软件设计模式检测技术:现状、挑战和展望
作者:
作者单位:

北京理工大学 计算机学院

基金项目:

国家自然科学基金项目(61932004);陕西省教育厅专项科研计划项目(23JK0724);中国轻工业工业互联网与大数据重点实验室开放课题基金(IIBD-2021-KF10)


Software Design Pattern Detection Techniques: Current Status, Challenges and Prospects
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    设计模式检测是软件工程领域中非常重要的研究课题。国内外很多学者致力于设计模式检测问题的研究与解决,取得了丰硕的研究成果。本文对当前软件设计模式检测技术进行了综述并展望了其前景。首先,简要介绍了软件设计模式检测领域的发展历程,讨论了设计模式检测的对象,总结了设计模式的特征类型,给出了设计模式检测评估指标。然后,总结了设计模式检测技术现有的分类方法,引出了本文的分类方法。接着,首次根据设计模式检测技术发展的时间线从非机器学习设计模式检测、机器学习设计模式检测、基于预训练语言模型的设计模式检测三类大方法出发探讨了当前软件设计模式检测技术的研究现状和最新进展,并对当前成果进行了比较总结和比较。最后,分析了该领域存在的主要问题与挑战,指出了今后值得进一步研究的方向以及可能的解决方案。本文涵盖了从早期的非机器学习方法到利用机器学习技术,再到现代预训练语言模型的应用,全面系统地展现了该领域的发展历程、最新进展和未来发展前景,对于该领域今后的研究方向和思路具有指导意义。

    Abstract:

    Design pattern detection is a very important research topic in the field of software engineering. Many scholars both domestically and internationally have dedicated their efforts to researching and resolving the design pattern detection issue, achieving fruitful results. This paper reviews the current technologies in software design pattern detection and looks ahead to their future prospects. Firstly, this paper briefly introduces the development history of software design pattern detection, discusses the object of design pattern detection, summarizes the feature types of design patterns, and gives the evaluation indexes of design pattern detection. Then, it summarizes the existing classification methods for design pattern detection techniques, and introduces the classification method of this paper. Next, according to the development timeline of design pattern detection technologies, the current research status and the latest advancements of software design pattern detection technologies are discussed from three broad approaches: non-machine learning design pattern detection, machine learning design pattern detection, design pattern detection based on pre-trained language models, and the current achievements are compared and summarized. Finally, the main problems and challenges in this field are analyzed, and further research directions and potential solutions are pointed out. Covering from early non-machine learning methods through the utilization of machine learning technologies to the application of modern pre-trained language models, this paper comprehensively and systematically presents the development history, the latest advancements, and the future prospects of the field. It provides valuable guidance for future research directions and thinking within this area.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-11
  • 最后修改日期:2024-08-07
  • 录用日期:2024-09-05
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号