• 2026年第37卷第4期文章目次
    全 选
    显示方式: |
    • >专刊文章
    • 高可信自适应机器学习专题前言

      2026, 37(4):1447-1448. DOI: 10.13328/j.cnki.jos.007531

      摘要 (17) HTML (0) PDF 220.10 K (26) 评论 (0) 收藏

      摘要:

    • 基于高质量样本选择的跨领域方面级情感分析

      2026, 37(4):1449-1471. DOI: 10.13328/j.cnki.jos.007521

      摘要 (461) HTML (0) PDF 2.52 M (442) 评论 (0) 收藏

      摘要:跨领域方面级情感分析利用源领域的已标注样本来帮助训练目标领域上的方面级情感分析任务, 但并非所有源领域样本均适合进行迁移训练, 部分样本会对迁移模型训练产生负迁移效应, 需要进行样本筛选工作. 现有的跨领域实例迁移方法所考虑的迁移依据比较片面, 忽略了样本间的协同作用, 影响跨领域泛化性能. 为了解决方面级情感分析任务中的特定领域训练样本匮乏与跨领域迁移中的样本筛选问题, 以多领域情感分析的为开放环境, 结合高可信机器学习理论及建模中的领域适应方法, 提出一种基于高质量样本选择的跨领域方面级情感分析方法. 首先, 该方法分别设计了域间及域内高质量样本选择指标, 依次对源领域数据进行领域层面和样本层面的筛选, 兼顾了两种样本选择粒度的优势. 其次, 全面地设计了源领域与目标领域间相似性的衡量指标, 并通过图神经网络进行高效计算. 最后, 将多源领域迁移的场景纳入跨领域ABSA (aspect-based sentiment analysis)的讨论范围中, 设计了域间联合适应性分数, 通过平衡领域特征的重合性与差异性来选择领域间协同性高的多源领域组合. 在涵盖6个领域的基准数据集上设计了跨领域迁移任务, 并在方面级情感分析的3种子任务上进行了实验来验证所提出方法的有效性.

    • 基于自适应策略优化的鲁棒精度权衡学习

      2026, 37(4):1472-1491. DOI: 10.13328/j.cnki.jos.007522

      摘要 (443) HTML (0) PDF 3.40 M (414) 评论 (0) 收藏

      摘要:对抗训练被视为提升深度模型鲁棒性的核心防御手段, 但其固有缺陷严重制约了实际应用效果. 传统对抗训练方法依赖固定攻击模式生成对抗样本, 导致训练过程中样本多样性不足、模型泛化能力受限, 且在鲁棒性与干净准确率间难以达成有效平衡. 更为关键的是, 现有对抗训练框架缺乏对训练过程的自适应控制, 容易引发鲁棒过拟合现象. 针对上述挑战, 利用演化优化提出一个自适应对抗训练框架, 称为基于自适应策略优化的鲁棒精度权衡学习, 简称TRA2SO. 该方法将遗传算法引入对抗训练过程, 通过动态调整不同训练阶段的对抗攻击策略, 实现对抗样本生成模式的渐进式复杂化. 这种层级递进的对抗机制不仅增强了样本多样性, 还可通过策略优化记录实现训练早停, 有效抑制过拟合风险. 在CIFAR系列数据集上的实验表明, 相较于传统对抗训练方法, 所提框架在维持基础分类性能的同时, 提升了模型面对多种攻击范式的防御能力, 且加快了训练收敛速度. 为对抗训练中鲁棒性-准确性的权衡提供了新思路, 对构建可信深度学习系统具有重要实践价值.

    • 基于强-弱互信息掩码学习的可解释动态不完整图异常检测

      2026, 37(4):1492-1510. DOI: 10.13328/j.cnki.jos.007523

      摘要 (403) HTML (160) PDF 5.45 M (448) 评论 (0) 收藏

      摘要:大多数图异常检测方法依赖图神经网络(GNN)在相对高质量的图数据上进行学习. 然而, 在现实应用中, 这种理想场景极为罕见, 大多数数据存在标签缺失、动态变化和结构不完整等问题, 这些问题统称为动态不完整图. 针对GNN在极端条件下性能下降的挑战, 提出一种可解释的动态不完整图异常检测方法EXDIG (explainable dynamic incomplete graph anomaly detection), 其核心是一种结合强-弱互信息优化的图掩码自编码器框架. 该框架通过对图结构(节点/边)和节点特征进行掩码, 模拟现实中的动态不完整场景. 此外, 通过强-弱互信息损失, EXDIG捕捉结构与特征之间的关系, 同时保持结构完整性, 降低过拟合风险, 并提升泛化能力. 此外, 该方法通过在节点、边及特征上引入掩码扰动, 提高动态不完整图异常检测的可解释性, 使其能够识别关键组成部分, 并为异常检测结果提供透明且可信的解释. 在9个真实世界图数据集上进行了评估, 实验结果表明, EXDIG在不同程度的动态不完整场景下, 在多种下游任务和表示学习评估(包括有监督和无监督设定)中均优于现有最先进方法. 其中, 在异常检测数据集Amazon上, EXDIG的NMI和ARI指标分别提升了超过 13% 和 15%; 在动态不完整比率从25%到99%的设置下, 其F1分数波动被控制在5%以内. 此外, EXDIG还实现了在动态不完整图中对各节点的可解释性分析.

    • 面向欺诈检测的风险感知动态聚合图联邦学习

      2026, 37(4):1511-1530. DOI: 10.13328/j.cnki.jos.007524

      摘要 (560) HTML (195) PDF 1.96 M (464) 评论 (0) 收藏

      摘要:随着信息技术的迅猛发展, 欺诈行为在金融交易、社交网络与评论系统等多个领域呈现出日益复杂化和多样化的趋势, 给传统欺诈检测技术带来了严峻挑战. 当前主流的基于图神经网络的方法虽然在单机构数据环境中表现出色, 但由于涉及用户敏感信息, 难以实现跨机构间的数据共享与协作, 进而限制了模型的训练效果与泛化性能. 联邦学习作为一种新兴的隐私保护分布式学习范式, 为跨机构协作训练提供了可行途径, 但现有图联邦学习方法多针对通用图任务设计, 难以适应欺诈检测中普遍存在的类别分布不平衡和数据异构性问题, 导致在欺诈样本识别方面表现不佳. 为应对上述挑战, 提出一种面向欺诈检测的风险感知动态聚合图联邦学习方法(FedRPDA), 旨在有效应对跨机构的复杂欺诈风险事件识别. FedRPDA包括两项关键策略: 典型风险动态聚合策略通过衡量客户端图中欺诈节点的结构性风险强度, 并结合具有时间衰减特性的动态权重映射机制来自适应地调整客户端的聚合权重, 从而在数据异构条件下增强全局模型对正常样本与典型欺诈样本的判别能力; 多样化风险平均聚合策略结合基于变分扰动的欺诈样本特征增强机制与全局原型引导的对比学习机制, 有效提升模型对结构多样、数量稀少的非典型欺诈样本的表征能力, 促进其在特征空间中向共性异常靠拢, 进一步提升模型在复杂欺诈风险场景下的识别鲁棒性. 在多个真实欺诈检测数据集上的实验结果表明, FedRPDA 在检测性能与训练收敛效率方面显著优于现有图联邦学习基线方法, 展现出良好的泛化能力与实际应用潜力.

    • 面向开放世界持续学习的任务敏感提示驱动混合专家模型

      2026, 37(4):1531-1547. DOI: 10.13328/j.cnki.jos.007525

      摘要 (525) HTML (0) PDF 1.39 M (441) 评论 (0) 收藏

      摘要:开放世界持续学习(OWCL)旨在模拟现实环境中任务不断演化、类别动态变化且遇到未经训练的未知样本的情景. 一个良好的开放世界持续学习模型不仅需要在学习新任务的同时保持对已学任务的记忆, 还需具备识别未知类别的能力, 进而实现持续且鲁棒的知识积累与泛化. 然而, 现有持续学习方法普遍建立在封闭世界假设之上, 无法有效应对开放类别带来的类别不确定性与任务间干扰, 尤其在知识稳定性与知识可塑性之间的权衡上表现出明显不足. 因此, 在开放世界持续学习问题的形式化定义基础上, 提出一种任务敏感提示驱动的混合专家模型TP-MoE (task-aware prompt-driven mixture of experts), 以实现对任务语义的动态建模与专家模块的高效调度, 从而帮助模型进行知识传输和知识更新. 具体而言, TP-MoE引入一种即插即用的任务提示聚合机制并改进门控机制用以专家网络路由, 在任务增量过程中持续融合历史与当前任务知识; 同时结合一种自适应开放边界阈值策略, 可根据新旧知识的迁移动态调整开放类别的判别边界, 从而提升开放类别检测能力与已知类别分类准确性. 实验结果表明, TP-MoE在Split-CIFAR100和Open-CORe50基准数据集上对各类指标的测试均取得领先性能, 展现出良好的稳健性与泛化性, 开放世界持续学习任务中的知识建模与任务调度提供了一种可扩展、可迁移的新框架.

    • 数值型标签噪声的渐进式区间校正方法

      2026, 37(4):1548-1559. DOI: 10.13328/j.cnki.jos.007526

      摘要 (354) HTML (0) PDF 932.93 K (398) 评论 (0) 收藏

      摘要:在回归任务中, 数值型标签噪声会扭曲数据的真实分布, 削弱模型的泛化能力. 数据过滤是目前常用的一类方法, 在一定程度上能减少噪声影响, 但易引发过度过滤问题, 导致有效样本流失和数据分布偏移. 提出一种回归噪声标签的渐进式区间校正(progressive interval correction, PIC)算法, 旨在解决数据过滤导致的样本流失问题, 并有效降低标签噪声水平. 首先基于真实标签的后验分布给出标签校正的有效性条件, 以确保降低标签噪声水平; 然后对满足有效性条件的标签进行最大后验校正; 最后通过逐步缩小可信区间范围的方式渐进地校正和优化标签. 在基准数据集与真实数据集上的实验结果表明, PIC算法能够显著降低数据的噪声水平, 有效提升模型性能.

    • 全局与局部残差信息联合感知的可泛化图异常检测

      2026, 37(4):1560-1574. DOI: 10.13328/j.cnki.jos.007527

      摘要 (435) HTML (0) PDF 1.58 M (371) 评论 (0) 收藏

      摘要:图异常检测作为图数据挖掘中的关键任务, 旨在识别网络中与大多数节点存在显著差异的异常节点. 现有的图异常检测方法普遍采用数据集特定的训练范式, 即为每个数据集单独训练模型. 然而, 该类方法缺乏跨数据集的泛化能力, 且训练成本高昂. 为克服上述局限, 近期研究开始关注残差特征的泛化潜力. 该类特征通过计算节点自身表示与基于邻居传播后的表示之差, 能够在很大程度上抵消特定于数据集的语义信息, 从而保留与异常模式紧密相关的通用性信息. 尽管该方向已取得初步成果, 但残差特征的建模过程仍存在如下关键问题: 首先, 在计算节点基于邻居传播前后的表示差值时, 邻居节点的稀少和潜在的结构噪声会在一定程度上影响结果的可靠性. 其次, 计算时的表示依赖于图神经网络(graph neural network, GNN)对局部关系的学习, 这种方式难以建模对异常检测同样有益的全局关系, 从而限制了残差特征的表达能力. 为解决上述问题, 提出一种全局和局部残差信息联合感知的可泛化图异常检测方法GRAD. 具体地, 该方法在利用GNN建模局部节点关系的基础上, 引入线性Transformer模块, 在不依赖原始图结构的前提下, 于特征空间中建模节点之间的全局结构相关性, 从而获得具备全局感知能力的节点表示. 随后, GRAD 在全局和局部视角上分别将表示转换为自身与其邻居之间的残差, 并将二者融合, 以构建数据集无关的通用节点表示. 随后在多个不同领域的公开图数据集上进行广泛实验, 验证了GRAD的有效性.

    • 基于动量加速和任务均衡的目标检测对抗训练方法

      2026, 37(4):1575-1590. DOI: 10.13328/j.cnki.jos.007528

      摘要 (387) HTML (0) PDF 1.50 M (363) 评论 (0) 收藏

      摘要:对抗训练作为提升深度神经网络对抗鲁棒性的核心策略, 在图像分类任务中已得到广泛关注, 但在目标检测领域中的研究较为匮乏. 传统对抗训练通常依赖投影梯度下降法(projected gradient descent, PGD)开展模型的鲁棒优化, 然而对抗样本的迭代大幅延长了模型训练周期, 成为限制对抗训练在目标检测这类计算密集型任务中实际部署的主要瓶颈. 针对这个问题, 提出一种基于Nesterov加速梯度 (Nesterov’s accelerated gradient, NAG)的对抗训练方法, 通过引入NAG动量机制加速算法收敛, 该方法在得到与PGD所训练模型精度相当的同时, 显著加快了对抗训练速度. 此外, 目标检测与图像分类最主要的区别在于目标边界框定位. 然而观察到现有方法仍侧重于学习基于分类损失产生的对抗样本, 忽视了定位在目标检测中的特殊性. 设计一种自适应损失重加权策略, 以均衡训练中不同任务所衍生对抗样本的数量占比, 促进模型聚焦定位以增强鲁棒性. 在PASCAL VOC和MS COCO两个公开目标检测数据集上与现有的先进目标检测对抗训练方法进行实验, 对比验证了所提方法的有效性.

    • >综述文章
    • 可解释深度学习的概念建模方法综述

      2026, 37(4):1591-1614. DOI: 10.13328/j.cnki.jos.007530

      摘要 (685) HTML (0) PDF 2.32 M (544) 评论 (0) 收藏

      摘要:近年来, 深度神经网络在多个领域取得了显著进展, 但其作为典型的黑盒模型, 内部机制仍难以为人所理解, 给医疗诊断、金融风控、自动驾驶等高风险应用场景带来了严峻挑战. 提升模型的可解释性, 已成为实现高可信机器学习的核心问题之一. 现有可解释性方法大致可分为两类: 基于信息流的解释和基于概念的解释. 基于信息流的解释主要侧重于神经元或特征重要性分析, 如定位图片中对分类结果起关键作用的像素区域. 虽然能揭示模型“关注了什么”, 但难以提供具备人类语义的认知解释; 相比之下, 基于概念的解释通过构建语义空间, 将模型内部表示映射为可理解的概念结构, 能够以“模型理解了什么”的方式提供更具语义深度和认知契合的解释, 在增强语义透明性和用户信任方面展现出独特优势. 深度学习的不可解释性源于其语义表达的缺失, 因此, 如何构建对人类认知友好的概念空间与表示机制, 已成为可解释模型研究的关键突破口. 围绕可解释深度学习中的概念建模方法展开综述, 依据建模介入阶段将相关研究划分为事后解释与事中解释两大路径: 前者通过神经元解剖、语义聚类等手段挖掘已有模型的概念表示, 后者则在训练过程中引入结构化先验或语义约束, 以实现模型的内生可解释性. 基于该分类框架, 系统梳理了典型方法的建模思路与代表性成果, 比较其在语义透明性与实际应用中的性能差异, 并总结当前研究面临的挑战与未来发展方向, 旨在为理解和构建语义可解释的深度模型提供系统性参考与方法指引.

    • 吉布斯采样在临界点前的快速收敛

      2026, 37(4):1615-1633. DOI: 10.13328/j.cnki.jos.007533

      摘要 (65) HTML (0) PDF 1.27 M (266) 评论 (0) 收藏

      摘要:吉布斯采样的临界行为是计算相变理论所关注的核心问题. 以硬核模型这一经典模型为例, 研究了吉布斯采样在临界点前的快速收敛. 在该模型中, 给定一个最大度为Δ≥3的n顶点图G以及参数λ≥0, 则图G中的每个独立集S以正比于λ|S|的概率被采样. 研究了实现这一采样的经典吉布斯采样算法——Glauber dynamics, 在临界条件λ<(Δ–1)Δ–1/(Δ–2)Δ下, 证明了该采样过程的马尔可夫链具有渐进最优的谱隙为Ω(1/n), 因此这一经典采样算法在该临界点前始终快速收敛.吉布斯采样过程在临界点前的快速收敛是马尔可夫链蒙特卡洛(MCMC) 理论中的一类重要问题. 针对硬核模型上的这一问题, 此前已有若干依赖高等数学工具的证明. 为这个重要问题提供了一个简化的组合证明, 引入计算复杂性归约的思想来分析采样过程的收敛速率.

    • CDCL算法的冷重启技术

      2026, 37(4):1634-1649. DOI: 10.13328/j.cnki.jos.007509

      摘要 (274) HTML (0) PDF 748.97 K (389) 评论 (0) 收藏

      摘要:SAT求解的CDCL算法被广泛应用于软硬件验证领域, 重启策略是其中的核心组件之一. 目前, 主流的CDCL求解器采用了“热重启”技术, 保留了变元序、赋值倾向、学习子句等主要搜索信息, 且重启频率极高. 热重启技术会使CDCL重启之后更倾向于搜索重启前的搜索空间, 有可能会长期陷于一个不利的局部区域, 缺乏探索性. 首先对现有的CDCL算法进行测试, 证实了在不同的初始搜索设置下, 主流CDCL求解器的求解时间有巨大的扰动. 为了利用上述观察, 提出一种遗忘搜索信息的“冷重启”技术, 即阶段性的遗忘变元序、赋值倾向、学习子句, 实验证明了该技术可以有效地提高主流的CDCL算法. 同时, 也进一步拓展了其并行版本, 每个线程探索不同的区域, 提高了并行算法的性能. 此外, 冷重启技术主要改进了串并行求解器可满足实例的求解能力, 为设计可满足导向的 SAT求解器提供了新的改进思路. 通过引入并行冷重启技术, PaKis求解器可满足性实例的PAR2打分平均提高41.81%. 基于相关技术设计的并行SAT求解器ParKissat-RS以领先亚军24%的大幅领先优势取得国内首个国际SAT竞赛并行组冠军.

    • 融合中文需求文本语义特征的UML活动图自动生成方法

      2026, 37(4):1650-1670. DOI: 10.13328/j.cnki.jos.007456

      摘要 (123) HTML (163) PDF 2.91 M (281) 评论 (0) 收藏

      摘要:UML活动图是软件需求分析的重要工具. 实现由需求文本生成UML活动图流程的自动化有助于缩短软件开发时间, 降低人力成本. 现有的UML活动图自动生成方法通过人工编写或数据驱动的方式来构建规则, 从需求文本中提取活动图图元素及其关系. 然而, 这些方法通常只考虑到需求文本的语法特征, 忽略了需求文本的语义特征, 导致自动生成的UML活动图中可能出现图元素错误或冗余. 因此, 提出一种融合中文需求文本语义特征的UML活动图自动生成方法. 该方法结合需求文本与UML活动图的相关性、需求文本的时序性提取UML活动图图元素及其关系, 弥补了现有方法易受需求文本中无关信息干扰、难以正确识别并表示多种类型业务活动的缺陷. 在100个工业界实际应用案例上的消融和对比实验结果验证了该方法在UML活动图的完整性、正确性和冗余性方面较其他主流方法的优越性.

    • 基于路网建模的自动驾驶关键场景生成与自适应演化方法

      2026, 37(4):1671-1689. DOI: 10.13328/j.cnki.jos.007471

      摘要 (1274) HTML (303) PDF 2.02 M (1492) 评论 (0) 收藏

      摘要:自动驾驶系统的安全性对于自动驾驶汽车在现实世界中的实施非常重要. 因此, 自动驾驶系统在公开发布和部署之前必须进行充分的评估. 如何生成多样化的安全关键测试场景是自动驾驶系统测试的关键任务. 现有的自动驾驶系统关键场景生成方法, 包括再现现实世界的交通事故和基于搜索的关键场景生成. 然而, 前者由于自动驾驶与人类驾驶存在鸿沟, 现实世界交通事故大多无法发现自动驾驶系统的问题; 后者由于传统搜索算法的局限性, 发现的问题相似度较高. 此外, 由于测试场景的空间非常庞大, 二者生成关键场景的效率较低. 为了解决上述问题, 提出LEADE, 一种基于道路网络建模的自动驾驶系统安全关键场景生成和自适应演化方法. 具体来说, 它根据用户的测试需求构建抽象场景, 并通过道路网络建模生成具体场景. 然后, LEADE采用改进的自适应进化搜索来生成各种安全关键场景来测试自动驾驶系统. 在工业级全栈自动驾驶系统平台百度Apollo上实施和评估LEADE. 实验结果表明, LEADE可以有效和高效地生成安全关键场景, 并揭露Apollo的10种不同安全违背行为. 它通过识别同一道路上的4种新型安全关键场景, 优于两种最先进的基于搜索的自动驾驶系统测试技术.

    • 基于大语言模型的故障复现测试用例生成方法

      2026, 37(4):1690-1714. DOI: 10.13328/j.cnki.jos.007474

      摘要 (174) HTML (1364) PDF 2.77 M (822) 评论 (0) 收藏

      摘要:GitHub是目前最流行的开源项目管理平台之一. 由于团队协作的需要, GitHub引入了问题报告跟踪功能方便项目使用者提交和追踪项目中出现的问题或新功能请求. 问题报告贡献者在解决问题报告时, 通常需要执行故障复现测试用例来复现问题报告中提到的问题并验证问题报告是否解决. 然而, 在SWE-bench Lite数据集上进行实证研究发现, 有近90%的问题报告在用户提交时没有附带故障复现测试用例, 这导致问题报告贡献者在解决问题报告时还需额外编写故障复现测试用例, 带来了额外的工作负担. 现有的故障复现测试用例生成技术通常依赖错误栈信息, 然而GitHub问题报告中并未明确要求有这类信息. 因此, 提出基于大语言模型的故障复现测试用例生成方法, 旨在自动化地为GitHub问题报告生成故障复现测试用例, 帮助问题报告贡献者复现、理解并验证问题报告, 提升问题报告解决效率. 该方法首先通过检索与问题报告相关的多样化代码上下文信息, 包括报错根函数、import语句和测试用例样本, 随后构建精确的prompt, 以引导大语言模型生成有效的故障复现测试用例. 开展对比实验和消融实验, 验证所提方法在面向GitHub问题报告的故障复现测试用例生成任务上的有效性.

    • RMDroid: 基于多模态融合学习的安卓恶意软件鲁棒检测

      2026, 37(4):1715-1739. DOI: 10.13328/j.cnki.jos.007499

      摘要 (108) HTML (0) PDF 1.43 M (1367) 评论 (0) 收藏

      摘要:随着人工智能技术的蓬勃发展和广泛应用, 越来越多的恶意软件检测方法和工具利用深度学习的强大学习能力来检测安卓平台上新出现的恶意软件. 然而, 深度学习模型已经被证明容易受到对抗攻击的威胁. 与此同时, 攻击者已经开始提出多种针对安卓恶意软件检测方法的对抗攻击方法, 即生成对抗性安卓恶意软件, 从而达到绕过恶意软件检测的目的. 现有安卓恶意软件检测方法容易受到对抗攻击威胁的主要原因在于, 这些恶意软件检测方法都建立在单一模态特征之上, 而以单一模态存在的特征却很容易被攻击者恶意性地操控. 因此, 为了提高当前安卓恶意软件检测方法可以抵御对抗攻击的鲁棒性, 提出一种基于多模态融合学习的安卓恶意软件鲁棒检测方法RMDroid, 可以在不影响针对一般性安卓恶意软件检测准确性的基础上, 显著提高其抵御对抗攻击的鲁棒性. 具体而言, RMDroid首先会从待测安卓软件的多种模态中提取多种模态的特征信息, 然后分别利用相应的深度学习模型学习表征相应模态深层语义信息的特征向量, 最后利用异类识别网络降低甚至消除多模态特征中受到对抗攻击干扰的模态特征对最终恶意软件预测的影响, 从而提高其抵御对抗攻击的鲁棒性. 实验结果表明, 所提出的RMDroid在5项有效性指标和1项鲁棒性指标上均优于所有基线检测方法. 特别的, 在误报率FPR相同的情况下, RMDroid的检出率TPR比最好的基线检测方法的检出率TPR高出10%以上; 并且针对最先进的HRAT攻击, RMDroid的鲁棒性值高达96%以上, 显著高于MaMaDroid和MalScan基线检测方法的鲁棒性值.

    • 大语言模型驱动的可信政务问答技术

      2026, 37(4):1740-1758. DOI: 10.13328/j.cnki.jos.007435

      摘要 (196) HTML (0) PDF 1.11 M (1420) 评论 (0) 收藏

      摘要:政务问答系统能实时处理政务咨询, 在降低人工咨询压力的同时提高了企业和群众的办事效率. 政务问答系统的服务场景多样且重视回答表述的准确规范, 现有方法或基于预设知识库产生回答, 或基于规模有限的语言模型生成回答, 均无法在多服务场景下有效理解咨询并生成准确且可解释的可信回答. 为此, 提出一种基于大语言模型的政务问答技术以实现可信政务回答. 所提方法以政务大语言模型为内容理解和生成的核心模块并由分析引导模块和领域知识库模块辅助. 政务大语言模型生成咨询回答时参考分析引导模块提供的咨询分析结果和领域知识库模块提供的咨询相关领域知识, 并针对咨询生成内容表述与事实一致的准确回答. 生成回答时参考的信息可作为回答依据提升回答的可解释性. 为构建方法涉及的相关模块并测试其有效性, 收集并整理了一个包含多层次多粒度政务公开信息的综合性数据集, 其中包含1901篇文档和10503条问答对数据. 最后, 通过实验分析验证了基于该方法实现的原型系统能在多服务场景下针对用户咨询生成表述准确且可解释的可信咨询回答.

    • 基于分类检索的操作规划方法

      2026, 37(4):1759-1776. DOI: 10.13328/j.cnki.jos.007460

      摘要 (104) HTML (124) PDF 3.36 M (1427) 评论 (0) 收藏

      摘要:聚焦于教学视频(instructional videos)中的操作规划(procedure planning)问题, 探讨如何根据给定的开始和结束视觉状态, 在教学视频提供的动作空间中规划出一条将开始状态转变为结束状态的动作序列. 教学视频以记录和展示各种事件的操作过程为特点, 每个事件对应一组特定动作, 从而形成事件的动作空间. 多个事件的动作空间共同构成了教学视频的整体动作空间. 传统方法未能充分挖掘事件的语义信息, 过于依赖强化学习等复杂训练方法, 既增加了算法设计的复杂性, 又导致模型的可解释性较差. 针对这些问题, 结合教学视频的特点, 提出了一种基于分类检索的操作规划方法CPP (classification-based retrieval procedure planner), 分阶段解决操作规划任务. 具体而言, 该方法首先通过视觉状态识别事件类别, 将动作空间限定在一个较小的子空间内, 显著降低规划的复杂性; 随后, 在该子空间中进行动作序列的规划. 此外, 提出了一种混合规划策略, 将动作序列的检索与预测相结合, 进一步提升了规划性能. 实验结果表明, 方法在3个不同规模的教学视频数据集上均取得了显著效果, 为操作规划任务提供了一种简单而高效的基准方法.

    • 高效的区块链中可监管身份隐私保护方案

      2026, 37(4):1777-1800. DOI: 10.13328/j.cnki.jos.007427

      摘要 (301) HTML (0) PDF 1.37 M (1584) 评论 (0) 收藏

      摘要:区块链, 又称分布式账本, 作为新一代信息技术的典型代表, 在金融、医疗、能源和政务等领域得到广泛应用. 区块链中可监管的隐私保护技术既能保护用户隐私, 增强用户对区块链应用的信任, 又能防止区块链被用于非法活动, 确保应用的合规性. 现有可监管区块链隐私保护方案通常基于双线性配对构造, 运算效率较低, 无法满足高并发场景应用需求. 针对上述问题, 提出一种高效的区块链中可监管身份隐私保护方案, 通过设计一种无需配对的接收者身份一致性零知识证明和可追踪环签名方案, 在保护交易双方身份隐私的同时保证监管的有效性. 实验结果表明, 当按照Monero参数配置将环签名成员数量设置为16时, 高效的区块链中可监管身份隐私保护方案中所有算法执行时间均为5 ms以内, 相较于同类型方案效率提升14倍以上, 消息长度缩短为原方案的50%, 具有更高的计算效率和更短的消息长度.

    • 基于大型DNS递归服务的域名访问模式测量与分析

      2026, 37(4):1801-1818. DOI: 10.13328/j.cnki.jos.007429

      摘要 (358) HTML (0) PDF 2.19 M (1419) 评论 (0) 收藏

      摘要:域名系统(domain name system, DNS)协议的性能和操作特性引起了研究和网络运营界的极大兴趣. 在这项工作中, 通过测量分析来自一个大型DNS服务商递归服务器数据, 从一个大型DNS运营商递归服务的角度考察了用户访问模式及解析状况. 面向海量的DNS数据, 首先提供一种多机分布式并行测量机制和大数据平台存储监控方案, 实现了对DNS海量数据的高效测量分析. 然后, 从用户请求响应率, 请求域名的情况, 请求用户的情况和域名解析的情况多个维度系统分析了DNS数据的特征, 并呈现了多个有价值的测量结果, 对提升DNS的运维和洞察DNS的特性具有重要价值. 最后, 基于对DNS缓存命中率的测量分析, 提出一种适用于DNS大型运营商进行在线异常检测的通用框架, 并初步验证了框架方案的正确性和可行性.

    • 兼顾通信轮数与计算开销的门限多方隐私集合交集协议

      2026, 37(4):1819-1837. DOI: 10.13328/j.cnki.jos.007434

      摘要 (253) HTML (0) PDF 1.43 M (1629) 评论 (0) 收藏

      摘要:(t, N)门限多方隐私集合交集协议(threshold multi-party private set intersection, TMP-PSI)允许当指定参与方的集合元素x在其余不少于t–1 (tN)个参与方的私有集合中出现时, 数据元素x作为交集结果输出, 在提案投票、金融交易威胁识别、安全评估等场景具有广泛应用. 现有的门限多方隐私集合交集协议运行效率低、通信轮数多且只能由某一个指定参与方获取交集. 针对这些问题, 设计一种基于弹性秘密共享的参与方门限测试方法, 结合不经意键值对存储(oblivious key-value store, OKVS)提出一种TMP-PSI方案, 能够有效减少计算开销和通信轮数. 为了满足多参与方获取私有集合中交集信息的需求, 提出第2种拓展门限多方隐私集合交集(extended threshold multi-party private set intersection, ETMP-PSI)协议对份额分发方式进行改变, 与第1种方案相比, 秘密分发者和秘密重构方没有额外增加通信轮数和计算复杂度, 实现了多参与方获取私有集合中的交集元素. 所设计的协议在数据集合大小为n = 216的三方场景下运行时间为6.4 s (TMP-PSI)和8.7 s (ETMP-PSI), 与现有的门限多方隐私集合交集协议相比, 重构方和分发方的通信复杂度由O(nNtlog)降为O(bNλ).

    • 基于真实源地址验证的轻量共识机制

      2026, 37(4):1838-1853. DOI: 10.13328/j.cnki.jos.007485

      摘要 (113) HTML (117) PDF 1.51 M (419) 评论 (0) 收藏

      摘要:近年来, 许多研究提出利用共识机制增强网络层安全性. 然而, 现有共识机制存在密钥维护数量多、信任关系传递不灵活和节点身份验证开销大等局限, 难以满足网络层功能的性能需求. 为解决这些问题, 提出一种基于真实源地址验证技术的轻量共识框架. 该框架在多个层次上优化共识效率: 首先, 针对同一地址域内的共识节点, 该框架利用真实地址作为身份识别标志, 通过域内节点共享同一密钥的方式实现密钥聚合, 从而大幅降低所需维护的密钥数量; 其次, 在地址域的粒度上, 该框架构建以真实地址为信任基础的网络信任联盟, 基于前缀树聚合可信地址域, 从而在实现灵活信任传递的同时, 进一步降低所需维护的密钥数量; 最后, 在节点层面, 针对传统共识节点身份验证开销大的问题, 该框架设计基于真实地址和对称密钥的分步验证机制, 从而有效降低共识开销, 实现共识过程轻量化. 仿真实验证明, 所提出的轻量共识框架与基于ECDSA身份验证的共识机制相比, 平均可提升70%共识吞吐量并降低40%共识计算开销, 显著提升了共识效率.

    • >综述文章
    • 基于扩散模型的个性化图像生成方法综述

      2026, 37(4):1854-1884. DOI: 10.13328/j.cnki.jos.007511

      摘要 (190) HTML (0) PDF 16.15 M (1423) 评论 (0) 收藏

      摘要:随着深度学习技术和扩散模型的快速发展, 图像及视频生成模型展示了高质量、多样化的强大生成能力. 如何利用这些模型实现高效、精准的个性化生成成为当前研究的热点. 个性化图像生成方法能够通过结合文本描述和用户提供的特定概念或主体, 实现定制化图像的生成, 满足用户对个性化视觉内容的多样化需求. 综述基于扩散模型的个性化图像生成方法, 从生成目标的角度将现有方法分为单主体驱动生成和多概念组合生成两类, 前者聚焦于根据单一主体生成定制化图像, 重点研究如何精确捕捉和重建主体的视觉特征, 后者则专注于将多个概念或主体融合到同一图像中, 解决跨概念语义对齐和视觉一致性等问题. 结合具体任务和应用场景, 对个性化生成代表性工作进行了详细分析. 此外, 比较和总结了常用的数据集、生成模型的评估方法和个性化生成方法间的性能对比, 进一步探讨了个性化生成方法在实际应用中面临的挑战及未来发展方向, 对研究趋势进行了展望. 旨在为相关领域的研究者提供全面的参考, 推动个性化生成方法的发展与创新.

当期目录


文章目录

过刊浏览

年份

刊期

联系方式
  • 《软件学报 》
  • 主办单位:中国科学院软件研究所
                     中国计算机学会
  • 邮编:100190
  • 电话:010-62562563
  • 电子邮箱:jos@iscas.ac.cn
  • 网址:https://www.jos.org.cn
  • 刊号:ISSN 1000-9825
  •           CN 11-2560/TP
  • 国内定价:70元
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号