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Abstract: Sampling theory is one of the most powerful results in modern information theory and technology. The
digital signal with sampling properties can be reconstructed from its samples in a perfect form. Walter and Zhou
extended the Shannon sampling theorem to wavelet subspaces. This paper improves the classical sampling theorems
based on wavelet frames. A basic problem on information theory is introduced here. For a given digital signal,
whether it has sampling series form. In this paper, the digital signals with sampling properties are characterized
based on wavelet frames. For a given sapling subspace, the analytic form of the signals in it is proposed. Especially
some new kinds of sampling subspaces are offered here. As an application, the examples show that the new
theorems improve some known relating results, which is effective for the digital signals’ sampling and
reconstructions.
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1 Introduction

Sampling theory is one of the most powerful results in information theory and technology. The objective of
sampling is to reconstruct a digital signal from its samples.

Notations: Firstly, we discuss functions in L*(R). Therefore f =g means that f(w)=g(w) for almost
everywhere weR.
For w e L(R), its Fourier transform is defined by ( 5):ij(x)e’2“iX¢dx,V§ eR.

> stands for summation overall neZ.

n

C(R) is the space of continuous function.

L[fl,l] ={ f:f isl-periodic and square integral on Lz[fl,l] }
22 22
G (w) = Z‘ flo+ k)‘2 . Itis easy to see that G (w) is defined only a.e.
k

E,={weR:G,(w)>0} Vi e’)(R).
e is the characteristic function of the set E .
f7=> f(ne ™™ for fel’(R)with >|f (n)\2 <o,

VP ={g:9()=>.c,f(-=n), where the convergence is in L*(R), {c,},.. <!’}

V; ={f(-—n)}, which means that any g eV, can be approximated arbitrarily well in norm by a finite linear
combinations of vectors f(-—n),and V, is called a shift invariant subspace generated by f .
uC-) is Lebesgue measure on R .

a.e a.e
For the sets A,Bc R, A=B meansthat u((A-B)U(B-A))=0,and AcB meansthat x(A-B)=0.
Afamily {f,},., of elementsina Hilbert space H iscalled a frame for H, where A isa countable set,
if there exist constants L,M >0 such that

LIf[f <X |< f,f, > <M|f|}, vf eH.
AeA

The above constants L and M are called the frame bounds. If L=M =1, then the frame is called a tight
frame.

For ¢el?(R),if {#(-—n)}, isaframe (Riesz basis) for V, then ¢ is called a frame (Riesz) function.

Walter™™ extended the Shannon sampling theorem to wavelet subspaces. Zhou and Sun'® characterized the
general shifted wavelet subspaces on which the sampling theorem holds:

Proposition 1.1 Suppose that ¢ e L*(R)and ¢ is a frame function. Then the following two assertions are
equivalent:

(i) ch¢(~—k) converges pointwisely to a continuous function for any {c }el®and there is a frame
k
{w (- =K}, for V, suchthat f(x):Zf(k)y/(x—k), vf eV, ,
k

where the convergence is both in L>(R) and uniformon R .

(ii) ¢ is continuous, Z\¢(-—k)\2 is bounded on R and AZE¢(a))s‘¢T(w)‘sB;(E¢(a)),a.e. for some
k

constants A,B>0.
Moreover, it implies that for ¢ in (i), f(k)=<f,@(-—k)>for any f eV,, where $ is defined in the

following Proposition 2.
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For a given digital signal with finite energy, whether it has sampling series form. In this paper we will improve
the classical sampling theorems based on wavelet frames. The digital signals with sampling properties are
characterized based on wavelet frames. For a given sapling subspace, the analytic form of the signals in it is
proposed. Especially some new kinds of sampling subspaces are offered here. The examples, as an application,
show that the new theorems improve some known relating results, which is effective for the digital signals’
sampling and reconstructions.

2 Definitions and Main Results

Definition 1. A closed subspace V in L%(R) is called a sampling space, if there is a frame {w(-—k)}.., for

V  such that chw(x—k) converges pointwisely to a continuous function for any {c}el® and
k

f(x) :Zf(k)y/(xfk), vf eV , where the convergence is both in L*(R) and uniformon R .
k

In this case,  is called a sampling functionon V .

From the definition, we know that if V is a sampling space then for any f eV there exists a function
g eC(R) such that f(x)=g(x),aexeR.Therefore, in what follows we assume that all the functions in a
sampling space are continuous.

Definition 2. Assume ¢ge*(R). If chqﬁ(xfk) converges pointwisely to a continuous function for any
k

{c}e 12, then ¢ iscalleda P -function.
Next we define two kinds of special functions to characterize the functions with sampling property.
Definition 3. f iscalled a P -function if the following conditions holds:

(i) f=0,fel’(R)NC(R), Z\f(k)\2<oo and f isabounded function;

(i) {o: (@) =0} {w:G, (@) =0}
Gf(w)

(iif) There exist two positive constants A,B such that 0<A<— 3
|+ (@)

<B<ow for almost everywhere

wekE;.

Moreover, if f is a P, -function and supZ\f(x—n)|2<oo, then f is called a P, -function. For any
xeR g

f ePR, ,itiseasy toseethat u(E;)>0 and f*(a)), G, (w) are well defined almost everywhere.
For giving our results, firstly we list the following propositions.
Proposition 2B, Suppose geL?(R). ¢ is a frame function if and only if there are constants A,B>0
such that Ate, <G, <Byg ,ae
Especially, if ¢ isa Riesz function, then E,=R.
Proposition 3% Suppose that f e L2(R) and f is a frame function. If
f (@)
flw={G, (@)’
0, if oeE;
then {f~(~—n)}n is a dual frame of {f(-—n)}, in V,.

if weE;

Proposition 4°!,  Assume that ¢ < L?(R) and ¢ =0. Define the function ¢, via its Fourier transform by
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#(0)D (), if D(w) =0

(@ :_{o, if d(w) =0’

where ¢(w)22‘¢7(w+ k)‘2 . Then {¢,(-—n)}, isatight frame for V,.
kez

By Lemma 1 in [2], we have
Lemma 1. Suppose ¢ e L*(R).Then ¢ isa P -function if and only if the following holds.
() ¢€C(R),
(ii) Z\qﬁ(x—k)\z <M <o for some constant M .
k
First, we have the following Lemma.
Lemma 2. Assume that ¢ is a frame function. If ¢ is a P -function, then for any function f eV, with

f () =b(w)p(w) where b(w) is a function with period 1 and bounded on E,, then f is also a P -function.
Specially, for any frame function w eV,, w isa P -function.

Proof. Assume that f eV such that f(w) =b(w)d(w) where b(w) is a function with period 1 and bounded
on E,. Let B(a)):b(a))lE¢ (w) . Since B(w) is bounded on [—%,%] , there exists {B}el® such that
B(w) = Be '*™.

Since ¢ is a P -function and f(w):b(w)gZ(w):B(w)gZ(w), we have f eC(R) and f(x):ZBnqﬁ(x—n),
where the convergence is both in L*(R) and pointwisely.
Since ¢ isa P -function, it is from Lemma 1 that sup)_|4(x — n)\2 <oo . Hence

2

supd | f (x—k)\2 =sup)’
Xk Xk

> B,g(x—k-n)

" 1B(w)* dw 2.1)

1/2

=sup|’ 3 p(x—k)e 2
X K

< supHB(a))Hi > |p(x - k)\2 <o
X k

Since f eC(R),itisfrom (2.1) and Lemma 1that f isa P -function.

For any frame function w eV, , there exists a function z with period 1 such that w(w)=7(®)é(w), then
G, (w)= \r(a))\zG¢(a)) . By Proposition 2, 7 isboundedon E,.Thus y isa P -function.

This completes the proof of Lemma 2.

The following propositions characterize the Shift-invariant subspaces.

Proposition 5°1. Vv, ={ge’(R):g=rf,z isa function with period 1, zf e *(R)}.

Proposition 6. () Suppose g eV, .V, =V, ifandonly if supp fiesuppg.

By Proposition 5, we have the following two Lemmas.

Lemma3. Let f,gel?*(R). If V, =V, then Efa:'eEg.

Lemmad. If f eVg , then 'V, ng .

Further we have
Lemma 5. Suppose f isa P,-function. Then
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{o: T (@) =0} ={0: G, (0) = 0}c{w: f (v) = O} 2.2)

Proof. Let C(®)=1- e (@) . Then C(a))eLz[—%é] and there exists {c}el® such that

C(w):che"z""‘“ . By Lemma 1, Y c f(x—k) converges pointwisely to a continuous function. Since
k k

C(o)f(@)=0, Y.cf(x—k)=0forany xeR.Then
k

2
=0.

2
dmzz

n

2
dow= J-[%%]\C(a))\z

Z f (n)efiZnnw

z f (n)efiZTma)

S f(n-k)

11
J‘[*E:E]\Ef

Hence, {@:G;(®) =0}ac'e{a): f(w) =0}. Since f € P ,we have {w: f*(w) =O}a='e{a):Gf (w)=0}. Then we have
(2.2).

This completes the proof of Lemma 5.

By Lemma 3, if f isa Riesz function, then any frame function for V;is a Riesz function.

Proposition 7). Assume f is a P, -function. Let

2N % if £ (w)=0 |
A ~.
0, if £ (w)=0

then {f (-—n)}, isaframefor V,.

Proposition 8. Assume that V is a shift invariant subspace. Then the following assertions are equivalent:

(i) V isasampling space.

(ii) If ¢ is continuous and {#(-—n)}, is a frame function for V , then supZ\gxﬁ(x—n)\2 <oo and there exist
X n

positive constants A,B such that

ﬁ(@‘ <Bge, (o), ae.

(iii) There exists a continuous function ¢ which is a frame function for V , such that supZW(x—n)\2 <o,
XW=n

A)(Ea, (w) <

and Ale (w) <

gZ*(a))‘ < B;(E¢ (w), ae. for some positive constants A,B.

(iv) There exists a continuous function ¢ which is a frame function for V , such that sup2\¢(x— n)\2 <o
X n

and AHgH2 < Z\g(n)\2 <Bllg 2 Vg eV for some positive constants AB .

(v) There exists a continuous function ¢ which is a frame function for V , such that
sup > |p(x— n)|2 <o and > g(n-1p(n--)}, isaframe for V .
% In |

Moreover, for Proposition 8 we have the following assertions.
If (i) holds and S is a sampling function, then
f(n)=<f,S(-n)>vneZ vfeV.
If (ii) or (iii) holds, then the sampling function in (i) can be taken as S, where
(4] .
()= %, ifoe E¢ ,
0, if ogE,
If (v) holds, then the sampling function in (i) can be taken as S, where S()= zmﬁ(—-)}n .
|

Next, we give a necessary condition for a function f to be in a sampling space.
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Theorem 1. Assume that V is a sampling space and y is a sampling function for V. Let f =0 and
feV.Then f isa P-function. Moreover, if f(w):b(w)xﬁ(w) where b(w) is a function with period 1 and
boundedon E ,then f isa P,-function. Specially, any frame function ¢ in V isa P,-function.

Proof. Assume that f =0, f eV and V isa sampling space with sampling function S. By Proposition

8,wehave feC(R), Y|f(k) <o and f(x)=3 f(k)S(x—k).Since
k k

FOO <Y FK)FY[S(x—K)|* <0, ¥xeR,
k k
f is abounded function.
Take Fourier transformation for f(x) = z f (k)S(x—k), we have
k

@)= @), 6/=|fW)]s,w).
Thus

{0 T (@) =0 c{o: G, (©) =0}, (2.3)
E: & Ep
Since w is a frame function for Vv, it is form Proposition 2 that there exist positive constants A, B such
that
G; (@)

A<
f*(w)‘

=G, (w)< B, ae E; . (2.4)

By (2.3)) and (2.4), fisa P, -function.

Assume that f eV such that f(w):b(w)y?(a)) where b(w) is a function with period 1 and bounded on
E, . Since w isa P -function, itisformLemma2, f isalsoa P -function. By Lemmal,

supZ\f(x—n)\2 <o (2.5)

By (2.5)and f isa P -function, weget f isa P,-function.

For any frame function ¢eV , there exists a function bwith period 1 such that q?(a;):b(w)zﬁ(a;), then
G,(w) = \b(a))\ZGW(w) . By Proposition 2, bis boundedon E,.Thus ¢ isa P,-function.

This completes the proof of Theorem 1.

Next, we give a kind of sampling space.

Theorem 2. Assume that | f (+n)| < L[—%%]ﬂ L2[—%é] and there exists E ¢ [—%é] such that

|~
N
—

Aze (@) < Y| f(@+n)] <Bre (@), ae. we[-=, (2.6)

1

N N
N~

Aze (@) <3| (@) <Byze (), ae we[-2,7] 2.7)

where A,B, (i=1,2) are positive constants. Then f e L(R)L*(R). Let

9=[ f(e”™dg, vEeR .
Then V, is asampling space with frame function g .

Proof. Note that Z\f(aﬁn)\eL[—%,%] it and only if f<L(R). Then geC(R). By (2.6), we get

f el?(R) and f=§.By Proposition2, g isa frame for (A
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Since z f (w+n)ei2nx(a)+n) c L2[_%l%] and

1/2

g(x + k) _ IR f (a))eianmeiZkada) — J:lmz f (w+n)ei2nx(w+n)ei2nkwda} ’ (28)
we have
Slgex+k)f =17 I3 f (0 + ez 2da)< [ 5] f(@+1) Zdwa (2.9)
~ 9 “lan ~ T |4 N '
Since ) f(w+n)e L2[—%,%] , it is from (2.8) that we have
> (@)=Y g(k)e?™, ae.
n k
By (2.7), we have
iznke 11
Az (@) <3 g(k)e ™| < B, e (), a-e-wE[—?E] (2.10)
k

Note that g is a frame for V, . Since (2.9) and (2.10), it is from Proposition 8 that V, is sampling space
with frame ¢ .
This completes the proof of Theorem 2.

3 Applications

Example 1. Let f (o) = ¥ (@) , where E is a measurable set in [—%,%]. By Theorem 2, V, is a sampling

space with sampling function f and V,={g e L*(R):suppg c E}.
o 2n
sin—

Similarly, let g (@)= — | V, is asampling space with sampling function ¢ .

2
Example 2. Let .Q>% and AB>0. Assume that gel*(R), E=suppg c[-£2,] with ux(E)>0, and

Ay (@) < g(w)<Bye(w) . In this case, if we let f=g, then f satisfies the conditions in Theorem 2.
Therefore V, isa sampling space with frame function g .
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