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Abstract: The ultimate goal of workflow management is to implement the right person executes the right activity
at the right time. To make enterprises more competitive, time-related restrictions of business processes should be
considered in workflow models. A workflow model, which considers time related factors, requires time
specification and verification before it goes into production so as to guarantee the time coordination in workflow
executions. Through extending time attributes for the elements in WF-nets, this paper investigates the integration of
the time constraints imposed on business processes into their workflow models and the new nets are called
TCWF-nets. Based on analyzing the schedulability of business activities, a time consistency verification method is
put forward to assure safe time interactions between activities during workflow executions. The schedulability
analysis method can not only check for the time feasibility of its execution for a given workflow schedule when the
time constraints are imposed on business processes, but also give an optimal schedule to guarantee the minimum
duration of workflow execution for a specific case. Research results show that this method supports the time
modeling and analysis in business processes, and has an important value in enhancing time management
functionality as well as the adaptability to dynamic business environments of current WFMS.
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The most critical need in companies striving to become more competitive is the ability to control the flow of
information and work throughout the enterprise in a timely manner. Consequently, time-related restrictions, such as
bounded execution durations and absolute deadlines, are often associated with process activities and
sub-processes!'l. However, arbitrary time constraints and/or unexpected delays could lead to time violations, and
even cause inefficiencies or catastrophic breakdowns within business processes'?. Therefore, dealing with time and
time constraints is crucial in designing and managing business processes.

WFMSs (workflow management systems) are widely used in improving the effectivity and efficiency of
business processes. However, primitive support for time management has been identified as the most significant
limitations in applications of today’s WFMSE!. To satisfy the application requirements of WEMS to practical
business processes, a workflow model requires not only the specification of flow but also the handling of time
issues. Time management includes planning of workflow execution in time, estimating workflow duration, avoiding
deadline violations and guaranteeing the satisfiability of all time constraints imposed on business processes. Proper
time modeling and management will make better coordination of individual tasks and better planning of business
processes possible, because early detection of time consistency of a workflow model will enable a user to predict
any time-related problems, such as any violations of temporal constraints. This is particularly important for
processes where any deviation from the prescribed model can be expensive, dangerous or even illegal, such as

airline maintenance and hazardous material handling.

1 Background and Related Work

In the real world, all business processes exist in a temporal context and are time constrained. The
comprehensive treatment of time constraints depends on time modeling of workflow processes. The existing time
modeling approaches are mainly based on workflow graphs and Petri nets. Eder determined timing inconsistencies
at model time and found the optimal workflow execution resources at run time using the time information

(23] assigned a time interval to individual workflow tasks as duration constraints and checked

generated. Marjanovic
various temporal requirements and inconsistencies of workflow systems by using the proposed verification
algorithms. Ling®®! provided a time interval extension of WF-nets for the purpose of modeling and analyzing time
constraint workflow systems. He put a more emphasis on checking the soundness of workflow process definitions,
but considered very limited time constraints. Sadiq® thought the dynamism of business environment was
manifested in the form of changing process requirements and time constraints, and he primarily addresses the
modeling and management of changes occurring in business processes. Adam!”) has developed a PN-based approach
for identifying inconsistent dependency specification in a workflow, and checking for the feasibility of its execution
for a given starting time when time constraints are present. But unfortunately, they did not show how to map the

time constraints imposed on business processes into the Petri net models.
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These existing approaches aim to check the various time requirements and inconsistencies at build-time, and to
find the optimal workflow execution resource at run-time or attempt to acquire a consistent state of workflow
execution. However, they have not considered how time constraints at every workflow execution stage affect the
schedulability of activities, and what is an activity decision-span when it is schedulable? On the other hand, they
mainly address time representation and conflict resolution but not touch upon any performance analysis of
workflow systems.

To analyze the schedulability for business activities within a time context, a state-based process modeling
language (e.g. Petri nets) is required to determine when an activity is enabled and when it is executed™. This is very
important to schedulability analysis for time constraint workflow models. In this paper, we use WF-nets’” to model
workflow systems and distinguish an activity enabling from its executing. In the subsequent sections, we introduce
TCWF-nets (time constraint workflow nets), and then discuss the time modeling and time constraint satisfiability in
business processes. The introduction of decision-spans for schedulable activities helps the activity agencies to
manage their personal work-plans according to the global business goal. Secondly, we reveal that along a specific
instance routing, the schedulability analysis is induced to a constraint-programming problem and, solving this
problem gives an optimal schedule of workflow execution for this case. Finally, we also discuss the schedule-based

execution.

2 Time Constraint Workflow Nets

2.1 Basic principles

The workflow model or process model is a description of the tasks, ordering, data, time, resource, and other
aspects of the process. Process instance types are introduced by split nodes (decision nodes) or differenct alternative
executives of a workflow. Different instances of the same process instance type are modeled by one execution
subnet of workflow tasks. Obversiously, a workflow model without decision nodes represents only one process
instance type, and a workflow instance is a single, individual instance of a process. A process instance is an
individual enactment of a process (process instance type) with its own process data, and it is also called workflow
instance when a process is represented by a workflow model. In workflow related literatures, there are no a definite
discrimitation between case and instance. Case, workflow instances or process instances are all used for
representing particular occurrences of the workflow or process, and activity instances are particular enactment of
the activity.

Workflow nets (WF-nets) are a subclass of Petri nets that are used to model workflow processes and verify the
behavioral correctness of workflows. Workflow concepts can be modeled by Petri net elements, and standard
workflow building blocks, such as AND-split, AND-join, OR-split and OR-join, can be represented by various net
structures. A workflow is sound if the following 3 restrictions are satisfied: 1) a workflow should always be able to
complete a case; 2) every case should be completed properly, with no more work in progress after completion; and
3) every task should be executed by the workflow execution of some case. To include the notion of time, we extend
a time set D and a time interval set 7C for a WF-net, and a time stamp function TOKEN,,,,(p;) for tokens in place p;.
So, a Time Constraint WF-net is

TCWF-net=(WF-net, TC, D)
where
WF-net: it is the basic workflow net system;
TC=TC,vTC,, where TC,: P—~ZxZ and TC;: T—ZxZ, Z is a set of all non-negative real numbers and Z={xe REAL|
x20}, TC, is a set of all place time pairs and 7C,={[TCyjn(P), TCinax(p)1€ ZXZ| TC yin(p)STCrrax(p)APE P}, TC, is a set
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of all transition time pairs and T7C={[TCpin(£), TCrmax(1)]1€ ZXZ| TCpin(H)STCrax (AL E T} . (TCiin(p), TCrmax(p)) denotes
the time constraints of process instances and (7Cyin(f),TCpnax(f)) denotes the time constraints of activity instances;
D: T>Z, D is a set of firing durations and D={FIREp,,(!)|FIREp,(t)eZnteT}. FIREp,(t) denotes the executing
duration of an activity instance.

In TCWF-nets, TOKEN,,,(p;) represents the absolute time when a process instance arrives at p;, i.e. the global
lifetime of the instance. A place time pair (7Cpin(p:),TCrax(p;)) denotes the time period during which the subsequent
transition can be enabled when a case arrives at p;, that is, the time interval during which the instance is staying at
pi- A transition time pair (TCpyin(%),TCrmax(?;)) denotes the firable time interval during which the activity
corresponding to # can be executed after ¢ is enabled. Thus, the execution time of an activity depends not only on
TOKEN,.(p;), but also on TCix(p;)/ TCrax(pi) and TCpin(4)/ TCrnax(t;), where p; belongs to the set of input places of #;.
FIREp,,(t)) represents how long the execution of activity # lasts.

Comparing with the existing time-related Petri nets®™'”

, TCWF-nets include more general time constraints,
such as place time pairs, transition time pairs, firing durations of transitions, and token arrival times, which describe
the enabled interval of activities, the executable interval of activities, the execution duration of activities and the

arrival time of a specific case. The weakly firing mode!'”

in TCWF-nets suits for modeling an activity, enabling and
executing in workflow systems. Whether an enabled transition can be fired depends on the additional firing
mechanisms. For an automatic activity, it can be executed immediately once it is enabled, but for a non-automatic
activity, it can be triggered by a human participant, etc. Due to considering the execution duration of an activity, all
the tokens used for enabling the activity are preserved during its execution. Once it completes execution, it
generates tokens to its output places with the corresponding number and thus, the workflow proceeds. For
facilitating analysis, we use FIRE,,q.(t;) for denoting the time when ¢ is enabled, EEBT(t;)/LEET(t;) for denoting
the earliest/latest enabling time, EFBT(t)/LFET(t;) for denoting the earliest fire beginning/latest fire ending time,
FIREpeq;n(t))/FIRE,,4(t;)) for denoting the actual fire beginning/ending time, I(p;)/O«p;) for denoting the set of

input/output transitions of p;, and ,(#;)/O,(t;) for denoting the set of input/output places of ¢,
2.2 Time constraint modeling

In order to represent time information, we need to augment the workflow model with the following basic
temporal types: time point, duration and interval constraints. Given a workflow schema, a workflow designer can
assign execution durations, FIRE,,(t;) for individual activities or the whole workflow process, as well as relative
enabled intervals (TCpin(p;),TCmax(p:)) for places, relative executable intervals (TCpin(2;),TCmax(#)) for activities, and
even arrival times TOKEN,,,(p;) for a specific case. These durations and intervals can be either calculated from past
executions, assigned by specialists based on their experience and expectation or assigned according to the resource
loads or the urgency of activities. Activity executable intervals correspond to the allowable execution times of
activities after they are enabled by a process instance. At build-time, these intervals are specified relative to the
arrival time of process instances, and at process instantiation time, these relative intervals can be converted to
absolute time intervals, and the time consistency of coorsponding process instances can be statically verified. In the
sequel, the consistency of these time constraints is monitored at run-time.

* The arrival time of a process instance, TOKEN,,(p;) is an absolute time representing the global lifetime of a
case arriving at p;. For the start place 7, it is the startup time of the process; and for the others, it is the time when the
immediate preceding activity of p; completes firing;

* The interval (TCpin(p;),TCrnax(p;)) denotes the time period during which p;’s succeeding activities are enabled
after a case arrives at p;. It also represents how long an instance will stay in place p; and it may be fallen into (0,00)

under different cases. This interval includes the waiting time and servicing time of a case;
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* The interval (TCpin(t)),TCpnax(t;)) denotes the time period during which the activity corresponding to ¢ can be
executed after it is enabled. If ¢ is enabled at T), then it can be executed within the absolute interval (Ty+TCpin(2)),
To+TCrax(t))). So (To+TCpin(), Tot TChrax(2))) is called an absolute execution interval of ¢, where T, denotes when ¢
is enabled;

* The firing duration FIRE,,(t)) which corresponds the execution duration of an activity, denotes how long the
firing of ¢ will last.

(1,3) 1,,[5,10] Ps»

For instance in Fig.1, TOKEN,.(p1) ” Q W o ey 00
denotes when a case arrives at p;;. The

interval (1,3) associated with p;; denotes a s

time range during which the case will

4.9 » 1,1[0,5] s,

enable transition #; after it arrives at py;. If a
case arrives in py; at TOKEN,,(p11), then ¢,
will be enabled during the absolute time range (TOKEN,,(p11)+1,TOKEN,,,(p11)+3). The (2,8)[2] means that #, can
be executed during the interval (2,8) after it is enabled by p, and, FIREp,(t,)=6 means that the firing duration of #,

Fig.1 Fragment of a simple TCWF-net

is 6 time units.

It is important to note the fact that if a task can be executed for a specific case, then this does not mean that the
task is executed directly. For example, if a task is to be executed by an employee, then the employee has to be
available and willing to execute the task. If the employee is ill or on holiday, then the task will not be executed. The
workflow management is not in a complete control, but just supports the workflow. Since the enabling of a task
does not imply that the task will be immediately executed, it is crucial to discriminate between the activity enabled
interval and execution interval. Therefore, a triggering mechanism is required for leading to the execution of an
enabled task. TCWF-net uses a weak firing mode that means an enabled activity can be fired at any time during its
execution interval.

This paper exactly describes the activity enabled interval and execution interval. This distinction is beneficial
because we aim at determining whether an activity can successfully complete firing within a finite execution
interval and identifying time violations when the activity fails to complete firing. Consequently, we will provide

some useful suggestions for system designers to design time safe and reliable WFMS.
3 Time Constraint Satisfiability

After activity durations FIREp,(t;), case arriving times TOKEN,,(p;), activity enabled intervals (TCyin(p;),
TChax(py)) and the relative execution interval (7Cpin(%),7Crmax(t))) are designed, time calculations are required for
converting the relative time intervals to absolute time points, computing the earliest enabled beginning time
EEBT(t)) and latest enabled ending time LEET(¢;), computing the earliest fire beginning time EFBT(t) and latest fire
ending time LFET(t), and so on. When EEBT(t)/LEET(t) and EFBT(t;)/LFET(t;) are obtained, the workflow
designer can use the following definitions and theorems to assert whether an activity £ can complete its firing within
a finite time interval. Also, the designer can re-assign some time constraints at process instancing time for a specific

case, and then re-analyze the schedulability for activities or the whole process.

3.1 Time related calculations

The purpose of time modeling lies in managing time in workflows®

, 1.e. determining workflow execution
planning in time to guarantee the time safety in execution. The precondition of the safe execution of workflows is
the satisfiability of all time constraints imposed on the process. If all time constraints satisfy a process definition,

then they are consistent with the workflow process logic or the workflow is global consistent. To avoid the possible
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conflict between time constraints, it is required to find a workflow execution that satisfies time constraints imposed
on the business process. So the case startup time must be considered. In a TCWF-net model, the enabled intervals
and execution intervals of activities are restricted. Selecting different firing times may cause that an activity fails to
complete the firing within a restricted enabled time interval. That is, there exists an activity which may fail to
successfully complete an execution. TCWF-net and WF-net have different reachability, and a state that is reachable
in a WF-net modeling is not necessarily reachable in TCWF-net modeling because of the imposed time constraints.

Definition 1. An enabled activity ¢ is said to be firable in a marking M in a TCWF-net, if LFET()>EFBT(t)); t;
is said to be able to complete firing successfully, if LFET(t,)-EFBT(t;)2FIREp,(t;).

In a marking M, if an activity can successfully complete firing, it is schedulable, i.e. the activity execution
satisfies the process time constraints. The schedulability analysis for time constraint workflow models is to assert
the time feasibility in execution for a specific case. Therefore, all analysis is based on the arriving of a case. An
activity instance can be fired only when its corresponding process instance arrives, and the workflow process is
progressed only after the activity finishes. To analyze the schedulability for an activity #, firstly it needs to compute
the time pair EEBT(t)/LEET(t), considering the global time of workflow instances. We have the following
formulae!'!), where piel()(i=1,2,...,k):

EEBT(t)= Mé\X [TOKEN,,.(p)+TCpnin(p)] 1)
LEET(4)= MIN [TOKEN (9} TCoas(p)] @)

Theorem 1. In a TCWF-net marking M, for an enabled activity (transition) ¢, EFBT(#)/LFET(t;) can be
calculated by

EFBT(t))=EEBT(t;)+TCyin(t) 3)

LFET(t)=LEET(t)) 4)

Proof. A transition ¢ is firable, if and only if it is enabled by each of its input places, and it can not be fired

until TCpy(#)) time interval elapsing after it is enabled. If # is enabled at time T, then the firable time of # which is

denoted as 7 , should satisfy (5) as follows:

T+ TCoin(§)< T <To+TCrmax(1)) (&)
Since T, denotes the enabled time of ¢, it should satisfy (6) as follows:
EEBT(1;)<T,<LEET(t)) (6)
By replacing T, with (6) in (5), we can easily have (7) as follows:
EEBT(6;)+TCoin(1)< T SLEET(6;)+ TCrpax (1)) (7
The ¢; will stop firing immediately as soon as any of its input places stop enabling it, so
T <LEET(t) ®)

Combining (7) and (8), we can get T, . =EEBT(t)*TCpin(t), T . =LEET(t), where T . and T are

min max

the earliest fire beginning time EFBT(#) and the latest fire ending time LFET(t;) of ¢;, respectively. So, we conclude:
EFBT(t;)=EEBT(t)+TCyin(t;) and LFET(t;)=LEET(t;).

In fact, TCpin(#;)/TCpnax(2)) is only a relative time pair, if and only if an enabled time 7 of ¢ during the interval
(EEBT(t),LEET(t))) has been determined, and it constrains the firable beginning and ending time of #. That is, ¢
must start its firing at time 7 +7Cpn(%) then end its firing at T +7Cpa(#)). The different selecting of 7 may lead
to two different cases: T +TCrux(t)<LEET(t;) and T +TCpax(j) 2 LEET(t;). The former implies that #; can complete
its firing successfully, but the later implies that # will be disabled by its input places before T +TC(%). So, the
latest fire ending time LFET(t) is independent of TCp.(#;) but depends only on #’s latest enabled ending time
LEET(t)).
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It is required to be pointed out that, for supporting global distributed business applications, time-dependent
factors have to be incorporated into both the build-time process definition and the run-time management system.
The reason is that activities of the workflow may belong to different time zones, flow will also take certain
tranmission durations from one site to another, e.g., the duration of the material flow for delivering products from
the supplier to the customer. In order to maintain global time of a process instance, the flow duration and time
difference conversion must be considered in the workflow model when computing the arrival time of a process
instance, and this is needed to be analyzed for different workflow structures, such as OR-split, OR-join, AND-split
and AND-join.

3.2 Time consistency verification

In order to guarantee the correct execution of time constraint workflow instances, it is required to check the
time constraint satisfiability for a process definition or to find the possible conflicting between the time constraints
and workflow execution routings. The schedulability of ¢ can be asserted by using Eqs.(1)~(4) and definition 1. The
time consistency for activity execution depends directly on its schedulability and, a schedulable activity means that
the process time constraints satisfy the activity execution logic. So, the key of time consistency verification for a
TCWF-net model lies in the schedulability analysis for the process model. There are 2 cases in time consistency
verification:

* For an individual activity #, if time pair EFBT(t))/LFET(t;) calculated by Eqs.(1)~(4) satisfies LFET(t;)—
EFBT(t)=FIREp,(t), then ¢ is schedulable, i.e. ; can complete its firing under the imposed time constraints;

* For a workflow instance, the precondition that the execution of this instance satisfies all imposed time
constraints is that all activities belonging to the instance are schedulable with respect to the initial marking of the
case. So we have definition 2 as the following:

Definition 2. A workflow system (or a instance logic of the process) is time consistent, if and only if all
activity instances along this instance logic are schedulable with respect to the initial state of the workflow.

For a process instance denoted by an activity sequence o =Myt,M t,M,...t:M,...t,M, or tt,...t;...t,, verifying its
schedulability needs to assert whether all activities belonging to o are schedulable by using Eqgs.(1)~(4), because the
workflow system denoted by o is schedulable or time consistent if and only if all activities belonging to o are
schedulable. Firstly, it is required to compute the time pair EFBT(¢)/LFET(t;) for j=1,2,...,n in turn, then assert the
schedulability of # by Definition 1. If ¢ is schedulable, then fire #; and compute EFBT(¢;+)/LFET(%;+) according to

the fire ending time of ¢, FIRE,,,(t;). Only if each #; in o is schedulable, this process instance is time consistent.

3.3 Handling of time violations

If an activity # is nonschedulable, our method also can identify the cause of time violations. Usually there are 2
methods for treating time violations:

* For a nonschedulable activity #, firstly we relax the time constraints of places or transitions occurring prior to
t;, then we re-compute the time pair EFBT(#))/LFET(t;) and assert the schedulability of # according to Definition I.
This may be done several times till ¢ is schedulable;

¢ Certainly, for those important time constraints that are not allowed to modify or cases where time constraint
relaxation still cannot change the schedulability of # at all events, it is required to analyze workflow semantics and
then modify the structure of TCWF-nets in order to re-obtain the schedulability of #. Subsequently, analyzing the
schedulability of # under the new workflow model may be repeated till #; becomes schedulable. Of course, the above
2 methods can also be used alternately to make #; schedulable.

It needs to be pointed out that this is a static designing method, which is used to locate time violations and then

provide suggestions on modifying the system specifications and/or relaxing the time constraints for the system
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designers.

4 Schedulability Analysis Method

For a workflow instance with a given planning and a set of time constraints, our time consistency verification
method aims to simulate the time reachability in execution and analyze the schedulability for each activity, then
verify the time consistency between the time constraints and process model. If all activities along o can complete
their firing within limited time intervals, then these time constraints are reasonable or the workflow instance is time

feasible in execution.
4.1 Decision-Span for a schedulable activity

To analyze the schedulability of an activity #;, we need to know the absolute enable time of #. For instance in
Fig.1, we can determine when #, is enabled only if # ends its firing. Moreover, TOKEN, . (p,)=FIRE.,,,(t;)=
FIREogin(t))+FIREp,(t)). To determine FIREj.4,(¢1), a new notation decision-span is introduced to denote the
firable decision-span of a schedulable activity:

Definition 3. In a marking M in a TCWF-net model, for a schedulable activity ¢, if D(;) denotes the
decision-span of #; and UD(t;) denotes the upper bound of D(t), then the schedulable decision-span of # can be
expressed as 0<D(#,)<UD(t;), where

UD(t)=LFET(5)~EFBT(4)-FIREpy(4) ©)

So the actual firing time of ¢; is: FIRE}q,(t)=D(t))*EFBT(t;). It makes sure that # can successfully complete
execution as long as ¢ is fired within the allowable range of D(t). For Vp;eO,(t), there exists TOKEN,,,(p;)=
FIRE,, (t). It is easy to see that the time when the instance arrives in p; depends directly upon the selection of D(),
and at the same time on the multi-factors such as resource loads, activity emergency and the influence on its

succeeding activities, etc.
4.2 Schedulability analysis along a specific path

For instance in Fig.1, D(#,)e(0,UD(t,))=(0,LFET(t,)-EFB1(t,)-FIREp,(t)) and UD(¢,) can be determined by
the time constraints of py;, p1» and #,. Once #; completes its firing, we have FIRE,,(t,)=TOKEN,,(p,)=f1(D(t,)), and
more EFBT(t,)/ LFET(12y=gy(D(t1))/gx(D(11)),FIRE o (2)=TOKEN 4 (p3y=D(t:} *EF BT(12+ FIRE py (12)~f(D(t1),D(12)).
In the same way we can get FIRE,,(t;)=TOKEN,,(ps)=f3(D(t,),D(t,),D(¢;)) in turn, where some of f|, f, and f;,...,
may be nonlinear functions depending on different TCWF-net structures. This schedulability analysis is a piecewise
decision-making process, and the selecting activity decision-spans may be nonlinear for general TCWF-net
topology structures.

A workflow instance corresponds to a reachable path o in TCWF-net models, each decision-span constraint of
transitions in o can be determined by Egs.(1)~(4) and (9), i.e. 0<D(¢)<UD(z). There may exist nonlinear constraint
relations between D(t,),D(%,),...,D(t,) for general TCWF-net structures, and these constraint relations are denoted as:

f(CC,DD)20, k=1,2,...,n (10)
where CC represents the set of time constraints including TCyin(pt)/TCrmax(pty) and FIREp,(t;), DT=(D(t,),D(t2),...,
D(t,)) denotes the decision-span vector.

Besides guaranteeing time feasible in workflow execution, it is required to calculate the optimal DT" to achieve
the optimal workflow execution. Here, this optimization problem is:

D={DTfj,DT)>0, j=0,1,...,n—1} (11)

For minimizing J(DT)=FIRE,,,(t,), where t, is the last activity of its corresponding process instance and
FIRE,, (t,) denotes the earliest finishing time of the instance, the scheduling problem becomes into solving the

following programming:
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{ Min J(DT)
DT (12)

st. f(j,DT)20, j=0,1,...n-1

The decision-span vector DT can be determined by finding the solution to the problem formulated as (12),
which is subjected to the constraint (10). For an actual application context, using different methods can solve the
above programming.

It needs to point out that in a TCWF-net-based workflow analysis, the selection between normal operation and
time-violation-related exception handling can be denoted by assigning different firing deadlines for OR-split
activities!'!, and an activity with earlier deadline has higher priority for firing. Here, schedulability analysis must
consider firable priorities. For example in Fig.1, #4; is enabled earlier than #4, when a case arrives at py, i.e. #4; has a
higher priority for firing. If #4; can not finish, the token used for enabling #4; will be put back to p4 and its arrival
time will be modified as: 7 =FIRE.,4(t41)+1=f(D(#,s)). This token can be still used to enable #,. The precondition
that 74, can be fired is that #4; fails to complete its firing within a specified time limit, so the instance routing from
M(p,) to M(psy) is Gsy=totstsifsn, Where t4;, means that t,; fails to finish within its limited time interval. Once the
constraint conditions of every activity decision-span along os, are determined, the schedulability analysis can also

be formulated as the above programming shown in (11)~(12).
4.3 Schedule-Based execution

The execution of a workflow instance can start once all activities belonging to this instance are verified to be
schedulable under imposed time constraints. All EFBT(t;)/LFET(t;) (j=1,2,...,n) specifies an absolute range for
activity execution times such that there exists a combination of activity beginning and finishing times that satisfies
all time constraints and where each beginning and finishing time is within the range [EFBT(t),LFET(t)] of its
corresponding activity.

We define a schedule to be an activity sequence S={t,/D(t,)/EFBT(t,)/LFET(t,),t,/D(t,)/EFBT(t,)/LFET(t,),...,
t/D(t;)/EFBT(t;)/LFET(t)),....t,/D(t,)/EFBT(t,)/LFET(t,)}, which consists of activities and their execution-related
time attributes. This sequence gives the decision-span D(#) and the earliest fire beginning/latest fire ending time
EFBT(t;)/LFET(t;). Thus, any combination of actual execution beginning/ending times of all activities within
[FIREegin(t)),FIRE,,4(t;)] ranges satisfies all time constraints imposed on the business process, where FIRE}g;,(t;)
and FIRE,,(t;) are FIRE}.;,(t)=D(t)+EFBI(t;) and FIRE,, (t})=FIREp.s,(t;)+FIREp,(t;). In other words, given a
schedule or a process instance, no violations of time constraints occur as long as each activity ¢ finishes its
execution at time within the interval [FIRE}q;,(2),FIRE,4(t;)]. So, the build-time process definition of a TCWF-net
consists of the following steps:

* Design the workflow process at the logical level, i.e., define the traditional workflow process;

* Determine the time constraints of the modeled business process;

e Map the above time constraints to the time attributes of the elements in a TCWF-net, such as
TConin(Pi)/ TCrmax(pi)s TOKEN 4(p:), TCrnin( )/ TCrmax(t)) and FIREp,,(1));

* Check the reasonability of these time constraints or verify the time consistency with the process definition;

e If there exist some time constraint violations, then relaxing time constraints and modifying the workflow
structure are required in order to make sure all activities are schedulable. Finally we know all UD(%)/EFBT(t;)/
LFET(t);

¢ Along the workflow instance, find all constraints between all activity decision-span D(#;) according to
different TCWF-net structures, and denote the optimization problem as (11)~(12) shown in Section 4.2;

* Solve the above programming to get the optimal schedule S={t,/D(t,)/EFBT(t,)/LFET(t,),t,/D(t;)/ EFBT(t;)/
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LFET(ty),....t/ D(t;)/ EFBT(t;)/LFET(Y)),...,t,/D(t,)/EFBT(t,)/LFET(t,)}. Carrying the instance into execution as this
schedule will lead to the minimum duration of the whole process.

In a word, our method not only guarantees that time constraints are properly modeled and it provides a
schedule S of a workflow instance to make sure that all activities are time feasible in execution, but also designs an
optimal and schedulable TCWF-net model for a specific instance through a circular process “modeling—>

verifying>modifying>re-verifying>re-modifying...”.
5 Comparison and Conclusions

Starting from the requirements of time management in enterprise workflows and basing on analyzing the
limitation of existing time management methods, a new time modeling and analysis method is put forward in this
paper to maintain the safe execution of time constraint workflow instances. Comparing with existing time modeling
methods, the major advantages of our method consist of four aspects. Firstly, the enabled intervals and execution
intervals of activities are distinguished and taken into account in the proposed approach, while it is neglected in the
other approaches. This consideration is significant because it enables the proposed approach to analyze the effect of
temporal constraints at every stage of workflow execution on the schedulability of activities. Secondly, based on
schedulablity analysis for activities and appropriate handling of time violation, time constraints can be validly
modeled and the time consistency in workflow execution can be verified. But this is not referred to in existing
approaches. Thirdly, the decision-span D(t,) represents the urgency of activity # to some extent, and this facilitates
the workflow participants to manage their work plans according to the whole business goal. Fourthly, solving the
given non-linear programming can find the optimal time planning for workflow execution denoted as D(¢))/
EFBT(t,)/LFET(t,),D(t,)/EFBT(t;)/LFET(t,),...,D(t,) EFBT(t;)/LFET(t)),...,D(t,)/ EFBT(t,)/LFET(t,). This enables the
time analysis approach can be used for analyzing the time performance of a workflow, because it can result in a
somewhat optimal schedule guaranteeing a minimal duration for the execution of a workflow execution in specific
cases. Research results demonstrate that TCWF-net-based time modeling and analysis not only supports the time
management in business processes and implements time coordination between activities, but also is crucial to
promote the application of workflows to complex enterprises.
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