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Object Image Synthesis under Changing of Illumination”®
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Abstract: Illumination is an important aspect in realistic graphics rendering and most image related
applications. The paper proposes a pure image based rendering method to synthesis the variation of illumination
impacted on an object. Rather than estimating the BRDF function or any parameters in a reflectance model,
Singular Value Decomposition (SVD) is used to estimate a low dimensional approximation of the image set of a
Lambertian object under both changing of illumination and geometrical pose. In the method, light directions are
analytically derived from the samples and the base images as well as images with known of the class of the objects.
Images with any novel lighting directions can be rendered very efficiently by properly linear combination of the
base images. Smooth morphing sequence of lighting and pose variation can be generated by linear interpolation of
the SVD coefficients. A feature of this method is that it supplies a simple and compact way to represent dataset and
synthesize novel images, which lends it to be suitable for many image-based applications.
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An object’s appearance depends in large part on the way in which it is viewed. Often slight changes in pose
and illumination produce large changes in an object’s appearance. Recently, techniques related to synthesizing novel
image from known images with different pose and view positions have been widely researched in both computer
graphics and computer vision communities, which are known as image-based modeling and rendering (IBMR).
However, most of the existing IBMR systems assume that illumination is static for scenes and objects. Very few
works consider the variation of lighting™*™¥, and they all try to explicitly recover the BRDF function or reflection
model of an object. In fact, even if the pose and view point are fixed, appearance of an object depends on the
properties of its surface and the illumination conditions at a certain time. Accurate estimation of all of these factors
from images is extremely difficult, especially in the case that the surfaces contain specular reflections, complex
interreflections and shadows. Therefore, it is essential for researchers to develop an efficient image-based method
that can deal with the dynamic illumination. In other words, can we solve the problem of real-time rendering of
novel images given the number of light sources and their directions without knowing 3D geometry and lighting
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model?
We notice that there have been some efforts in computer vision devoted to image variation produced by

[4-

changes of illumination®".Applications include recognition of human faces, real-time object recognition, tracking

(81 These methods advocate exploring alternative ways to represent all possible variations

and position planning
produced on an object appearance by changing of illumination. Though some methods considered recovering
geometric models''®? most of these methods can be grouped into Appearance based Methods (ABMs), or
image-based method in general. In ABMs, the appearances of objects are learnt by applying principal component
analysis (PCA) to a representative dataset of images of an object. For convex and diffuse objects, PCA produces a
low-dimensional subspace called illumination manifold”, or eigenspace in some literature®®, which captures most
of the variation of the dataset. In the case of recognition, a new image of the object was projected into the
illumination manifold and the nearest matching point was found out in the low-dimensional space. These works are
motivations of ours to develop a more efficient approach to synthesis lighting variation in a novel image rather than
estimating the reflection model or BRDF directly in IBMR techniques.

In this paper, we assume that all objects are close to convex and Lambertian surface, which holds for many
man-made and natural things. Also, we assume that light sources are located in the distance. We propose a light
rendering method relies on a mathematical theory in linear algebra, called Singular Value Decomposition (SVD).
With SVD decomposition, we can extract the principle components, or impact features involved in the dataset. For
example, when we consider the influence of illumination changing impacted on an object with fixed pose, the
principal components characterize the variances of photometric properties of the object. The important differences
between our approaches and the previous vision applications are that: First, our destination is rendering a novel
image under given specification of illumination, rather than matching a given image with images in the dataset or
recognizing whether the given image is an image of a known object; Second, in our method, light directions and
their relations with principal components have been expressed analytically and estimated optimally; Third, our
approach deal with not only changes of illumination but also changes of object poses.

The rest of this paper is organized into five sections. Section 1 introduces simple linear reflection model.
Section 2 introduces some computer vision theories related to our approach. Section 3 gives a summary about SVD
decomposition and analyzes its physical interpretation in our applications. Section 4 discusses our algorithms that
synthesize novel images and view morphing series under novel illumination and object pose settings. Section 5
shows some experimental results. The last two sections are conclusion and acknowledgement.

1 Linear Reflectance M odel

The brightness of a Lambertian surface element illuminated by a point light source at infinity is
E(d,x) =s(d)-B(x), 1)
where B(x) = p(x)N (x) is the product of local surface albedo p(x) with the local unit surface normal vector N(x),
x=1,2,...,n ranges over all pixels of the image. s(d) in %R* signifies the product of light source intensity with a unit
vector of the lighting direction indexed by integer d. Simply, we name s(d) as the lighting property vector and B(x)
as the surface property vector. If light source intensity is constant, then s(d) becomes to a variable only related to
lighting direction.
In fact, al possible lighting directions can be normalized as a point on a unit spatial sphere, called illumination

sphere. Thus, for a given light direction vector s, we can represent it as a linear combination of any three linear
independent base vectors s,s,,s, in theillumination sphere space, that is
3

S=C-§+C, S, +C,-S,=>.C

i
i=1

s =S 2
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where @ =(c, ¢, c;) is the combination coefficients, and S=[s,s,,s;] is the matrix comprised of three base
directions. Thus, given alight source direction in the illumination sphere space, the coefficients of combination can
be calculated by
@=s-S". (3)
Assume that intensities of light sources are constant, and then substitute Eq.(2) for sin Eq.(1), we have
E(X)=(c-s+cC,-s+¢;-s)-B(X)-

If wedenote (X)=5-B(x),i=123,and T1=[e e, &],thenEq.(1) can berewritten as

E(X) =ce () +c,e(X) +Ce(x) = a1
which is the image brightness of a point under any light direction and it is combined by the same coefficients as that
of the lighting direction is composed. Furthermore, if we consider all visible points on the surfaces, then a novel
image can be expressed as
| =®B, 4
where B =[b, b, b;] represents three base images account for three base illuminants.

Up to now, the first problem left is that whether the three base images span the whole image space of an object
with fixed pose and changing of illumination, or only a subspace of it? The second problem left is how to find the
base images as well as base lighting directions. If they are estimated, then any novel image can be generated via
Egs.(3) and (4).

2 Related Vision Studies

Recently studies in computer vision demonstrate that for an object with convex shape and Lambertian
reflectance, the set of all images under an arbitrary combination of point light sources forms a convex polyhedral
illumination manifold in the image space R, where n is the number of pixels of imaged”. The illumination manifold
is a low-dimensional linear subspace that characterizes the photometry of an object. More recently, an empirical
investigation reported by Ref.[4] shows that for Lambertian surfaces of arbitrary texture, the entire illumination
manifold could be constructed from just three images taken using known lighting properties. This means the
dimensionality of the illumination manifold is three.

Considering that an object is simultaneously illuminated by mlight sources at infinity, itsimageis given by the
superposition of the images that would have been produced by the individual light sources.

E(d,X) =3 (s.(d)-B() = £ 5.(d)- B() = 3B(x)

where S serves as asingle effective source and is simply the average of individual source vectors.

In real world, no abject is pure diffuse and convex surface. It contains more or less some specular, self-shadow
components and noise, which leads to the dimensionality of the image space of the object increasing, so we can't
find exactly three base images in practice, but more than that. The experimental results given by Epstein and
Hallinan et al show that 5+2 eigenvalues are typically enough to account for most of the variation (up to 90%
percentage of variation for face)!*®. These results mean that for each face we can approximate the image space by
the first five principal components

I=>ch. ()

This conclusion can also be observed in our experiments. In fact, three base images have already covered over
90% variation for an object in our examples. Thus, conditions that the object must be convex and Lambertian
surface can be weakly satisfied.
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In Eq.(5), if the number of coefficientsis set to be three then this will be similar to the ideal Lambertian linear
model. It is conjectured in depth that the first three principal components of the linear subspace correspond to
Lambertian illumination of the object and higher order principle components correspond to specularities and sharp
shadows.

Also we find that, in Eq.(2), if @is constrained to be equal to the synthesized light direction s, then the base
matrix Sis equal to identity matrix, which means the three base directions are exactly along the three Cartesian
coordinate axes. Thus, if the first three principal components correspond to the images lit from front/back, from
left/right, and from above/bottom, then their related coefficients represent lighting direction. This is an important
observation that will be used in Section 4.

So far, the question left is to find the best three principal components and corresponding coefficients. In the
following sections, we will introduce methods that solve above problem in terms of least squared framework.

3 SVD Decomposition

Our way to solve this problem is using SVD decomposition. SVD has previous been applied to the related
problem of photometric stereo by Hayakawa*. For Lambertian source with a single illumination, SVD allows one
to estimate shape, albedo, and lighting conditions up to an unknown 3x3 constant matrix. Zhang proposed an SVD
based method to model and render illumination variation of a scené*¥. This method, however, relies on a
reconstructed geometry model and all the coefficients cannot be analytically derived and be related to the lighting
direction.

If we denote each image as an n-element row vector, and then an image matrix is comprised of all sample
images represented as row vectors. Denote mxn matrix W as the image matrix, where the number of rows mis the
number of images in the dataset. SVD decomposition of W is then expressed as

W=Uzv" (6)
where Z'is a diagonal matrix whose elements are the square roots of the eigenvalues of WW' ( or equivalently of
W'W) sorted by 4, >4, >---> A, . 4 iscalled singular values of W. The columns of U, denoted as [us|uy|...|u,],
correspond to the normalized eigenvactors of the matrix W™W. The columns of matrix V, denoted as [Vi|va... V4],
correspond to the normalized eigenvactors of the matrix WW'. They are in the same order as that of the singular
valuesin 2. The corresponding eigenvactor u; in U satisfying fundamental equation

WT™Wy, = A2,

where u; € R",

u; H =1. Theterm u; is also called the principal singular direction associated with 4, .
The principal singular directions imply the main changes involved in the image sequence. These changes may
be geometrical or photometrical properties of the object.

4 Novel Image Synthesis and Animation

According to the vision theories described in Section 2, if the dimensionality of illumination manifold is three,
then we will get exactly three non-zero singular values after executing SVD decomposition for image matrix W.
However, in practice, we do not expect only three non-zero singular values in 2 because of the fact that we cannot
get pure diffuse surface in the real world. There always exist some shadows, specularities, or noise in our data set.

Alternatively, we can always find optimized solution of three base images and coefficient vector such that the
energy function

Z{E(Ol,X)—Zg‘,t‘q(d)e(X)}z:(W—CDB)2 )
x,d i=1
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is minimal. In linear algebra theory, it can be proved that if a mxn matrix W has singular values 4, > 4, >---> 4,

and the rank of Wisr (r<n), then for any k<r, a best rank k approximation to Wis
k
W' =>auv .
i=1

Therefore, using SVD guarantees to give us the best least squared solution in any case and the biggest three
singular values of X as well as the corresponding bases in matrixes U and V build an optimized approximation to the
Lambertian part of the reflection model of the object. Let's denote the submatrix constitutes of the first three
columns of U and V as F and G, respectively. Above theory enable us to use SVD to solve B and @ up to alinear
transformation.

?=FQ, (8)
B =(GP)T
where P and Q are matrices which are constrained to satisfty QPT =X;, where 25 is a 3x3 diagonal matrix
constructed by the first three rows and columns of 2. 23 is thus a diagonal matrix that contains the biggest three
singular values of W. We then get aleast squared approximation W' of W as
W' =FXGT. (9)
Thus, the Frobenius norm of the difference between W™ and W is

W -We= A0t 22

We define the cost of this approximation as

W -Wl.  JR2a+ .2
Cost = = ,
Wl Va2

which is the Frobenius norm ratio of approximation difference W-W* and the original data set W.

Lower rank approximation has an advantage of avoiding noise. Recall that noise is one of the reasons that we
can not get the exactly three singular values from SVD decomposition of image matrix W, which means that the
noise prevents the singular values from dropping off and makes them bigger. This gives us some hint that maybe we
can get rid of the noise by setting those singular values to be zero.

Note that there is ambiguity existed in Eq.(7) because any P and Q satisfying constrain QPT =%, and
equations P=AP, Q=(A1)TQ will satisfy equations in (8), where A is an arbitrary invertible matrix. This
means that we can only get the solution of B and @ up to alinear transformation. Reference [4] proves that knowing
A is unnecessary for synthesis new image if the object is viewed from front-on. In other cases, additional
information should be used to determine the linear transformation.

From the illumination model (1), Egs.(2) and (7), we can predict the appearance of an object with respect to
any direction of light source s if the pose of object is fixed and the base matrix B is calculated. Estimation of B up
to a linear transformation needs to use the relationship in Eq.(8). To determine the linear transformation A fully or
partially, we developed several ways. The first way is to use the knowledge of given light source directions. The
second way takes advantage of priory knowledge about the class of the object, and the third way is directly selection
of bases. A nice feature of our methods is simple and efficient, new image can be synthesized in linear time (that is
o(n)).

4.1 Estimation of B

When the light directions of sample images are known, matrices P and Q can be uniquely determined
according to Eq.(8) and constrain QPT =%, . Recall that we have an important observation in Section 2, which is
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that if we constrain lighting direction s is equal to coefficient vector @, then base matrix B constitutes of three
images lit from three coordinate directions. Thus, we have
Q=F's; P=(Q*2y)".
B can then be calculated by least squared criterion
B=(GP)' =Q'2G". (20)

Thus, given any new light directions, novel images can be rendered. This method can be used provided that
light can be well controlled during image capturing.

It is unrealistic to assume that the light source directions of sample images are given. We need a method that
can estimate the light properties and the surface properties simultaneously. One way that deals with unknown light
direction is to suppose that we know the domain knowledge of the class of objects. If we know the base function B
of a prototype member of the class, for example, assume that we know B; for a prototype object f. Then, when we
get image data of a new object, we will estimate its P and Q matrices by assuming that it has the same surface
properties as the prototype. Thus we estimate P by minimizing

B, -GP[, (11)

where G are computed from the new dataset. The solution P* of Eq.(11) are then used to solve the surface properties
by using
B=GP". (12)

Thus, Q and the direction @& can be determined uniquely. Example is shown in Fig.6. The input image data are
generated from Visible Human data and three base images are estimated by using the base images of ball data (see
next section). Figure 7 shows images generated by derived base matrix B.

Alternatively, it is not difficult for us to select three images lit from independent directions as the base images.
For example, images lit from front, side and above (see Fig.9). Then, given any one of the other images, coefficient
vector can be estimated via Eq.(4). Moreover, if the base images are lit right from coordinate axes directions, then it
is easy to derive the relation between lighting directions and images because the coefficient vectors are the lighting
properties in this case. Otherwise, we should know illuminants of the base images. If light directions of the three
base images are known, then the coefficient vector and new image corresponding to any specified light direction can
be computed. Figure 9 is an example of images synthesized from three selected base images.

4.2 Morphing and animation

1999 ¢/

Fig.1 Light morphing

Through SV D, image matrix can be decomposed and its principal singular value and base images (or principal
components) are extracted (Eq.6). If needed, image matrix can be approximated in a low rank space to get rid of
noise and obtain a compact representation of dataset (Eq.8). Generally, specifying a set of coefficients with respect
to the base images will reconstruct one of the input image or synthesis a novel image.

In this subsection, we discuss how to generate a morphing sequence via SVD. To this end, we need only a few
images of the object as input. After SVD decomposition of image matrix, we have W =UXV ' . Denote
B =J3V" as the base matrix that characterizes the principal components and directions of input images, and
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denote U as coefficient matrix. Thus, any input image can be represented by linear combination the base matrix with
avector of corresponding coefficients. By linear interpolating coefficients we can generate a morphing series of the
object varying along the geometrical or photometrical properties. Results of linear interpolation are satisfied and
reasonable because we have assumed that objects close to be diffuse and convex. Moreover, self-shadow and
specularities can be approximated by linear interpolation if the number of base images is more than three. In our
experiments, if the principal components represent light changes, then interpolation of the coefficients will generate
movies of the smooth variation of the illumination impacting on the object. We call it light morphing (see examples
in Fig.1, which use three input images lit from left, front,
and right, respectively.). If the principal features
characterize the pose changes of the object, then we
generate a view morphing series of the object (see

examples in Figs.(2) and (3). In fact, Fig.3 illustrates
appearance changes in both geometry and photometry. Fig.2 Input images represent object rotation

Note that the highlight on the bell is also moved correctly.

Frame2 Frame6 Framel2 Framel6 Frame20

Fig.3 Some frames extracted from the morphing series
Morphing generated by SVD is more compact and efficient than feature-based and mesh-based method because
images are expressed by the base images and a set of coefficients, which is much less than the number of feature
lines and control points of mesh. Note that advanced algorithms should be developed if accurate self-shadows and
specul arities are required.

5 Experiments

The first experiments use a set of computer generated ball images for which the surface material and light
source directions are well controlled to satisfy our assumption. The image set is generated by changing of the
elevation and azimuth of light source direction. The view coordinate is set such that XY plane aligns with the screen
plane, Y-axis points to the top of the screen, X-axis points to the right of the screen and Z-axis is perpendicular to

1 and point out of the plane. The dataset covers a half sphere space
- of light directions where z larges than zero. After SVD
| decomposition, the rank of the image matrix is 72, and singular
values are plotted in Fig.4 where you can find the singular value

= deduced very quickly.
= We take the biggest three singular values to create alow rank
| approximation of the dataset and generate three base images
o shown in Fig.5. The Cost of this rank 3 approximation is 0.0059.
P — e a o These images show that the light directions of the three base

images consist with three coordinate axes. Novel images under
Fig4 All singular values of the ball dataset any specified light directions using three base images estimated
from SVD.
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The second experiment assumes that light directions are unknown. Our image data are rendered from Visible
Human Dataset and controlled in the same light direction settings as that of the ball data. Notice that shape of the
man head is similar to a ball, thus, when estimate the base images, we first compute the SVD decomposition and
low rank matrix G of this dataset, then estimate matrix P~ using the base matrix B computed from the ball data
(Fig.5). Finally, the base images of human dataset can be calculated by Eq.(12). Figure 7 shows some synthesized
images by linear combination of three base images.

Figure 8 is another experiment that uses the face database from Harvard University. We select three images
from the dataset that was lit roughly from the directions of three

r 1 coordinate axes. This selection makes the base matrix of
. illumination sphere close to identity matrix. In other words, the
light directions can be simply regarded as the coefficients of

combination. Novel images lit from other lighting directions can
Fig:5 Three baseimages of aball dataset e thys generated by linear combination of the base images.

EED e o

(a) The three base images calculated from known class object  (b) The three base images cal culated from known light directions

Fig.6

Fig.9 Faceimages synthesized from above base images

6 Conclusion

In this paper we introduce an image-based approach that use singular value decomposition to synthesis novel
images of an object under any lighting directions, rather than recovering BRDF function or any other reflection
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parameters. This method is shown to be very efficient and can generate continuous object morphing sequence under

varying of illuminations and object pose.

Limitation of this method is that albedo and shading information are combined indiscriminatingly. However,
because human eyes are less sensitive to the accuracy of lighting changes than to that of geometry changes, the
proposed method can satisfy most image based applications.

Acknowledgement Data used in this paper are from Harvard and Yale face database, Columbia object database
and the Visible Human Dataset.

References:

[1] Wong, T.T., Heng, P.A., Or, SH., et al. Image-Based rendering with controllable illumination. In: Dorsey, Slusallek, ed.
Proceedings of the 8th Eurographics Workshop on Rendering. Springer Wien, Vienna, Austria, 1997. 13~22.

[2] Yu, Y.Z., Mdlik, J. Recovering photometric properties of architectural scenes from photographs. In: Acm Staff ed. SIGGRAPH' 98
Conference Proceedings, Annual Conference Series. Addison-Wesley Publishing, Co., 1998. 207~217.

[3] Sato, Y., Wheeler, M.D., Ikeuchi, K. Object shape and reflectance modeling from observation. In: Acm Staff ed. SIGGRAPH' 97
Conference Proceedings, Annual Conference Series. Addison-Wesley Publishing, Co., 1997. 379~387.

[4] Epstein, R., Yuille, A.L., Belhumeur, P.N. Learning object representations from lighting variations, In: Ponce, J., Zisserman, A.,
Hebert, M., eds. Proceedings of the International Workshop on Object Representation for Computer Vision. Lecture Notes in
Computer Science, Springer-Verlag, 1996. 179~199.

[5] Epstein, R., Hallinan, P.W., Yuille, A.L. Eigenimages suffice: an empirical investigation of low-dimensional lighting models. In:
Proceedings of the IEEE Workshop on Physics Based Modeling in Computer Vision. IEEE Computer Society Press, 1995.
108~116.

[6] Hallinan, P.W. A low-dimensional lighting representation of human faces for arbitrary lighting conditions. In: Proceedings of the
|EEE Conference on Computer Vision and Pattern Recognition. |EEE Computer Society Press, 1994. 995~999.

[71  Belhumeur, P., Kriegman, D. What is the set of images of an object under al lighting conditions? In: Proceedings of the
Conference on Computer Vision and Pattern Recognition. |[EEE Computer Society Press, 1996. 270~277.

[8] Nayar, SK., Murase, H. Dimensionality of illumination in appearance matching. In: Proceedings of the IEEE International
Conference on Robotics and Automation Minneapolis. Minnesota: IEEE Computer Society Press, 1996. 1326~1332.

[9] Georghiades, A.S., Kriegman, D.J.,, Belhumeur, P.N. Illumination cones for recognition under variable lighting: faces. In:
Proceedings of the |EEE Conference on Computer Vision and Pattern Recognition. |IEEE Computer Society Press, 1998. 52~59.

[10]  Shashua, A. Geometry and photometry in 3D visual recognition [Ph.D. Thesis]. Department of Brain and Cognitive Science, MIT,
1992.

[11]  Hager, G.D., Bellumeur, P.N. Real-Time tracking of image regions with changes in geometry and illumination. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Press,1996. 403~410.

[12] Zhang, Z.Y. Modeling geometric structure and illumination variation of a scene from rea images. In: Proceedings of the
International Conference on Computer Vision (ICCV’98). Bombay: IEEE Computer Society Press, 1998. 1041~1046.

1 2
Y ! 650091);
A c)
BRDF ,
(SVD) Lambertian . ,
, SVvD
: Lambertian ; ; ; ;
- TP391 A

© rhiEBRER

HOFIFFIT hetps/ www. jos. org. cn




	Linear Reflectance Model
	Related Vision Studies
	SVD Decomposition
	Novel Image Synthesis and Animation
	Estimation of B
	Morphing and animation

	Experiments
	Conclusion

