notice: the set of states S and the transition R are never be changed). Thus we get a model checking algorithm.

Theorem 4.1. Given a dynamic semantic Kripke structure M=(S,R,L,4P) and a CTL formula f. The Kripke
Structure M1 is the dynamic semantic expansion of M with respect to f by adding a new atomic proposition pm+1
to AP. f1 is the sub formula of f. Mpm+1=Mf", f'=f] pm+1—> f1 .We have that M, s|= fif and only if M1, s|=f".

Proof. We omit its proof.

Theorem 4.2. Given a Kripke structure M=(S, R, L, AP) and a CTL formula f, there is a direct algorithm to
compute the set of states Mf ={ seS| M, s|=f} which is based on the dynamic semantic expansion of M.
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Proof. Recall that any CTL formula can be expressed in terms of —, Vv, EX, EU, and EG. Thus, for the
intermediate stages of the algorithm it is sufficient to be able to handle six cases, depending on whether g is an
atomic p or has one of the following forms: —fi, fivfz, EXf1, E[fiUf2], EGAi.

Stepl. If fis an atomic proposition peAP, we have that Mf = Mp = (5| 58§ A M, s|= p}={s| se§ A pe L(s5)}.
Now we prove the theorem inductively and assume that any sub formula of f'has been processed, i.e., for the sub
formula g of f we have Mg ={seS| M, s|= g}

Step2. f =—fi by the inductive assume, we have Mfl={seS] M, sl=fi}. According to the semantic
interpretation Mf={seS| M, s|= f }= S\ Mfi :

Step3. f = fivfi by the inductive assume Mfi, Mf2, have been got. According to semantic interpretation we
have

Mf=Mfl U M2 ={se8| M, sl= fi}ui{seS| M, s|= 2}

= {seS| M, sl=fi or M, s|=f2}
= (seS| M, si= fiv f2)
= {seS| M, s]=/}

Stepd. f= EXfi by the inductive assume Mfi={ 55| M, s}= /i } has been got. Now we construct the expansion
of the model M. We introduce a new atomic proposition pn (replacing fi by ps1) and get APfinal =AP U {pfi}.
Thus Mfi = Mps. By the Theorem 4.1 M, s|= fif and only if M1, s|= EXpn. The transition R and Mp;, 1<4<m in the
model M1 are the same as those in M. In M)

5 ={Mp, Mp2, Mps,..., Mpm, Mpn)

Mf =MEXpfl={seS| M1, s|= EXpf1 }={1e§| IseS(R(t,1)rseMpn) }

Steps. f= E[fiU f2] according to the inductive assume Mfi={ seS| M, s|=fi }, Mfi={ s<S5| M, s|=f2}, have been
obtained. We now introduce two new atomic propositions pn, pr to construct the new model Mi. We get that
APfinal =AP U {pn. pr}. Thus Mfi = Mpn and Mfz = Mps. By the Theorem 4.1 M, s |=fif and only if

M, sj= E[prUpr}. The transition R and Mpj. t<<w in the model M) are the same as those in M. In M

I ={ Mp\, Mp2, Mp3, ..., Mpm, Mpn, Mpn2)

For calculating E[f1Uf2] we first find all states that satisfying 2. We then backwards using the converse of the
transition relation R and find all states can be reached by path in which each state satisfying fi. All such states

should satisfy E[fiUf2]. Following is the procedure CheckEU finding all the states satisfying E[fiUf2]

Procedure CheckEU(pf1, pf2)
Ti= M pf2; We call T working set and let ME[p/1Upf2} = ©
For all se T do computing ME[pf1Up/2] in Kripke model A1
While T & do
ChooseseT
Ti=T\{s}
For all £ such that R{#,s) do
If teMpf1 and teME[pf1Up/2] then
ME[p1Upf2]:= ME[p1Upf2] v {1}
=Tu{t}
End if
End for all
End while
Return: ME[p1Upf2]
End Procedure.

Step6. f =EGfi according to the inductive assume Mfi={ seS| M, 5|=/1 }has been obtained. We now introduce
a new atomic proposition pA to construct the new model Mi. We get that APfinal = AP U {pn} Thus Mfi =M pn.
By Theorem 4.1 M, s|=fif and only M\, s=EGpn. The transition R and Mp;. 1<<m in the model M1 are the same as
those in M. In M
h={Mp1, Mp2, Mps,..., Mpm, M pn)
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Let M be obtained from M) by deleting from S all of those states at which fi does not hold and restricting R
and L accordingly. Thus, M1'=(§", R', L'} where §= Mf}, L'= L|8" and R'=R|8'X 8'. Note that R may not be total in

this case. The algorithm depends on the following observation.
Procedure ©eckEG(pf1)
o = Mpfl = (M1
* SCC:={C|Cis a nontrivial SCC of §'}
T'=wCeS8CC{s| seC} we call T working set and let MEG{pfl) =@
For ali se 7 do computing MEG(pf1) in Kripke model Af1°
While 726 do
Choose seT
T=T\{s}
For all ¢ such that te§" and R(1,5) do
If r¢e MEG(pf1) then
MEG(pf1)= MEG(pfl} V{r}
T=To{#}
End if
End for all
End while
End for all
Retum: MEG(pfl1)
End procedure.

Thus the proof of the Theorem 4.2 has been finished.

5 Application Analyses and the Conclusion

Over the past 15 years different workflow techniques and CBSD (component based software development)
methods have been proposed. How to verify large software systems especially in the run-time environment
developed by the above methods is become more and more complicated and critical. In this paper we introduced a
direct algorithm for CTL model checking based on the Dynamic Kripke Semantics Structure. We plan to use this
algorithm to modeling the software systems developed by CBSD and research component currency problem. We
believe that this work will be useful in the analysis of Workflow related software systems. '
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