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Abstract In this paper, a Field Theory besed zdaptive resonance neural network algorithm FTART,
which combines the advantages of Adaptive Resonance Theory and Field Theory, is proposed. FTART em-
ploys a unique approach to solve the conflicts hetween instances and extend classification regions dynamicaily.
So that it does not need user to manually configure hidden units, and achieves fast training speed and high pre-
dictive accuracy. Moreover, a method named Statistic based Producing and Testing, which has the ability of
extracting comprehensive and accurate symbolic rules from trained FTART, is proposed. Experimental re-
sults show that the symbolic rules extracted via this method can commendably describe the function of
FTART.
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Adaptive Rescnance Theory (ART I is an important class of competitive neural learning models. The
memory mode of these models is similar to that of life forms, and their memory capacity can increase ag the
learning instances increase. Moreover, ART models can perform real time online learning and can work under
dynamical environments. Su, these models have promising application pruospect. On the other hand, Field Theo-
1y¥ is a class of relaxation models, which are the only reural models that need only one round training current-
ly. And they are good heteroassociative classifiers, which have large memory capacities and can perform real
time supervised learning with fast speed. In this paper, a new neural learning algorithm named F1TART is pro-
posed based on Adaptive Resonance Thecry and Field Theory. FTART employs a unique approach to solve the
conilicts between instances and extend classification regions dynamically. It overcomes the disadvantage of tradi-

tional feed-forward neural networks, which need user to manually configure hidden units, and achieves fast
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training speed ard high predictive accuracy, Benchmark tests show that FTART is far better than BP in training
time cost and predictive accuracy.

Because artificial neural network has stupendoue ability of generalizing znd dealing with nanlinear prob-
lems, it gets outstanding achievements that traditional symbolic mechanism cannot attain in many domains. But
there exists an inherent disadvantage i ANNs, that is, concepts learned hy ANNs are hard to understand, and
itis dilficult to give an explicit explanation for the reasoning process, because knowledge is represented in large
assemblages of connection weights in the network. This has cumbered user from understanding the function of
neural models, and limited them in applying those models to the task of knowledge discovery and knowledge re-
finement. We can avercome this disadvantage if we can extract comprehensible symbolic rules from neural net-
works. Nowadays, more attention has been paid to this field, and many fruits have been achieved™~% In this
paper, we propose a method named SPT (statistic based producing and testing)» which comes from the view of
funetionality, to extract symhalic rules from trained FTART network. Experimental results show that the rules
extracted via SPT are comprehensible and accurate, and can commendahbly deseribe the funection of FTART.

The rest of this paper is organized as follows. In Section 1. we describe the Field Theotry based adaﬁtive
resonance neural network algorithm FTART. In Section 2, we present the rule extraction algorithm SPT. In
Section 3. we report on some benchmark tests and comparisons with FTART. In Scction 4, we give out rule ex-

traction experimental results and camparisons with SPT. And finally in Section 5, we conclude the paper.
1 Field Theory based Adaptive Resonance Algorithm FEART

1.1 Architecture
The FTART network is campesed of four layers of units. Figure 1 shows its architecture. The activation
function of hidden units is Sigmoid function, and Gaussian weights connect the input units with the second layer

founh layer units units. FTART uses the second layer units 10
full (outpur units) . . . X

connastion classity inputs internally, uses the third
third layer wnits layer units to classify outputs internally, and

1t M
rapping

sets up associations between those rwo lay-
¢ hidden units) i 1 }
ers to implement supervised learning.

ol second layer unizs Excepr the connections between the first
u

conneetion and second layer umits, all connections are

first layer units
(inpur units) bi-directicnal, The feedback connections,

——(raussian weights

whose function is just transmitting feedback
Fig. 1 e _arciiectie oA S TATH signal, are alwavs set to t. In fact, this ar-
chitecture is a typical competitive neural nerwork: classifier, which can partition the instance space into arbitrary
shapes.
1.2 Mathematical descriptions

FTART introduces the notion of attracting basin, wkhich is proposed n Field Theory™. It adopts Gaussian
weights as the connections betvreen the first and second layer units. Assume that pattern input to the first layer
unite is A, =C(afabs. .. val) (A=1.2,... y5e}+ then the cutput of the sccond layer unit 7 is:°

b,=ge*(é+ﬁ"), (1>

E
where 8, 2nd &, are respectively the responsive central valve and the responsive characteristic width of the Gaus-
sian weight that connecting the input unit 7 with the second layer unit j. They determine a geometrical attracting

basin jeintly. The relationship between &, and other paramcters satisfies Eq. (2):;
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at=0.=b=1

ab£8,=2b,+0

(2>

Because the dynamical property of a Gaussian weight is entirely determined by its responsive central value
and responsive characteristic widta, learned knowledge can be encoded in the weight through only medifying
those two parameters. Thus, during the training process, if the input pattern is located in the attracting basin
determined by 6, and a; of a Gaussian weight, no parameter will be changed. Else the nearest attracting basin
will be found and modulated according to the relationship between the input pattern and the original basin, so
that the input pattern could be covered by the basin. The moduiation is performed by adjusting both 7, and ;.

as shown in Eqgs. (3) and (47:

ﬁ_jrmgmgg_@f b€ (—eo,0,— 0. 3a)

== 8 at€ [6,—0. 3ey, 8+ 0.3a,;] @
i;Lg%i@f at€ (0,40, Jay;, +o0)
bt 38 —d e (—oo,0,~0.3a,)

Y ol at€ [8,— 0. 3.0, +0. 3a,] o
ﬂ_*:ﬁ_zﬂ ate (0,+0. 3a,, +0)

The modutation involves feedback signals and may involve iterative adjusting. However, because the typical
attractor of the basin will be more and more close to the input pattern, the adjusting resonance procedure is to
stabilize at a point, where the input pattern is covered by the attracting basin. This stabilization property is a
characteristic that FTART inherits from Adaptive Resonance Theory.

The output of the third layer unit 4 is computed according to Eg. {(3):

Ch=f(bj'b'jhAﬁh), (37
where f is a Sigmoid function as shown in Eq. (6,
oy 1 .
f(u)—H_e_,,. (67

In Eq. (5), @4 is the threshold of unit &. &; is the outpur of the second layer unit j, which is the winner a-
mong the second layer units connecting with unit k. @, is the weight connecting unit j with unit A. Attention
should be paid to that vy is always equal to 1. The relationship between ¢, and other parameters satisfies Eg.
(M

by 83001 -
16,0 — By 0=, —>0.

Different from traditional fced forward neural network algorithm BP, FTART does not need user to manu-
ally conligure hidden units before training because it possesses the characteristic of Adaptive Resonance Theory,
which could dynamically increase units. When new patterns are fed, if necessary, FTART will append several
new units in the hidden layers, connect them to a part of existing units, and adjust cannection weights, in arder
that the new patterns could be covered. On the other hand. BP uses supercubes to partition the instance space.
When training examples do not ful'y cover the instance space, the learning result is the simple mergeing of emp-
-y holes. This leads to the need of iterative learning. Comparatively, FTART uses super-gllipsoids to partition
the instance space . which is an advantage of Field Theory. The responsive central values of Gaussian weights
are corresponding to the characteristics of components of the learned patterns, Through adopting such frame-

work, the learning system can make complicated partitions fer instance space by only using the first layer units.
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So, FTART needs only one round training and its training speed is much faster than BP. Moreover, the predic-
tive acruracy of FTART is hetter than BP hecanse the super-ellipsoids have hetter {illing effret than supercnbes.
1.3  Algorithm description

FTART algorithm is described in Table 1, and its flowchart is shown in Fig. 2.

Table 1 Field theory based adaptive resonance neural network algorithm FTART

1. Create the initial network hased on the components of the input and cutput vectors. And send input pattern of
the first training instancs to the input units.

Z. Input units send input values to the second layer units through Gaussian weights, Compute outputs of the
second layer units according to Eq. (1),

3. Carry out winner-take-gll style competition among the second layer units connceted with the same third layer
unit. Tha winner sends its output to the third layer unit. Compute the output value of the third layer unit
according to Eqg. {(5).

4. Carry out winner-take-all styl: competition among all the third layer units. The winner sends its output value
1o the fourth layer units.

5. Compure the errer between real network outpur and the expected output, If the errot is in the allowance range.,
goto step 6, clac goto step 7.

6. The output units release a stimulus signal and feed it back laver by layer to the secend [ayer unit which s not
only a winne: but also connected with the winner of the third layer units. Then, the corresponding #; and a;;
of the Gayssian weights are adjusted according 1o Egs. (3) and (4). Goto step 10,

@ Find cut the third layer unit whose error is the minimum threugh compering the expected network output with
the characterisyic ourput of all the third layer unita. If the error is in the allowance range, goto step 8. else
goto step 0.

: 8 Find out the second layer unit which is nor only a winner but also connected with the selected third layer unit.
Adjust corresponding &:; and #;; according to Eqs. (3) and (4) until the selected third fayer unit can win its
competition. Geto step 10,

9. Append two units in the hidden layers, ane in the secand layer. the other in the third layer. The new second
layer unit is connected with all the input units. The &; of the Gaussian weights are set to the current input values
of the first [ayer units, and the a; are set o a defsult value. The new shird layer unir is connected with all the
output units. The weights are set to the output components of the current instance. Furthermore, the two new
units are vunsecied with each other. All the feed-forward and feedback weights between them sre set 1o 1,

10.  If all training instances have been fed. the training procedure terminates, Else send the input of the next
instance Lo put units, Goto step 2.
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Fig. 2 Flowchart of ficld theory based adaptive resonance neural network algorithm FTART
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2 Extracting Rules from FTART Network

Although FTART is a gocd neural learning algorithm, it still has = disadvantage, that is, the learned
knowledge is concealed in large amount of real value connections. So. the knowledge encaded in the neural net-
wurk is hard to understand by vsers, and the reasoning process is implicit and hard to be validated. Tf we can
extract comprehensible symbolic rules from trained FTART network, we can not only help users to understand
the function of FTART, hut alsn push FTART inte more and more application fields.

The training of neural network needs large amount of deta. If we use a trained network to classify the ex-
amples in an instance set, there will be both correct and error results. Nonetheless ., those results sulficiently re-
flect the function of the network. We can construct a new example set -hrough combining the original inputs
with the neural network classifications. Tf we can extract symbolic rules from this example set, we can not only
use those rules to describe the function of the trained neural network but alse give out comprehensible symbolic
explanation for the neural network reasoning process. This is the start point of proposing SPT methaod.

The neural network training examples unnecessarily fully cover the whole instance space, and there are
possibilities of introducing noise in data collection. So, extracting rules from only the original uputs and their
nenral network classifications can not guarantee thet those rules effectively describe the generalization ability of
the neural network, To address this problem. we introduce statistics into SPT. Only when the classificarions
for some extrz new examples determinec by the extracted rules are equivalent to those determined by the neural
network to some extent. we accept the rules. Else we reject those rules and start to search for other possible
rules.

Centinuous features are often inevitably occurring and playing important reles in real epplication fields. One
of the most distinct advantages of neural networks against symbolic learning is that neural networks can com-
mendably deal with continuous features. However, extracting rules from neural networks that have continueus
inputs is very difficult, and there is no very suceessful method. Some researchers discrerize all continuous inpurs
before rule extrzction™l. Although this is helpful tc some extent, it suffers from the subjective factor, because
no one knows how many subclasses the values of a conrinuous attrihure should be clustered into, Comparative-
ly, SPT does not perform discretization at the heginning. It always extraces rules from discrete features. And
ovly when necessary, a continuous feature that has the best clustering effect is discretized to be a new discrete
feature. This style of processing reduces the combinatorial complexity and computational cost because it de-
creases the rule space involving continucus features.

Attention should be paid to that the rules extracted through SPT are ranked. The firstly extracted rule has
the highest rank and the latest the lowest rank. This characteristic makes the rule set have a compact appear-
qance.

The SPT algorithm is described in Table 2, and its flowchar: is shown in Fig. 3. The 4 in the algorithm,

which defines the suppart of the current rule, is cormputed according w Eq. (8) .

Sk
=T (8)

where Syy is the amount of instances in §° that possess the discrete input attribute combination X and fall into

class Y. Syis the amoun- of instances in §' that possess X,
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Table 2 Rule extraction algorithm SPT

1. Split the instance sel 8, which is large encughy into two parts: Sy and 5;. Regard 8 as training sct to train
FTART, and leave S;alcne. The amount of instances in Sy is more than that in S This is becanse we use more
instances for rule extraction than for training.

2. Use trained FTART network to determine the classifications of instances in §;. Consiruct a new instarce set §7
by combining 1he vriginal input with the network sutput. Set A to 10004.

3. If there exists in &' a discrete input ateribute combination X, which makes instance that possesses it fall into a
ceriain cless with probability A construct a ruie Rx by regarding the combination and class as the rule
sntecedent and consequent reapectively, (If more than ene combmation exists, select the one that covers the
largest zamount of instanees. ) Goto step 4. Else goto step 5.

4. Fix the values of artributes appearing in X; create N new instanues by randamly varying the values of other
input attributes. Use traioed FTART snetwork and extracted ruls set to determine the classifications of the new
instances. If the fidelity of classifying resuits i= not setisfying, rejeet Ry and gote step 3 o find oher discrete
iuput attribute combination, Else acrept Ky and gotc step 5.

5. Delete instances covercd by Ry from 8'. If §' (s empty, goto step 8 Else poto step @

6. I’ there exist in §' undiscretized continuous input attributes, selact the one (4,) that has the best clustering

effect o diseretize, goto step 3. Eiae goto atep 7.

7. Decrease A If A is less than a pre-set value Apees goto step 8. Else recover all the values of discretized
continuous attributes of instance in &', goto step 2.

8. Merge the rules that have not only successive ranks but elso the same rule consequent.

93 End.

(Sun)
Train FTART

|Construet S""’fset A to 100Y

Search for X @ 4’

= Ji exists? \‘__A‘. exisls?

. VeS 3
Search for other X recover all continuous

[Construct rule Ry, create] Liése AJ attribute values in §°

N new instances
ey Lo Y XLJ

Reject Ry

¥
T T—
— "Ry valid?

yes
Accept Ry, delete instances
covered by Ry from § °
!

"

no

Fig. 3 Flowchart of rule extraction algorithm SPT

3 FTART Benchmark Tests

3.1 Benchmark test 1. circle-in-the-square

Circle-In The Squarc is specified as a benchmark test prob]em for system performance evaluation in the
DARPA ANNT (artificial neural network technology) program™. The details of this task are described in Ref.
[6]. The testing results of FTART and standaré¢ BP™ are shown in Table 3 (The machine used is Pentium
MMX 200MHz, 32MEB RAM). In order to control the experimental time, we limit the iterative epochs of BP to

at most 200, Since it is very difficult to determine the amount of hidden units of BP, in each experiment we use
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3 BP networks whosc amount of hidden units is respectively
3, 15and 25. The dara of BP in Table 3 are the average val-
ue of those 3 networks.

Table 3 shows that the training set accuracy of FTART
is always 100%. And the testing set accuracy of FTART

achieves higher than 98.9% when only 500 training exam-

ples are fed. Attention should be paid to that the training
time ¢f FTART is abour cne magnitude of order less than
BP even we limit the largest iterative epochs of BP to 200. Fig.4 The tssting result of FTART
So, the learning zccuracy, generalization ability and efficien- when F,000 training examples arc fed.
ty of FTART are obviously superior to those of BP. Figure THE cldhsific®on accuracy is 85. 1%
4 shuws the testing result of FTART when 1,000 training examplss are fed. [n the figure, black and white
points respettively represent instances that are judged to be in the circle or out of the circle by trained FTART.
There are also some gray spots existing in Fig. 4, which denote undetermined areas that cannot be distinguished
by trained FTART because the training examples do not well spread in the instance space.

Table 3 Comparison of circle-in-the square testing results

Training set size Training set accuracy (%) Tesling set accuracy (%) Training time (second’
240 72.0 71.3 4 769
BP 500 §3.5 93. 5 11 273
1,00 $6. 1 5.0 22 353
200 E0C 54,0 752
FTART 500 100 98. & 2012
1,000 100 98,1 3976

3.2 Benchmark test 2: tell-two-spirals-apart

Tell-Two-Spirals-Apart is 2 neural network henchmark test proposed by Wielandl®. This task is cescribed
in detail in Ref. [87]. The testing results of FTART and standard BP are shown in Tuble 4 (The machine used is
Pentium MMX 200MHz, 32MD RAM). We still limit the largest iteration epochs of BP to 200, and use 3 BP
networks for training whose amount of hidden units is respectively 5, 15 and 25. The data of BP in Table 4 are
the average value of these 3 BP networks.

Table 4 Comparison of tell-two-spirals-apart testing resul-s

Training set accuracy (%} lesticg set accuracy (%)  Training time {second)
Bp 52. 0 1.3 4413
FTART 100 106 1024

Table 4 shows that the training set accuracy and testing set accuracy of FTART are 100% ; both are far su-
perior to BP. Moreover, the traimng time of FTART is far less than BP. Obviously, FTART has stronger
lezrning ability than BP.

4 Examples of Rule Extraction

We use Human Race Classifying problem to demonstrate the experimental results of extracting rules from
trained FTART via SPT. The instance set uscd in this task is an extension of that used in Ref. [0 . There are
180 instances in this set, and each instance has two discrete attributes and two continuous attribures. which are
respectively “Hair Calor”, “Eye Color” and “Height”, “Weight”, Because there arc continuous attributes exist-

ing, SPT may perform discretization in the rule extraction procedure, Here we only use the simplest c-Means
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clustering method. Since it is difficult to evaluate the accuracy of the extracted rules. we use 5-fold cross valida-
tion by dividing the instance set into 5 subsets and correspondingly constructing 5 FTART networks. For each
we use four subsets to extraet rules and the rest one to test. The rules extracted via SPT are slightly varied be-
cause the training sets are different in the 5 experiments. A typical extracted rule set is shown in Table 5.

Table 5 Rules extracied for Human Race Classifying problem via SPT

Rule No, Rules
1 (hair=gray)—Black
2 (hair=blond) V Chair=red) V (height>>194, 1)—»White
3 (Chair=dark) A Cheight<(163. 812 V ({hair —dark) A (eye=dark))—TYellow
4 (weight<98. 72V (hair=dark)—»Black

We compare the testing set accuracy of FTART, C4. 3 decision treet™ and the rule set extracted by SPT at
each experiment. Figure 5 shows the comparison of the results.
Predictive accuracy{ 14) Figure 5 reveals that the neural learning model has the highest
accuracy. The reason is that FTART has better generalization and
noise resistance ability, so that it could achieve satisfying learning
effect even though the training examples are noisy and do not fully
cover the whole instance space. Figure 5 also shows that the test-
ing set accuracy of the role set extracted via SPT is very clase to
that of FTART. This illustrates the validity of SPT.

Attention should be paid to that the testing set accuracy of the

Experiment No.

) . ) rule sets extracted via SPT is superior to that of C4. 5 deeision
Fig. 5 Comparison of human race

classifying problem testing ser aceuracy trees in all the 5 experiments. This result is consistent with thar of

Setiono and Craven'*®!, We believe that it is because the extracted
rules may benefit from the generalization ability of FTART, so that they can do hetter predictions than decision

trees.

5 Conclusions

This paper has proposed a Field Theory based adaptive resanance neural netwaork algorithm FTART, which
combires the advantages of Adaptive Resonance Theory and Field Theory. FTART does not need to manually
corfigure hidden units, and achieves fast learning speed and strong generalization ability. Benchmark tests show
that FTART is far better than EF in both learning accuracy and training speed. Moreover, this paper has also
praposed an algarithm named Statistic based Producing and Testing. which is designed to extract symbolic rules
from trained FTART network. Experimental results show that SPT can extract comprehensive and sccurate
symbolic rules, which can do great help to improve the comprehensibility and reasoning transparency of

FTART.

Acknowledgements The authors would like to thank WEI Wen-long and SUN Chen for their fruitfu: work.

The comments and suggestions from the anonymous reviewers greatly improve this paper.

References .
{17 Carpenter, G. A. , Grossherg. S. The ART of adaptive pattern recognition by a self-organizing neural network. Com-
puter. 1988.21(3).77~R8&.
[2] Wasserman, P. D. Advanced Methods in Neural Computing, New York: Van Nostrand Reinhold Press, 1593. 14~ 34,

© HIERRESSAHIIFTR  http:/ www. jos. org. cn



RE® F ETHRERGALDBEAZHERE — 1459 —

[3] Sestito, S., Dillon, T. Knowledge acquisition of conjunctive rules using multilayered neural networks. International
Journal of Intelligent Systems, 1993,8(7).775~ &05.

[4] Setiono. R.. Lin H. Underaranding nevral networks via rule extraction. In; Proceedings of the 14th Tnternational Joint
Conierence on Artficial Intelligence. Montrcal, Canada; Morgan Kaufmann Publishers, Inc. , 1995, 480~ 485.

[6] Craven, M. W, , Shavlik, J. W. Extracting Tree-Structured Representations of Trained Networks. In: ‘L'ouretzky, L. ,
Mozer, M., Hasselmo, M. eds. Advances in Neural Information Processing Systems (volume 8). Cambridge, MA .
MIT Press, 1996. 24~30.

L8] Carpenter. G.. Grossherg, 8., Markuzon. N, et al. Fuzzy ARTMAP: a neural network architecture {or incremental
supervised learning of analog multidimensional mape. 1EEE Transactions cn Neural Networks, 1992,305),698~713.

[77 Rumelhart, D., Hinton, G. , Williams, R. [earning represehtation by backpropagating errors, Nature, 1986,323(8),

533~534.
8] Leng. K.J., Witbrock, M. I. Learning to tell two spirels apart. In, Touretzky, D, , Hinton, G. . Sejowski, T. ede.

Praceedings of the 1988 Connactionist Models Summer School. San Matco, CA . Morgan Kaufmann Publishers, [nc.,
1989, 52~54,

(8] Chen Z, Liull, Zhou R, et al. A hybrid elgotithm for multi-concept acquisition & its application. Chinese Journal of
Conputers, 1296,19(107:753~761 (n Chinese).

(10] Quinlan, J.R. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaulmann Publishers, Inc. , 1993,

HexsER.
(9] BRIE¥ 0% H2.% AN EENE HMCAP B LA H. B M2 .1996,19(10}. 753~ 761,

ETHEIEH RS R RNERETR
Rk, KA, KR -

(HERAF RGN EABERE S LR E, LI s 210093}

WE: #ET -~ AETHERD S E L HRF S MNENE FTART, A MBS T 518 8 AT H o0k 2t 5 4
PR BT ABAT RO A EF s AR NN ST A ARAEEF L ETRERLE L, TUEEF
THBEG ISR ERRHOIMMM R, FIERE T —H T 5L 9 4647 69 FTART M 86 & 46 BT 22 8 1 57 , 4%
Rﬁ&ﬂgf"‘?ﬂﬂﬁk’)/‘?‘r‘bﬁf’&f?’t’.'i’rﬂfimdﬁ.;‘%.%%%%i%,mﬁﬁ%#mﬂﬁ%ﬂm"Tﬂﬁﬂhbé%i&
FTART &9 =% 6.

KRE. AEABREFT AN AR, AESHAED RER, L RRRGESE T, HES T

PEEH %S, TP183 X RIFIRA: A

© HIEERES AT hip:/ www. jos. org. cn



