
 

 

Vol.13, No.7 ©2002 Journal of Software  软 件 学 报 1000-9825/2002/13(07)1220-08 

Using Adaptive Router Throttles Against Distributed Denial-of-Service 
Attacks

á

  

LIANG Feng1,  David Yau 2 

1(Zhejiang Provincial Key Laboratory of Fiber Optical Communication Technology, Zhejiang University of Technology, Hangzhou 

310014, China); 
2(Department of Computer Science, Purdue University, IN 47907, USA) 

E-mail: liangf@zjut.edu.cn 

http://www.zjut.edu.cn 

Received December 7, 2001; accepted April 29, 2002 

Abstract: In this paper, an adaptive router throttle algorithm is presented to defend a server against distributed 

denial-of-service (DDoS) attacks. The key point of the algorithm is that the server asks selected upstream routers k  

hops away to install throttles on traffic flows destined for it so that the server’s service capacity can be allocated 

among all flows with a max-min like fairness. The algorithm effectiveness is evaluated by using a realistic Internet 

topology and various models for attacker and good user distributions and behaviors. The results indicate that this 

server-centric router throttling is a promising approach to countering DDoS attacks. 
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In a distributed denial-of-service (DDoS) attack[1,2], thousands of malicious or compromised hosts coordinate 

to send a large volume of aggregate traffic to a victim. Network nodes near the victim will progressively become 

more vulnerable to resource overruns , as a node that is closer to the server most likely has less service capacity 

while delivering a larger fraction of the attacking traffic. In particular, the victim itself is most vulnerable. 

Former works on against DDoS attacks either drop or reroute the attacking packets before they enter the victim 
[3][4][5]. For this kind of approach, the key problem is that the DDoS attacking packets can be no different from 

normal packets, and as the packets' source IP addresses are usually forged, it's also difficult to distinguish the 

attacking flows from normal ones by traffic rates. Meanwhile, the protecting system itself and the routers on 

transmission networks can also be incapacitated.  

IP traceback[6,7] utilizes routers’ spare resources to trace back the paths from attackers to the server. The 

algorithm itself doesn't provide anything to cease the attack directly. As a fully deployment of IP traceback on every 

router of Internet is difficult, most probably, the traceback paths can't reach the attackers but routers several hops 

from the attackers, which leaves an open problem. 

To actively defend against attacks, analysis of routing information can enable a router to drop certain packets 

with spoofed source IP address [8][9]. This approach requires sophisticated and potentially expensive routing table 
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analysis on a per-packet basis. Also, DDoS attackers can still launch an attack with real IP source addresses.  

Mahajan et al.[10] describe a general framework for identifying and controlling high bandwidth aggregates in a 

network. As an example solution against DDoS attacks, an aggregate can be defined based on destination IP 

address. To protect good user traffic from attacker traffic, they study recursive pushback  of max-min fair rate limits 

starting from the victim server to upstream routers, and define a global, cross-router notion of max-min fairness. 

However, the pushback mechanism always starts the resource sharing decision at the server, where good user traffic 

may aggregate to a large volume and thus can be severely punished (see Section 5). Such aggregation of good user 

traffic has been observed to occur in practice [11]. 

The use of network authentication mechanisms also helps defending against DDoS attacks, e.g. IPsec[12].  

Gouda et al. [13] propose a framework for providing hop integrity  in computer networks. Efficient and cheap 

algorithms for authentication and key exchanges are important research questions in this class of solutions. 

In this paper, we prohibit DDoS attacks by resource management: The server’s service capacity is allocated 

among all incoming traffic flows (including attackers’) with a max-min like fairness, which provides that the 

attackers can not gain more resource capacity than normal users by sending more traffic. To forestall the aggressive 

packets converging to overwhelm the victim and nearby intermediate routers, a proactive approach is adopted: The 

victim asks selected upstream routers k  hops away to install throttles which limit the forwarding rate of packets 

destined for it. The throttle is implemented as a leaky bucket to absorb the burst of traffic. Traffic that exceeds the 

rate limit will be dropped. The appropriate throttle rate is negotiate d dynamically between the victim and the 

throttle routers, such that all users can share the service capacity of S with fairness and the throttle can be adaptive 

to the change of demand distributions. 

1   Network Model of DDoS Attack 

The entire network is represented as a connected graph G=(V,E), where V is the set of nodes and E is the set of 

links. We have V=H∪R, where H is the set of hosts (leaf nodes) and R the set of routers. The victim is a host S∈H  

with a capacity US. The set of attackers is Ha⊂H , and the set of good users is Hg⊂H. Notice that Ha and Hg are 

dynamic, but they are relatively static in a short time period. Assume during a certain short time period, there's m 

good users, Hg={g1,g2, … ,gm}, and n attackers, Ha={a1,a2, … ,an}. The traffic rate from gi to S is rgi, and from ai to S  

is rai. Assume the traffic rate of good user or attacker is relatively static during this period, then the aggregate 

traffic rates of attackers and good users are g

m
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ar  and 
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average rates of traffic from one good user or one attacker to S respectively.   

If the total arrival traffic rate of S , TS = Tg +Ta � US, the services for good users are not influenced. However, if 

TS >US, TS −US of the traffic will be dropped∗ , thus denial of service (DoS) occurs. We define the degree of DoS state 

on S, η, as the percentage of good user traffic being dropped by S. 

If S uniformly drops the overload traffic , the traffic from each user (either a good user or an attacker) is 
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For a big scale server, M is a significantly large number. Assume the attacker’s capability of compromising a large 

                                                             

∗  Assume each link in E has infinite bandwidth. This assumption can actually be relaxed for our throttle algorithm, as the routers can 

also be protected from overload. 
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number of hosts is limited, so that M >> n. With these assumptions, Fig.1 shows that to reach a significant degree of  
DoS, 

ar  must be significantly higher than 
gr . This is the foundation of our throttle algorithm. 

 

2   Router Throttle Algorithm 

2.1   Level-k max-min fairness 

When S is under attack, it will initiate a throttle defense mechanism on a subset of the victim’s upstream 

routers, R(k), which contains all the routers k  hops away from S and all the edge routers, which are directly 

connected to hosts, less than k  hops away from S. For 

example, in the network topology of Fig.2, the R(3) routers 

are shaded.  

The throttle rate is determined by allocate S's capacity 

among R(k) with max-min fairness, which is called level-k  

max-min fairness. In the example shown in Fig. 2, the 

number above a node denotes the rate at which the node 

delivers traffic to S before throttling, and the numbers in 

parenthesis below R(3)  routers indicate the throttled rates. 

As a result of the throttling, the load at S will be limited at 

20.53 (we assume Us=20), which is the sum of the throttled 

rates. Notice that the throttled rate at a R(3) router is the 

router’s max-min fair share of the achieved server load of 

20.53.  

2.2   Throttle negotiation algorithm 

Fig.3 specifies the throttle negotiation algorithm. When a DDoS attack on a server S begins, S's load α 

increases and finally exceeds capacity US. At this moment, S begins negotiating the throttle rate rS with R(k) routers. 

At first, rS is initialized to US/f(k), where f(k) is either some small constant, say 2, or an estimate of the number of 

throttle routers typically needed in R(k). After throttles of rate rS are installed at R(k) routers and take effect, if α is 

still bigger than US, then rS is reduced to half of its current value. On the other hand, if α falls below a 

Fig.1  For m/M=0.5 (left) and m/M=0.75 (right), the ratio of 
ar  to  

gr  over η for M/n=20,10,5,1 

Fig.2  Network topology illustrating R(3) deployment 

points of router throttle, and offered throttled rates  
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low-water-mark LS<US, then the throttle rate is increased by a constant additive step δ. The negotiation process 

stopped when α is within [LS,US], and will be 

resumed if α is out of this range again. If α is 

below LS, and several successive increases of rS 

do not increase α significantly, which means no 

traffic is dropped by the throttles, and then the 

throttles can be removed.  

Notice that similar to TCP congestion 

control, the throttle needs a time delay to take 

effect. So α is monitored after rS is sent for 

somewhat larger than the maximum round trip 

time between S and a router in R(k). Also, the 

throttle algorithm can take multiple round trips to 

terminate. Because of this, it can be difficult to 

achieve exact max-min fairness in a highly 

dynamic network. The result will be some degree 

of under-utilization of the server capacity.  At 

last, the throttles can be set only on those routers 

with traffic rate destined for S bigger than the 

throttle rate for a lower cost. 

2.3   Convergence of algorithm 

For each router Rk
i∈R(k), we denote the rate 

of arrival traffic destined to S at time t as rk
i(t). 

For simplification, we assume the traffic rates 

from all hosts keep static during one negotiation process, (the effects of dynamic traffics on our algorithm will be 

investigated later in Section 6), so that we can denote k
i(t) as r k

i during one negotiation process. 

Definition 2. rU is the level-k  maxmin-fairness throttle rate for capacity US, if ∑ ∈= )(
),min(

kRR

i

i
kUS

i
k rrU . 

Definition 3. rL is the level-k  maxmin-fairness throttle rate for low-water-mark LS, if ∑ ∈= )(
),min(

kRR

i

i
kLS

i
k rrL . 

Theorem 1.  If δ ≤ rU −rL , the throttle negotiation algorithm will converge after a multiplicative decrease 

process and an additive increase process. The time for multiplicative decrease process,
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Proof.  Omitted. 

3   Performance Evaluation and Experimental Results 

We conducted simulations using a network topology reconstructed from real traceroute data (from the Internet 

mapping project at AT&T, http://cm.bell-labs.com/who/ches/map/dbs/index.html), which contains 709 310 distinct 

traceroute paths from a single source to 103 402 different destinations widely distributed over the entire Internet. 

We use the single source as the server S , and randomly select a subgraph G' from the original data set as the graph 

of all paths delivering traffic to S. G' has 135 821 nodes, of which 3 879 are hosts (either an attacker or a good 

user). We set LS=4700 and US=5300. Hosts are modeled to send traffic to S at constant rates, which are randomly 

and uniformly drawn from the range [0,2] for a good user, and from the range [0,ra] for an attacker. The 

Algorithm throttle  

αlast := � 

while  (1) 

 multicast current rate-rS throttle to R(k);  

 monitor traffic arrival rate α for time window w;  

 if (α > US)  /* throttle not strong enough */ 

    rS := rS / 2;  /* further restrict throttle rate */  

 elif (α < LS)  /* throttle too strong */  

    if (α - αlast) < ε)  /*no drop by throttle */  

       remove rate throttle from R(k);  

       break;  

    else\ 

       /* try relaxing throttle by additive step */  

       αlast := α;  

       rS := rS + δ;  

    fi;  

 else  

    break;  

 fi;  

endwhile  

Fig.3  Throttle algorithm specification 
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performance of algorithms is shown by remaining percentage of attacking and good user traffic over the throttling 

level k . We plot the average results over ten independent experimental runs, (the attackers, good users and their 

rates are rechoosed for each run), and show the standard deviation as an error bar around the average. For a 

comparison, in each simulation experiment, we also provides results for a fully pushback max-min fairness as 

described in Ref.[10], which deploys to the same depth of k . 

Figure 4 compares the performance of two algorithms for evenly distributed attackers, where each host in the 

network is independently chosen to be an attacker with probability p, and a good user with probability 1−p. 

 

 

Figure 5 compares the performance of two algorithms for unevenly distributed attackers. The attackers’ 

distributions ha ve different concentration properties. Specifically, we pick five disjoint subtrees of G', of which 

properties are shown in Table 1. We then define four concentration configurations, 0−3, for the attackers (see Table 

2). The intention is for attacker concentration to increase as we go from configurations 0 to 3.  

Should a malicious entity be able to recruit or compromise many hosts to launch an attack, then each of these 

hosts behaving like a normal user  can still together bring about denial of service. For example, we model evenly 

distributed attacker by ra=2, p=30%, and US=2800. Results in Fig.6 shows both algorithms fail to distinguish 

between the good users and the attackers, and punish both classes of hosts equally. 

To compare the cost of two algorithms, Fig.7 plots the percentage of routers involved in throttling over k.  

Fig.4  Performance comparing for evenly distributed attackers: ra=20 and p=0.2 (left) and ra=10 and p=0.4 (right) 

Fig.5  Performance comparing for unevenly distributed attackers: our algorithm (left) and pushback (right) 
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(For the level-k  approach, we count both throttling routers and the routers between S and R(k) routers which 

deliver throttle messages.) Notice that the two approaches basically require a comparable number of deployment 

points. 

 

Figure 8 investigates the effects of user dynamics (for both good users and attackers) on level-15 throttle 
algorithm. 20% of the hosts in G' are chosen to be attackers, and the rest are good users. The attackers are evenly 
distributed over G'. We measure time in units of maximum round trip delay between S and a router in R(15). As 
attackers and good users vary their sending rates, we notice that good user traffic is still protected from attacker 
traffic. Fig.9 shows how the throttle rate rS evolves over time. 

 

Fig.6  Performance comparing for evenly 

distributed attackers of ra=2, p=30% 

Fig.7  Number of participating routers as a 

function of the deployment depth 

Fig.9  Evolution of throttle rate rS over time Fig.8  Algorithm response to attacker and good user 

dynamics 

Table 1  Properties of subtrees 1~5  Table 2  Configured concentrations of attackers 

Subtree No. of 
nodes  

No. of 
hosts  

Root’s distance 
from S (hops)  Configuration Attackers uniformly chosen from 

1 1712 459 4  0 G′ 
2 1126 476 6  1 all the five subtrees 
3 1455 448 7  2 subtrees 1 & 3 
4 1723 490 8  3 subtrees 4 & 5 
5 1533 422 8    
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To evaluate our scheme on protecting a web 

server under DDoS attack, we use the Network 

Simulator NS-2 developed at Lawrence Berkeley 

Laboratory (LBL) and UC Berkeley. The simulated 

network topology is also from the AT&T traceroute, 

however because of the limit of computation ability, 

we only chose a small graph with 85 hosts, 17 of 

which are attackers. Every good user is simulated by 

an http traffic generator (http://www.tomh.org/ 

software/httptrafficgen.tar), which connects S with 

HTTP 1.0 over TCP Reno/IP. The attackers generate 

UDP traffic at 6k bps to S. We model US=10 kBps, 

and make LS=8 kBps. The throttles are set in level-10 

routers. Figure 14 shows the experiment result. The 

attack starts at time t=10s. Notice that the throttle negotiation algorithm effectively keeps the actual server load 

between LS and US, and the traffic dropping is most on the attackers’ traffic. 

4   Discussions 

Several observations are in order about the practical deployment of our defense mechanism. First, to ensure 

reliability in installing router throttles, throttle messages must be authenticated before an edge router (assumed to be 

trusted) admits them into the network, and must be efficiently and reliably delivered from source to destination. 

Second, to ensure that the throttle mechanism remains operational when the server transiently experience resource 

overload, we can deploy a helper machine to monitor the traffic and initiate defense actions. Third, the throttle 

mechanism may not be universally supported in a network. Our solution remains applicable  provided that most R(k) 

routers on attacking paths support the mechanism. Fourth, it is also possible to have a policy-based definition of 

max-min fairness in practice. The policy can refer to different conditions in different network regions, in terms of 

tariff payments, network size, susceptibility to security loopholes, etc. Fifth, while the sever itself can be protected 

by our approach, the intermediate routers between the server and R(k) routers are also protected as the excess traffic 

is dropped by R(k) routers. Sixth, modeling the behaviors of attackers is inherently difficult, and modeling the 

behaviors of good users needs to be service and environment specific. Hence, more study is needed to evaluate the 

robustness of the approach in more diverse deployment scenarios. 
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利用路由器自适应限流防御分布拒绝服务攻击 
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摘要: 提出一种自适应路由器限流算法防御分布拒绝服务攻击的机制.该算法的关键是由被攻击者要求经挑选的

相距 k 跳(hop)的上游路由器对目的为被攻击者的数据流进行限流,从而将被攻击者的服务支援在各数据流之间达

到一种类最大-最小公平的流量分配.还在一个实际的因特网拓扑上针对攻击数据流和合法数据流的不同分布和流

量模型考察了算法的效果.结果表明这种以服务器为中心的路由器限流是对抗分布拒绝服务攻击的一种很有前途

的方法. 
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