2024, 35(1):236-265.
DOI: 10.13328/j.cnki.jos.006913
摘要:
常识问答是一项重要的自然语言理解任务, 旨在利用常识知识对自然语言问句进行自动求解, 以得到准确答案. 常识问答在虚拟助手或社交聊天机器人等领域有着广泛的应用前景, 且其蕴涵了知识挖掘与表示、语言理解与计算、答案推理和生成等关键科学问题, 因而受到工业界和学术界的广泛关注. 首先介绍常识问答领域的主要数据集; 其次, 归纳不同常识知识源在构建方式、常识来源和表现形式上的区别; 同时, 重点分析并对比前沿常识问答模型, 以及融合常识知识的特色方法. 特别地, 根据不同问答任务场景中常识知识的共性和特性, 建立包含属性、语义、因果、语境、抽象和意图6大类的知识分类体系. 以此为支撑, 针对常识知识数据集建设, 感知知识融合和预训练语言模型的协作机制, 以及在此基础上的常识知识预分类技术, 进行前瞻性的研究, 并具体报告上述模型在跨数据集迁移场景下的性能变化, 及其在常识答案推理中的潜在贡献. 总体上, 包含对现有数据和前沿技术的回顾, 也包含面向跨数据知识体系建设、技术迁移与通用化的预研内容, 借以在汇报领域技术积累的前提下, 为其理论和技术的进一步发展提供参考意见.