ISSN1000-9825 Journe! of Software £t 4 2 4§ 2000,11(6): 735~ 744

FDBSCAN. A Fast DBSCAN Algorithm’
ZHOU Shui-geng ZHOU Ao-ying JIN Wen FAN Ye QIAN Weining

(frepartment of Computer Science Fudan University Shangha 200432)

E-mail; {sgzhou,aychou}@fudan. edu.en

Abstract Clusterirg is an important applicatior. area for many fields including data mining, statistical data
analysis, pattern recognition, image processing. and other business applications. Up 1o now. many algo-
rithms for clustering have been developed. Contributed from the database research community , DBSCAN al-
gorithm is an outstanding representetive of clustering algorithms for its good pertormance in clustering spatial
data. Relying on a density-based notion of clusters, DBSCAN is desipned 1o discover clusrers of arbitrary
shape. It reguires only one input parameter aad supports the user in determining sn appropriate value of ir. In
this paper, a fast DBSCAN algorithm (FDBSCAN) is developed which censiderably speeds up the origina. DB-
SCAN algorithm, Unlike DBSCAN, FDBSCAN uses only a small number of representative points in a core
point’s neighborhood as seeds to expand the cluster such that the execution frequency of region query znd con-
sequently the 1/() cost are reduced. Experimental results show that FDBSCAN is effective and efficient in
clustering large-scale databases. and it is faster than the original DBSCAN algorithm by several times.

Key words Large-scale database, data mining. clustering. fast DBSCAN algorithm . representztive oint.

Finding useful patterns in large-scale datzhases has attracted considerable interest recently!'’, and one of
the mast widely srudied problems in this area is clustering, which is the rask of grouping the data of a database
mte meaningful subclasses in such a way that minimizes the intra-differences and maximizes the inter-differences
of these subclasses. There ere a lot of application areas for clustering techniques, which include statistical data
analysis, pattern recogrition, image processing, and other business applications, to nzme a few. Up to now. a
lot of clustering algorithms have heen proposed, in which famous algorithms contributed from the database com-
munity are CLARANSET, BIRCIT®, DBSCAN, CURES , and recently, the STINGY!, CLIGUE™ and Wave
Cluster™ algorithms. All these algorithms try to chellenge the clustering problems handling huge amount of da-
ta in large-scale datahases. Based on the DBSCAN algerithm/!+, this paper presents a fast DRSCAN algorithm
{(I'DBSCAN) which considerably speeds up the ariginal DBSCAN wlgorithm. By sclecting only a swall number

s This research is supported by the MNational 473 Fundamental Research Program of Chino (B % B 00 B S 8TIT 5). Mo,
(31998030414, the National Natural Science Foundation of China (B # A $8% 223 &, No. 69743001), and the Naticnal Dec-
loral Subject Foundation of China{ HZ -k 5 9 H £ 2 ., No. 1999024521}, ZHOU Shui-geng was borr in September, 1965, He
is a Ph. D. candidate at Department of Computer Science, Fudan University. His current research zreas include databases, deta
warehouses, data mining and information retrieval. ZHOU Ao-ying was barn in May, 1965. He is a professer sand doctoral su-
pervisor ol Department of Computer Sciences Fudan University, His rcscarch interests are databases, kn;)wlcdge bases . <data
mining and information retrieval, JIN Wea was bora in August, 1967, He is a Ph, D. candidate at Deparimernt of Computer Sci-
ence, Simon Fraser University, Canada. His current research areas include datubases, cata warehouses and data mining.
FAN Ye was borp in March, 13976, He is a graduate student of Department of Computer Scienge . Fudan University. His current
research areas are databases ard dara mimng. QIAN Wei-ning was horn in Decemher, 1976. He is a graduate student at Depart-
ment of Computer Sciwnce, Fudan Univeesity. [lis current research arees are databases and data mining.

Manuseript received 1999-03-14, accepred 1999-06-25,

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 736 — Journal of Software B AFFIR 2000,11(6)

of representative peints in a core peint’s neighborhood as seeds to expand the cluster, FDBSCAN executes less
region cueries than DBSCAN does, and thus reduces clustering time and 1/0 cost.

The rest of this paper is crganized as follows. We first give an overview of major related work on clustering
research contributed from the database community in Section 1, then present an introduction to the DBSCAN al-
gorithm, and analyze its features and drawbacks while dealing with large-scale databases in Section 2, We intro-
duce our improved DBSCAN algorithm, i.e. FDBSCAN in Section 3. Following that, some experimental resulis
are given tc demonstrate the effectiveness and efficiency of FDBSCAN algorithm in Section 4. Finally, Section 5

concludes this paper ard outlines some issues for future research.

1 Related Work

In recent years, a number of clustering algorithms for large databases or data warehouses have been pro-
posed. Generally, -here are two types of clustering algorithms'®; partitioning and hierarchical algorithms. Par-
titioning algorithms construct a partition of a database I of n objects into a set of £ clusters, The partitioning al-
gorithms typically start with an initial parrition of) énd then use an iterative control strategy to optimize an ob-
jective function. Each cluster is represented either by the gravity center of the cluster (k-means algorithms) or
by one of the cbjects of the cluster located near its center (&-medoid algorithms). INg and Han'* introduced
CLARANS which is an improved #-medoid method by combining & sampling procedure and the PAM algorithm,
This is the first method that introduces clustering techniyues into spatial data mining problems.

Hierarchical algorithms create a hierarchical decomposition of database D. The hierarchical decomposition is
represented by a dendrogram, a tree that iteratively splits I?into smaller subsets until 2 termination eendition is
satisfied. Hierarchical algorithms do not need % as an input parameter, which is obviously advantageous over
partitioning algorithms. The disadvantage is that the termination condition has to be specified. BIRCHM uses a
nierarchical data structure ralled CF-tree which is a height balanced tree storing the clnstering features. BIRCH
:ries to produce the best clusters with the available resources. CURE algorithm™!is also a hierarchical method.
However, its contribution is representing a cluster with multiple representative points rather than one medoid as
inn traditional apprcaches and shrinking them toward the cluster center for alleviating the effect of outliers so
that clusters of arbitrary shape can be effectively found.

Ester et al. ') developed a clustering algorithm DBSCAN based on a density-based notion of clusters. It is
designed to discover clusters of arbitrary shape. The key idez in DBSCAN is that for each point of a cluster, the
neighborhood of a given radius has to contain at least a minimum number of points. DBSCAN can effectively
handle the noise points (outliers).

Recently some new algorithms have been introduced, Wang et al. ' proposed a statistical information grid-
based method (STING) for spatial data mining. It divides the spatial area into rectangular cells using a hierar-
chical structure and stores the statistical parameters of all numerical attributes of objects within cells. CLIQUE
¢lustering algorithm' identifies dense clusters in subspace of maximum dimensionality. It partitions the dara
space into cells. To approximate the density of the data points, it counts the number of points in each cell. The
clusters are unions of connected high-density cells within a subspace. CLIQUE generates cluster description in
the form of DNF expressions. G. Sheikholeslami ez al. '™, using multi-resolution property of wavelets, pro-
posed the WaveCluster method which partitions the data space into cells and applies wavelet transform on them.

Furthermore, WaveCluster can detect arbitrary shape clusters a: different degrees of detail.
2 Ahout DBSCAN Algorithm

DBSCAN is a clustering algorithm which relies on a density-based notion of clusters. It is designed to dis-

© HIERRESSAHIIFTR http:/ www. jos. org. cn

Ak E F.FDBSCAN.: —# ik DRSCAN ¥ # — 737 —

cover clusters of arbitrary shape. The key idea in DBSCAN is that for each object of a ¢luster, the neighborhood
of a given radius has to contain at least a minimum number of objects. The procedure for finding a cluster is
based on the fact that a cluster is uniguely determined by any of its core objectst-.

1. Given an arbitrary object p for which the core object condition holds, the set {o|o>>pp of ali objecte o
density-reachable from p in D forms a complete cluster C and p&C.

2. Given a cluster € and an arbitrary core object &€, C in turn equals the set {o o>, p}.

To find a cluster, DBSCAN starts with an arhitrary ohject p in I} and retrieves all objects in D density-
reachable from p with respect to Eps and MinFti. If p is a core object. this procedure vields a claster with re-
spect to Eps and MinPts. If p is a border object, no objects are density-reachable from p and p is assigned 1o
noise temporarily. Then DBSCAN handles the next object in database D.

The retrieval of density-reachable objects is performed by successive region queries. A region query returns
all objects intersecting a specified query regicn. Such queries are supported efficiently by spatial access methods
such as R*-trees for data from a vector space or M-trees for data from a merric space. Before clustering the
database, the R"-tree must be built. DBSCAN requires the user to specify the global parameter Eps. {The pa-
rameter MinPs is fixed to 4 to reduce the computational complexity. » In order to determine Eps, DBSCAN has
to calculate the distance between an object and its £th (2=4) nearest neighbors for all objects, Then it sorts all
objects according to the previously calculated distances and plets the sorted A-dist graph. Then with the &-dist
graph, the user needs to choose an appropriate £-dist value to get becter clustering by trial and error.

DBSCAN does not perform any sort of preclustering and operates directly on the entire database, As a re-
sult, for large-scale databases, DBSCAN needs large volume of main memory support and could incur substan-
sial 1/0 costs. Furthermore, during the clustering process, the number of a cluster’s seed objects for expansion
increases monotonously and its size is unpredictable. So large volume of main memory must be available in order

to guarantee DBSCAN to run smoothly.
3 FDBSCAN: A Fast DBESCAN Algorithm

The average run time complexity of DBSCAN is O(nlogn) (n is the number of objects in the database).
Most of the time for clustering process is spent on region query operations. As a matter of fact, for DBSCAN
the process of clustering is an iterative procedure of executing region query. So if we can reduce the number of
region query operation, DBSCAN can be speeded up. Here we propose a fast DBSCAN algorithm based on a
heuristic method of reducing region query execution frequency.

DESCAN selects a global 4-dist velue for clustering, For the thinnest clusters, the number of objects con-
-ained in their core object’s neighborhood with the radius Eps equal to A-dist is & (the default value of £ in DB-
SCAN is 4). However, for the other clusters, the number of objects contained in the neighborhood wizh the
same radius is greater than 4. DBSCAN carries cut region query operation for every objeet contained in the core
object’s neighborhood. For a given core object pin cluster €, it’s conceivable that the neighborhcods of the ob-
jects contained in p are most possibly intersecting with each other. Suppose g is an object in p’s neighborhood.
If irs neighborhaod is covered by the neighborhoods of other objects in p's neighborhood, then the region query
operation for ¢ can be omitred because all objects in ¢'s neighborhood can be got by :he region queries of the oth-
er ohjects in p’s neighborhood, which means that g is not necessary 10 be selected as a seed for cluster expan-
sion. Therefore, the time consumed on region query operation fur g van be cut dowr. In fact, for the dense
clusters, quite a lot of objects in 2 core object’s neighborhood can be ignored in choosing seeds. So in order to
speed up DBSCAN algorithm, wc should take some representatives rather than all of the objects in p’s neigh-

borhood as new seeds. We call these selected seeds representative objects of the ncighborhood where these ob-

© HEFEES SIS http:/ www. jos. org. cn

— 738 — Journal of Safrware HA4F¥FH 2000,11(6)

jecls are located.

Intuitively s the outer objeets in p’s neighborhood are favorable candidates of representative ohiects hecause
the neighborhoods of inner objects tend to be covered by the neighborhoods of outer objects. Henre. selecting
the representative seeds is in fact a problem of selecting representative ahjects which can accurately outline the
shape of object distribution in a core object’s neighborhood. Figure 1 illustrates an example in which p is a core

object in cluster C.q, (i =1 ~ 4) are representative ohjects which are selected as seeds for ‘urther cluster

expansion.

cluster C A P3
B pa
9 core peint:;p
o core paint: p
» represeniative goint:
Pt p2 g3 pd & cepresantative paini
Fig.1 Neighborhood and representative objects Fig. 2 Lost objects in a cluster

Theoretically, because we select only a limited and fixed number of representative objecis in & core object
p's neighberhood as seeds for cluster expansion, it’s most likely that some core cbjects in p's neighborhood are
ignered. In such a case, objects which are uniquely density-reachable from these ignorec core objects will not be
included in the clustet when the cxpansion process iz completed. We call thesc objects lost objeces. Certainly,
they are only temporarily lost if concrete measures are taken to find them out leter.

Both core objecis and border ofjects might be lost. When the ordinary clustering process is finished, the Jost
tarder objects will be labeled as noise, and the iost core objects as members of certain clusters different from those
clusters to which they should belong by nature. That’s to say, the loss of core oljects possibly will cause clus-
ters 1o split when two adjacent parts in a cluster are density reachable from each other through core points that
are lost by chance. Therefore, in order to obtain accurate clustering results, in addition 1o the ordinary
DBSCAN clustering process, FDBSCAN should adopr an exira phase to cope with last cbjects.

Figure 2 demonstrates such a situation where Jos¢ objects exist. In Fig. 2, p; and p; are uniquely density-
reachzble from p, and p, respectively. However, in the clustering process, if C) is clustered first, p; and p, are
unfortunately not selected as representative points, so piand p; are luost when € is clusiered over. Decause pyis
z core point, and p is not, consequently, p; is recognized as noise end p; is assigned to cluster ;. In the lust
object handling phases p; and p, should be found back, whick means p is re-assigned to C, and C;is merged inlo
.

A kev problem is how many representatives should be selecred for every core ubject’s neighborhood. This
parameter saouwd not be too small and too large. If it is too small,y a lot of {ost odjects may be yielded. Other-
wize, the advantage of FDBSCAN can not be fully exploiied, In our FDBSCAN algorithm, while 2 dimension
spatial data are considersd, this parameter is set w 4, which is equal to the default value of MinPts. The reason
is, intuitiveiy, that the neighborhood of a core object can be covered approximately by 4 well scattered represen-
tative ohjects’ neighborhoods with the same radius Eps. Qur experiments also show that by using 4 as the repre-
sentative number. there are very few fost objects left after the ordinary DBSCAN clustering process is finished.

Generally, for a case of N-dimensional data space, 2 % N representative objects will be selected for cluster

expansion. Further discussion about this issue is left to a future paper.

© PEFEESSRAFITUR bt/ www, jos. org. en

B A%k ¥ .FDBSCAN.—# & DBSCAN H i — 739 —

For the convenience of exposition, in the [ullowing subsections, we focus mainly on 2-dimensional space.
3.1 Algorithm description
FDBSCAN is a fast version of the vriginal DBSCAN algorithm. In FDBSCAN, when the first core point is
found in a new cluster, the first batch of representative points 1s selected as seed points for cluster expansion,
And in the subsequent iterations, more representative seeds are added for cluster expansion till no more repre-
sentative seed can be found, which means the cluster’s expansion is finished.
Following is the outline of FDBSCAN algorithm while omitting details of data types and generation of addi-
tional information about clusters. FDBSCAN algorithm differs from DBSCAN mainly in two aspects
— In the main program FDBSCAN (), there is an additional lost objects nandling procedure HandleLost-
Points (;
— In procedure ExpandCluster (), procedure Representative._Seeds..Select() is added to select representa-
tive objects for cluster expansion.
FDBSCAN (SetofPoints, Eps, MinPis, Kepresentative. MinPis)
// All points in SetofPoints are initialized as UNCLASSIFIED
Clusterld : =nextId (NOISE);
for i: =1 to SetofPoints. size do {
Point ; =Setof{Points. get (/)
if Point. Clld=UNCLASSIFIED then {
if ExpandCluster (SetofPoints, Point, Clusterld, Eps, MinPts,
Representative_MinPts) then
Clusterld : =nextId(Clusterld)

¥
HandleLostPoints (SetofPoints , Eps, MinPts, Representative_MinPts).
ExpandCluster (SetofPoints, Peint, Clusterld, Eps, MinPts, Representative_ MinPts) :BOOLEAN;
candidate _seeds ; = SetofPoints, regionquery (Point, Eps);
if candidate_seeds. size<{MinPes {//Point a is a border point
SetofPoint. changeClld (Point , NOISE) ;
return False;
}
else { // Point is a core point
SctofPoints. changeClld (candidate_seeds, Clld);
Representative . Seeds_Select (candidate _seeds, representative _seeds,
Representative. . MinPts, Point);
while representative _seeds 32(7) do {
currentP ; =representative _seeds. first();
result: = SctofPoints _regionquery (currentP, Eps);
if result. size 2*MinPss do { //currentP is a core point
Representative_Seeds_Select (result, representative _resultP,
Representative_MinPts, currentP);
for each point p € represcntative _resultP do
if p. ClIA=UNCLASSIFIED then

representative_seeds. append(p); //add new seeds

© HEFEES SIS http:/ www. jos. org. cn

— 740 — Journal of Software A FI 2000,11(8)

for each point p€ result do
if p. Clld=TUNCLASSIFTED or NOTSE then
// label TINCLSAAIFIED or NOISE points
SetofPoints. changeClld (s, Clld),
?
representative seeds. delete (currentP); // delete the treated seed point
}
return True;
}
3.2 Representative objects selection
We propose two algorithms for selecting representative seeds from a core point’s neighborhood. Algorithm
1 can more accurately depict points distribution in a core point’s neighborhood than Algorithm 2, but is more
time-consuming than the latter. Algorithm 1 iteratively selects Representative_ Minpts well-scattered points
from a core point’s neighborhood. In the first iteration, the point farthest from the core point is chosen as the
first representative point. In each subsequent iteration, a point from the core point’s neighborhood is chosen
that is farthest [rom the previously chosen representarive points. In order to reduce execution time of Algorithm
1, we can use Manhattan distance rather than Euclidean distance. In Algorithm 2, 4 (let Representative Minpis
be equal to 4) points are selected as a neighborheod’s representative points, which are the leftmosts rightest, up-
permost, and lowest border points of the neighborhood respectively. Both algorithms are implemented in FDE-
SCAN. Experimenral results show that FDBSCAN with Algorithm 2 is faster than that with Algerithm 1.
However, their clustering results of the ordinary clustering phase (i.e. before the lost points are handled) are
almost the same. In the following sections, we rake Algorithm 2 as the default algorithm for representative
seeds selection.
Algorithm 1.
Representative_Seeds_ Select (candidate -seeds, representative_seeds,
Representative- Minpts, Point)
representative_seeds: ={7)
for i; =1 to Representarive_Minpts do
maxDist: =03
for each point p in candidate_seeds do {
if i=1 then minDist; =dist(p, Point);
" else minDist: =min {dist{ps¢) (g€ representative seeds}
if (minDist ZzmaxDist)
maxDist; =minDist;

maxPoint; = p3

}
representative _seeds; = representative_seeds 'U {maxPoint} ;
Algorithm 2.
Representative Seeds Select (candidate .seeds,representative_seeds,
Representative _Minpts.Point)
representative .seeds: =0;

for =1 to candidate _seeds, size do {

© HEERERKLEIF hps/ www. jos. org. cn

A# & ¥ .FDBSCAN,—# 4 ik DRSCAN ¥ 3 a1 —

currentP; =candidate _seeds. get (i),
it ;=1 then {
leftmost _point; =currentP;
rightest_. point; =currentP;
uppermost_point ; =currentP;
lowest - point: =currentP;
}
if currentP. x<Cleftmost_poinz. x then leftmost _point :=currentP;
if currentP. 2 >>rightest_point. = then rightest_point : =currentl’;
if currentP, y<Clowest _point. y then lowest_ point ; =currentP;
if currentP, y¥>>uppermost_peint. y then uppermost_ point: =currentP;
}

representative_seeds : =leftmost _ point Urightest _point L) uppermost _noint |} lowest _point.
3.3 About handling the lost points

As we have peinted out that the fost poings are byproduct of fast expansion. When the ordinary clustering
phase is over, the lost border points are labeled as nnise, and the lost cere points form new clusters wirh other
points, The task of handling the lost points is, on one hand, to reassign the lost border ponts to the correspond-
ing clusiers to which these fost border points should belong by nature; and on the other hand, to merge the clus-
ters where the fost core points are located with other clusters in which theee lost core poinis should have been
held.

There is na obvious difference between the lost forder points and real noise points, so we have to exemine
all “noise” points tc find the lost border points. The process is as follows. For a “noise” point, firstly, we get
s neighborhaod. 17 a1} peints in its neighborhood are marked as noise, than it is a rcel noise. Otherwise, if
some points are classified, we should further examine whether they ere core points. If the onswer is positive,
then we assign the “noise” point to the cluster to which'its nearest classified care point belongs. On the con-
trary, it is still a real noise point,

As to handling the lost core potnts, it is in fact an issue of cluster merging which is a time-consuming pro-
cess. Clearly, lost paints handling will trade off efficiency of FDBSCAN. As : martter of fact, an cxtra lost goints
handling procedure is not indispenszble, Cur straregy is to accept the reality of losz peints® existence. The un
derlying reasons are as [ollows.

(1) That some border points are assigned to noise will not greatly affeer the whole clustering quality. The
border points are in a stetus between neise and genuine cluster members ., so classifving some of them to nofse is
acceptable.

(2) The possibility of splitting a cluster due to the lost core points is very low. It is ordinary that two adja-
cent parts in & cluster are density-reachable from each other side through multiple core points. And it is very
rare, if not impossible, that all the core points connecting rhe two parts by density are lost altogether.

(3) The selection of the number of representative points is crucial to the oecurrences of losz points.
Through selecting of an appropriate number of representative points in the core pnini’s neighhorhood. the lost
points can be con:rolled at a very low level,]

Our experiments also show that in 2-dimensiona! space, by selecting 4 as the number of representstive
points, the ratio of lost points to geauine noise points is less than one percent. Practirally and empirically, the

lost points handling procedure can be ignored.

© HIERRESSAHIIFTR http:/ www. jos. org. cn

— 742 — Journal of Software #.#Fik 2000,11(6)

4 Performance Evaluation

Here we evaluate the performance of FDBSCAN and compare it with the performance of DBSCAN. We im-
plement FDBSCAN algorithm with Borland C+ + 5. 0 under the software package of the original DBSCAN al-
gorithm. All experiments have been completed on a PC with a P2 CPU (350MHz), 512M memory and a 9. 6G
secondary storage device. We have used both synthetic databases and the database of the SEQUOIA 2000
benchmark, which was also used in Ref. [4] for testing DBSCAN algorithm. Typical experimental results are
given in Tables 1 and 2, Figs. 3 and 4 respectively.

n
[
% —— DBS(
£ —8— FDBS(
=
2

0 20, 000 10, 000 60, 000

size of dataset
Fig. 3 Scalability with the size of dataset

2 b £l
[/ |
a 3 —-/,. | —e—size of
=] |
B2 | dataset: 10,000
L < 1
2 -)

0 10 20 30 40
Eps

Fig. 4 Speedup ratio(tppscan/trosscan) vs. Eps value

Table 1 is the experimental results of the SEQUOIA 2000 benchmark database, which shows that the run
time of FDBSCAN is always less than that of DBSCAN. Generally, FDBSCAN is faster than DBSCAN by sev-
eral times. Table 2 presents the number of lost points generated by FDBSCAN with different Eps values, which
shows that as the Eps value increases, the number of noise points found by DBSCAN rapidly enlarges, however,
the number of los: points generated by FDBSCAN augments very slowly and it is so small compared with the to-
tal number of noise points that can be ignored.

Figure 3 illustrates the results of scale-up experiments with FDBSCAN and DBSCAN. We directly utilized
the program in the original DBSCAN software package to build R -tree. While building R" -tree, this program
must load the entire dataset into memory, which restricts us from treating very large dataset. Owing to the limit

Table 1 Run time in seconds of SEQUIOA 2000 database

Size of dataset 625 1252 1955 2607 3128 3910 4469 5213 6256
DBSCAN 0.218 0.453 0.907 1.734 2.0 3.593 3.875 4.672 6.156
FDBSCAN 0. 14 0.328 0.563 0.875 1.094 1. 64 1.828 2.149 2.672

© hEE

BERAFIFACRT hitp:// www. jos. oTg. cn

H k& % FDBSCAN; —#F ik DBSCAN X — 743 —

Tahle 2 1.0st points produced by FTYRSCAN (dataset size 15 20130)

Eps=6.7 I Epy—6.1 Eps=35. 8 Eps=5.0
noise potnts found by DBSCAN 223 275 401 728
lost points produced by FDBSCAN 2 10 10 15

of our PC’s main memory, we can test only at most 50,000 points at one time, The curves in Fig. 3 show that
FDBSCAN®s scalability with dataset size is better than that of DESCAN, which is understandable while consid-
ering the fact that the grezter is the size of dataset, the more points are ignored for region guery, and conse-
quently the less is the run-time of FDBSCAN. However, Fig. 3 does not imply that both DRSCAN and FDB-
SCAN have linear scalability with dateset size. As the dataset size grows, the run time of both FDBSCAN and
DBSCAN will increase non-linearly because they all have a run-time complexity of O (rlogn).

Figure 4 is the results of experiments on a synthetic database with 10,000 points. The aim is to test the re-
lationship between the speedup ratic of FDBSCAN over DBSCAN and Eps value. We define speedup ratio of
FDBSCAN over DBSCAN as tpescan/trosscan where toascan and trosscay are run-time of FDBSCAN and DBSCAN
for the same dataset respectively. The results indicate that speedup ratio of FDBSCAN over DBSTCAN increases
with Eps value» which coincides with the argument that the larger Eps is. the faster cluster expands in FDB-
SCAN than in DBSCAN.

5§ Conclusions

The huge amount of information stored in databases owned by corporations (e. g. , retail. financial, tele-
com} has spurred a tremendous interest in the area of knowledge discovery and data mining, Clustering, in data
mining s is a useful technique for discovering interesting data distributions and patterns in the underlving data.
As an outstanding representative of clustering algorithms, DBSCAN algorithm shows good performance in clus-
tering spatial dara. Based on the original DBSCAN algorithm, this paper presents a fast DBSCAN algorithm
(FDBSCAN) which considerably speeds up the original DBSCAN algortthm. By selecting only a small number
ol representative points i a core point’s neighborhood as seeds to expand cluster, FDBSCAN executes less re-
gion quertes than DBSCAN does, which reduces clustering time and 1/0 cost. We performed a performance e-
valuation on synthetic data and real data of the SEQUOIA 2000 benchmark. The experimental results show that
FDBSCAN is faster than the original DBSCAN algorithm by several times, ,

Future research wil. have to consider the following issues. Firstly, extend the FDBSCAN to high-dimen-
sipnal data space. Secondly, integrate data samplmg. data partitioning and parallel techniques with DBSCAN or
FDBSCAN to cluster very large scale databases. Thirdly, establish an adapiive and interactive density-based

clustering algorithm, which dces not need the uwser to nput any heuristic parameter.

Acknowledgments

We would like to thank Dr. Martin Ester. the deveioper of DBSCAN algorithm. for his generosity in pro-
viding ns with rthe DBSCAN software package wnder which we implemented the FDRSCAN algorithm.

References

1 ChenM 8, Han] H, YuP S. Data mining: an overview from a database perspective. IEEE Trznsactions on Knowledge and
Data Engineering, 1996,.8(6) 866~ 883

2 Ng R°T, Han j. Efficicnt and effective clustering methods for spatial data mining. In: Jorge H Bocca, Matthias Jzke, Carlo
2aniolo eds. Proceedings of the 20th VLDB Confercince. San Francisco; Morgan Kaufmann, 1994, 144--155

3 Zhang T, Ramakrishnan R, Tivny M. RIRCH, an efficient data clustering method {ar very large darabases. In. Jagadish H

© PEFEESSRAFITUR bt/ www, jos. org. en

— 744 — Journal of Software 4%/ 2000,11(6)

V, Munlick I S eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. New York; ACM
Press, 1996. 103~114

4 Ester M, Kriegel H P, Sander] et al. A density-based algorithm for discovering clusters in large spatial databases with
noise. In: Simoudis E, Han J, Fayyad U eds. Proceedings of the 2nd International Conference on Knowledge Discovering in
Databases and Data Mining (KDD-96). Massachusetts; AAAI Press, 1996. 226~232

5 Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In; Haas L., Tiwary A eds. Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998. 73~84

6 Zhang W, Yang J, Muntz R. STING: a statistical information grid approach to spatial data mining. In: Jarke M, Careg M
J, Dittrich K R ez al. eds. Proceedings of the 23rd VLDB Conference. San Francisco: Morgan Kaufmann, 1997, 186~195

7 Agrawal R, Gehrke J, Gunopulos D et al. Automatic subspace clustering of high dimensional data for data mining applica-
tions. In: Haas L, Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.
New York: ACM Press, 1998. 94~105

8 Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: a multi-resolution clustering approach for very large spatial
databases. In; Gupta A, Shmueli O, Widom] eds. Proceedings of the 24th VLDB Conference. San Francisco: Morgan
Kaufmann, 1998. 428~439

9 Kaufman L, Rousseeuw P J. Finding groups in data; an introduction to cluster analysis. New York: John Wiley &. Sons,

1990

FDBSCAN . —#hiRiE DBSCAN H %
FAE A#E 4X %% &I7

(HEX%+EHE L¥# 200433)

WE RESHA-NEZHRA AHBERE . AHEBIH RACRFPALATFAALAS ZHER
WE.BH AMNCEZE R THEREEE AP, DBSCAN 2 —#HM ARG E T H A TAREEE. AR
ETFERNRABAS AP RERA—AN £, DBSCAN H st it B A AEEHBREO L, A T A nt B %
F.XFRET —#wik DBSCAN H okt 5 k. i AZ UM S EAB TR AT EHRATEHH T ERY
B 3 0N il b K M3 6 M, MR T/0 JF4N. 80452 £ 9 FDBSCAN $:8 A Ak st K MM B AR iR 4,
it & E#4& T DBSCAN. ‘

F@iIN MMBIERE, BB, R 4, kik DBSCAN X3 R4 5.

hHESEE TP311

CRAEFTTE hitp/ www. jos. org. cn

© b

