

Vol.13, No.7 ©2002 Journal of Software 软 件 学 报 1000-9825/2002/13(07)1220-08

Using Adaptive Router Throttles Against Distributed Denial-of-Service
Attacks

á

LIANG Feng1, David Yau 2

1(Zhejiang Provincial Key Laboratory of Fiber Optical Communication Technology, Zhejiang University of Technology, Hangzhou

310014, China);
2(Department of Computer Science, Purdue University, IN 47907, USA)

E-mail: liangf@zjut.edu.cn

http://www.zjut.edu.cn

Received December 7, 2001; accepted April 29, 2002

Abstract: In this paper, an adaptive router throttle algorithm is presented to defend a server against distributed

denial-of-service (DDoS) attacks. The key point of the algorithm is that the server asks selected upstream routers k

hops away to install throttles on traffic flows destined for it so that the server’s service capacity can be allocated

among all flows with a max-min like fairness. The algorithm effectiveness is evaluated by using a realistic Internet

topology and various models for attacker and good user distributions and behaviors. The results indicate that this

server-centric router throttling is a promising approach to countering DDoS attacks.

Key words: network security; DDoS; router; Internet; computer network

In a distributed denial-of-service (DDoS) attack[1,2], thousands of malicious or compromised hosts coordinate

to send a large volume of aggregate traffic to a victim. Network nodes near the victim will progressively become

more vulnerable to resource overruns , as a node that is closer to the server most likely has less service capacity

while delivering a larger fraction of the attacking traffic. In particular, the victim itself is most vulnerable.

Former works on against DDoS attacks either drop or reroute the attacking packets before they enter the victim
[3][4][5]. For this kind of approach, the key problem is that the DDoS attacking packets can be no different from

normal packets, and as the packets' source IP addresses are usually forged, it's also difficult to distinguish the

attacking flows from normal ones by traffic rates. Meanwhile, the protecting system itself and the routers on

transmission networks can also be incapacitated.

IP traceback[6,7] utilizes routers’ spare resources to trace back the paths from attackers to the server. The

algorithm itself doesn't provide anything to cease the attack directly. As a fully deployment of IP traceback on every

router of Internet is difficult, most probably, the traceback paths can't reach the attackers but routers several hops

from the attackers, which leaves an open problem.

To actively defend against attacks, analysis of routing information can enable a router to drop certain packets

with spoofed source IP address [8][9]. This approach requires sophisticated and potentially expensive routing table

á Supported by the Natural Science Foundation of Zhejiang Province of China under Grant No.697053 (浙江省自然科学基金);

CERIAS, the National Science Foundation of US under Grant No.CCR-9875742 (CAREER)
LIANG Feng was born in 1967. He is an associate professor and master supervisor of the Telecommunication Department,

Zhejiang University of Technology. His research interests are network security and multimedia communication. David Yau was born in

1967. He is an assistant professor and doctoral supervisor of the Computer Science Department, Purdue University. His current research
areas is network, operating system architectures, algorithms for QoS provisioning, multimedia communication, software-programmable

router technologies, database and information system.

梁丰 等:利用路由器自适应限流防御分布拒绝服务攻击 1221

analysis on a per-packet basis. Also, DDoS attackers can still launch an attack with real IP source addresses.

Mahajan et al.[10] describe a general framework for identifying and controlling high bandwidth aggregates in a

network. As an example solution against DDoS attacks, an aggregate can be defined based on destination IP

address. To protect good user traffic from attacker traffic, they study recursive pushback of max-min fair rate limits

starting from the victim server to upstream routers, and define a global, cross-router notion of max-min fairness.

However, the pushback mechanism always starts the resource sharing decision at the server, where good user traffic

may aggregate to a large volume and thus can be severely punished (see Section 5). Such aggregation of good user

traffic has been observed to occur in practice [11].

The use of network authentication mechanisms also helps defending against DDoS attacks, e.g. IPsec[12].

Gouda et al. [13] propose a framework for providing hop integrity in computer networks. Efficient and cheap

algorithms for authentication and key exchanges are important research questions in this class of solutions.

In this paper, we prohibit DDoS attacks by resource management: The server’s service capacity is allocated

among all incoming traffic flows (including attackers’) with a max-min like fairness, which provides that the

attackers can not gain more resource capacity than normal users by sending more traffic. To forestall the aggressive

packets converging to overwhelm the victim and nearby intermediate routers, a proactive approach is adopted: The

victim asks selected upstream routers k hops away to install throttles which limit the forwarding rate of packets

destined for it. The throttle is implemented as a leaky bucket to absorb the burst of traffic. Traffic that exceeds the

rate limit will be dropped. The appropriate throttle rate is negotiate d dynamically between the victim and the

throttle routers, such that all users can share the service capacity of S with fairness and the throttle can be adaptive

to the change of demand distributions.

1 Network Model of DDoS Attack

The entire network is represented as a connected graph G=(V,E), where V is the set of nodes and E is the set of

links. We have V=H∪R, where H is the set of hosts (leaf nodes) and R the set of routers. The victim is a host S∈H

with a capacity US. The set of attackers is Ha⊂H , and the set of good users is Hg⊂H. Notice that Ha and Hg are

dynamic, but they are relatively static in a short time period. Assume during a certain short time period, there's m

good users, Hg={g1,g2, … ,gm}, and n attackers, Ha={a1,a2, … ,an}. The traffic rate from gi to S is rgi, and from ai to S

is rai. Assume the traffic rate of good user or attacker is relatively static during this period, then the aggregate

traffic rates of attackers and good users are g

m

i gig rmrT ⋅== ∑ =1
 and

a

n

i aia rnrT ⋅== ∑ =1
, where

ar and
gr are the

average rates of traffic from one good user or one attacker to S respectively.

If the total arrival traffic rate of S , TS = Tg +Ta � US, the services for good users are not influenced. However, if

TS >US, TS −US of the traffic will be dropped∗ , thus denial of service (DoS) occurs. We define the degree of DoS state

on S, η, as the percentage of good user traffic being dropped by S.

If S uniformly drops the overload traffic , the traffic from each user (either a good user or an attacker) is

dropped with same percentage, and we have
S

S

S

SS

T

U

T

UT −=−= 1η .

Assume S is designed to serve a maximum of M users,
gS rMU ⋅≈ , then

)
1

(
1

11 m
M

nr

r

rnrm

rM

T

U

g

a

ag

g

S

S −
−

=⇒
⋅+⋅

⋅
−=−=

η
η

 (1)

For a big scale server, M is a significantly large number. Assume the attacker’s capability of compromising a large

∗ Assume each link in E has infinite bandwidth. This assumption can actually be relaxed for our throttle algorithm, as the routers can

also be protected from overload.

1222 Journal of Software 软件学报 2002,13(7)

number of hosts is limited, so that M >> n. With these assumptions, Fig.1 shows that to reach a significant degree of
DoS,

ar must be significantly higher than
gr . This is the foundation of our throttle algorithm.

2 Router Throttle Algorithm

2.1 Level-k max-min fairness

When S is under attack, it will initiate a throttle defense mechanism on a subset of the victim’s upstream

routers, R(k), which contains all the routers k hops away from S and all the edge routers, which are directly

connected to hosts, less than k hops away from S. For

example, in the network topology of Fig.2, the R(3) routers

are shaded.

The throttle rate is determined by allocate S's capacity

among R(k) with max-min fairness, which is called level-k

max-min fairness. In the example shown in Fig. 2, the

number above a node denotes the rate at which the node

delivers traffic to S before throttling, and the numbers in

parenthesis below R(3) routers indicate the throttled rates.

As a result of the throttling, the load at S will be limited at

20.53 (we assume Us=20), which is the sum of the throttled

rates. Notice that the throttled rate at a R(3) router is the

router’s max-min fair share of the achieved server load of

20.53.

2.2 Throttle negotiation algorithm

Fig.3 specifies the throttle negotiation algorithm. When a DDoS attack on a server S begins, S's load α

increases and finally exceeds capacity US. At this moment, S begins negotiating the throttle rate rS with R(k) routers.

At first, rS is initialized to US/f(k), where f(k) is either some small constant, say 2, or an estimate of the number of

throttle routers typically needed in R(k). After throttles of rate rS are installed at R(k) routers and take effect, if α is

still bigger than US, then rS is reduced to half of its current value. On the other hand, if α falls below a

Fig.1 For m/M=0.5 (left) and m/M=0.75 (right), the ratio of
ar to

gr over η for M/n=20,10,5,1

Fig.2 Network topology illustrating R(3) deployment

points of router throttle, and offered throttled rates

梁丰 等:利用路由器自适应限流防御分布拒绝服务攻击 1223

low-water-mark LS<US, then the throttle rate is increased by a constant additive step δ. The negotiation process

stopped when α is within [LS,US], and will be

resumed if α is out of this range again. If α is

below LS, and several successive increases of rS

do not increase α significantly, which means no

traffic is dropped by the throttles, and then the

throttles can be removed.

Notice that similar to TCP congestion

control, the throttle needs a time delay to take

effect. So α is monitored after rS is sent for

somewhat larger than the maximum round trip

time between S and a router in R(k). Also, the

throttle algorithm can take multiple round trips to

terminate. Because of this, it can be difficult to

achieve exact max-min fairness in a highly

dynamic network. The result will be some degree

of under-utilization of the server capacity. At

last, the throttles can be set only on those routers

with traffic rate destined for S bigger than the

throttle rate for a lower cost.

2.3 Convergence of algorithm

For each router Rk
i∈R(k), we denote the rate

of arrival traffic destined to S at time t as rk
i(t).

For simplification, we assume the traffic rates

from all hosts keep static during one negotiation process, (the effects of dynamic traffics on our algorithm will be

investigated later in Section 6), so that we can denote k
i(t) as r k

i during one negotiation process.

Definition 2. rU is the level-k maxmin-fairness throttle rate for capacity US, if ∑ ∈=)(
),min(

kRR

i

i
kUS

i
k rrU .

Definition 3. rL is the level-k maxmin-fairness throttle rate for low-water-mark LS, if ∑ ∈=)(
),min(

kRR

i

i
kLS

i
k rrL .

Theorem 1. If δ ≤ rU −rL , the throttle negotiation algorithm will converge after a multiplicative decrease

process and an additive increase process. The time for multiplicative decrease process,









+∈ 1

)0(
log,

)0(
log 22

UU r
r

r
r

j . The

time for additive increase process,









+

−−
∈ 1

2

)0(2
,

2

)0(2

δδ j
L

j

j
L

j rrrr
l .

Proof. Omitted.

3 Performance Evaluation and Experimental Results

We conducted simulations using a network topology reconstructed from real traceroute data (from the Internet

mapping project at AT&T, http://cm.bell-labs.com/who/ches/map/dbs/index.html), which contains 709 310 distinct

traceroute paths from a single source to 103 402 different destinations widely distributed over the entire Internet.

We use the single source as the server S , and randomly select a subgraph G' from the original data set as the graph

of all paths delivering traffic to S. G' has 135 821 nodes, of which 3 879 are hosts (either an attacker or a good

user). We set LS=4700 and US=5300. Hosts are modeled to send traffic to S at constant rates, which are randomly

and uniformly drawn from the range [0,2] for a good user, and from the range [0,ra] for an attacker. The

Algorithm throttle

αlast := �

while (1)

 multicast current rate-rS throttle to R(k);

 monitor traffic arrival rate α for time window w;

 if (α > US) /* throttle not strong enough */

 rS := rS / 2; /* further restrict throttle rate */

 elif (α < LS) /* throttle too strong */

 if (α - αlast) < ε) /*no drop by throttle */

 remove rate throttle from R(k);

 break;

 else\

 /* try relaxing throttle by additive step */

 αlast := α;

 rS := rS + δ;

 fi;

 else

 break;

 fi;

endwhile

Fig.3 Throttle algorithm specification

1224 Journal of Software 软件学报 2002,13(7)

performance of algorithms is shown by remaining percentage of attacking and good user traffic over the throttling

level k . We plot the average results over ten independent experimental runs, (the attackers, good users and their

rates are rechoosed for each run), and show the standard deviation as an error bar around the average. For a

comparison, in each simulation experiment, we also provides results for a fully pushback max-min fairness as

described in Ref.[10], which deploys to the same depth of k .

Figure 4 compares the performance of two algorithms for evenly distributed attackers, where each host in the

network is independently chosen to be an attacker with probability p, and a good user with probability 1−p.

Figure 5 compares the performance of two algorithms for unevenly distributed attackers. The attackers’

distributions ha ve different concentration properties. Specifically, we pick five disjoint subtrees of G', of which

properties are shown in Table 1. We then define four concentration configurations, 0−3, for the attackers (see Table

2). The intention is for attacker concentration to increase as we go from configurations 0 to 3.

Should a malicious entity be able to recruit or compromise many hosts to launch an attack, then each of these

hosts behaving like a normal user can still together bring about denial of service. For example, we model evenly

distributed attacker by ra=2, p=30%, and US=2800. Results in Fig.6 shows both algorithms fail to distinguish

between the good users and the attackers, and punish both classes of hosts equally.

To compare the cost of two algorithms, Fig.7 plots the percentage of routers involved in throttling over k.

Fig.4 Performance comparing for evenly distributed attackers: ra=20 and p=0.2 (left) and ra=10 and p=0.4 (right)

Fig.5 Performance comparing for unevenly distributed attackers: our algorithm (left) and pushback (right)

梁丰 等:利用路由器自适应限流防御分布拒绝服务攻击 1225

(For the level-k approach, we count both throttling routers and the routers between S and R(k) routers which

deliver throttle messages.) Notice that the two approaches basically require a comparable number of deployment

points.

Figure 8 investigates the effects of user dynamics (for both good users and attackers) on level-15 throttle
algorithm. 20% of the hosts in G' are chosen to be attackers, and the rest are good users. The attackers are evenly
distributed over G'. We measure time in units of maximum round trip delay between S and a router in R(15). As
attackers and good users vary their sending rates, we notice that good user traffic is still protected from attacker
traffic. Fig.9 shows how the throttle rate rS evolves over time.

Fig.6 Performance comparing for evenly

distributed attackers of ra=2, p=30%

Fig.7 Number of participating routers as a

function of the deployment depth

Fig.9 Evolution of throttle rate rS over time Fig.8 Algorithm response to attacker and good user

dynamics

Table 1 Properties of subtrees 1~5 Table 2 Configured concentrations of attackers

Subtree No. of
nodes

No. of
hosts

Root’s distance
from S (hops) Configuration Attackers uniformly chosen from

1 1712 459 4 0 G′
2 1126 476 6 1 all the five subtrees
3 1455 448 7 2 subtrees 1 & 3
4 1723 490 8 3 subtrees 4 & 5
5 1533 422 8

1226 Journal of Software 软件学报 2002,13(7)

To evaluate our scheme on protecting a web

server under DDoS attack, we use the Network

Simulator NS-2 developed at Lawrence Berkeley

Laboratory (LBL) and UC Berkeley. The simulated

network topology is also from the AT&T traceroute,

however because of the limit of computation ability,

we only chose a small graph with 85 hosts, 17 of

which are attackers. Every good user is simulated by

an http traffic generator (http://www.tomh.org/

software/httptrafficgen.tar), which connects S with

HTTP 1.0 over TCP Reno/IP. The attackers generate

UDP traffic at 6k bps to S. We model US=10 kBps,

and make LS=8 kBps. The throttles are set in level-10

routers. Figure 14 shows the experiment result. The

attack starts at time t=10s. Notice that the throttle negotiation algorithm effectively keeps the actual server load

between LS and US, and the traffic dropping is most on the attackers’ traffic.

4 Discussions

Several observations are in order about the practical deployment of our defense mechanism. First, to ensure

reliability in installing router throttles, throttle messages must be authenticated before an edge router (assumed to be

trusted) admits them into the network, and must be efficiently and reliably delivered from source to destination.

Second, to ensure that the throttle mechanism remains operational when the server transiently experience resource

overload, we can deploy a helper machine to monitor the traffic and initiate defense actions. Third, the throttle

mechanism may not be universally supported in a network. Our solution remains applicable provided that most R(k)

routers on attacking paths support the mechanism. Fourth, it is also possible to have a policy-based definition of

max-min fairness in practice. The policy can refer to different conditions in different network regions, in terms of

tariff payments, network size, susceptibility to security loopholes, etc. Fifth, while the sever itself can be protected

by our approach, the intermediate routers between the server and R(k) routers are also protected as the excess traffic

is dropped by R(k) routers. Sixth, modeling the behaviors of attackers is inherently difficult, and modeling the

behaviors of good users needs to be service and environment specific. Hence, more study is needed to evaluate the

robustness of the approach in more diverse deployment scenarios.

References:
[1] CERT Advisory CA-1996-21 TCP SYN flooding and IP spoofing attacks. http://www.cert.org/ advisories/CA-1996-21.html.

[2] CERT Advisory CA-1998-01 Smurf IP denial-of-service attacks. http://www.cert.org/ advisories/CA-1998-01.html.

[3] Banga, G., Drusched, P., Mogul, J. Resource containers: a new facility for resource management in server systems. In: OSDI, ed.

Proceedings of the 1999 USENIX/ACM Symposium on Operating System Design and Implementation (OSDI’99). New Orleans,

LA: OSDI, 1999. 45~58.

[4] Spatscheck, O., Peterson, L. Defending against denial of service attacks in scout. In: OSDI, ed., Proceedings of the 1999

USENIX/ACM Symposium on Operating System Design and Implementation (OSDI’99). New Orleans, LA: OSDI, 1999. 59~72.

[5] Meadows , C. A forma l framework and evaluation method for network denial of service. In: PCSFW, ed., Proceedings of the 1999

IEEE Computer Security Foundations Workshop. Mordano: IEEE Computer Society Press, 1999. 4~13.

[6] Savage, S., Wetherall, D., Karlin, A., et al. Practical network support for IP traceback. In: ACM, ed., Proceedings of the ACM

SIGCOMM2000. Sweden: ACM, 2000. 295~300.

Fig.10 NS-2 simulation results for level-10 throttling

梁丰 等:利用路由器自适应限流防御分布拒绝服务攻击 1227

[7] Song, D., Perrig, A. Advanced and authenticated techniques for IP traceback. In: INFOCOM ed., Proceedings of the IEEE

INFOCOM2001, Anchorage, Alaska: INFOCOM, 2001.

[8] Park, K., Lee, H. On the effectiveness of probabilistic packet marking for IP traceback under denial of service attack. In:

INFOCOM, ed. Proceedings of the IEEE INFOCOM’2001. Anchorage, Alaska: INFOCOM, 2001.

[9] Ferguson, P., Senie, D. RFC2827: network ingress filtering: defeating denial of service attacks which employ IP source address

spoofing. 2000. http://www.ietf.org/rfc/rfc2827.txt .

[10] Mahajan, R., Bellovin, S., Floyd, S., et al. Controlling high bandwidth aggregates in the network. Technical Report, ACIRI and

AT&T Labs Research, 2001. http://www.icir.org/pushback/pushback-Jul01.pdf.

[11] Fang, W., Peterson, L. Inter-AS traffic patterns and their implications. In: IEEE, ed. Proceedings of the IEEE Global Internet

Symposium. Rio: IEEE, 1999.

[12] Kent, S., Arkinson, R. RFC 2401: security architecture for the Internet protocol. 1998. http://www.ietf.org/rfc/rfc2401.txt .

Gouda, M.G., Elnozahy, E.N., Huang, C.T., et al. Hop integrity in computer networks. In: IEEEICNP, ed. Proceedings of the 8th

IEEE International Conference on Network Protocols . Osaka: IEEE, 2000. 3~11.

利用路由器自适应限流防御分布拒绝服务攻击

梁 丰 1, David Yau2

1(浙江工业大学 浙江省光纤通信技术重点实验室,浙江 杭州 310014);
2(普度大学 计算机科学系, IN47907,美国)

摘要: 提出一种自适应路由器限流算法防御分布拒绝服务攻击的机制.该算法的关键是由被攻击者要求经挑选的

相距 k 跳(hop)的上游路由器对目的为被攻击者的数据流进行限流,从而将被攻击者的服务支援在各数据流之间达

到一种类最大-最小公平的流量分配.还在一个实际的因特网拓扑上针对攻击数据流和合法数据流的不同分布和流

量模型考察了算法的效果.结果表明这种以服务器为中心的路由器限流是对抗分布拒绝服务攻击的一种很有前途

的方法.

关键词: 网络安全;分布拒绝服务;路由器;因特网;计算机网络

中图法分类号: TP393 文献标识码: A

