大语言模型的幻觉问题研究综述
作者:
作者单位:

1.清华大学;2.对外经济贸易大学

基金项目:

国家重点研发计划,国家自然科学基金项目


Survey of Hallucination in Large Language Models
Author:
Affiliation:

Tsinghua University

Fund Project:

National Key Research and Development Program of China, National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着以Transformer为代表的预训练模型等深度学习技术的发展,大型语言模型(LLM)日益展现出强大的理解力和创造力,对抽象摘要、对话生成、机器翻译和数据到文本生成等下游任务产生了重要影响,同时也在图像说明、视觉叙事等多模态领域展现出了广阔的应用前景。虽然大型语言模型具备显著的性能优势,但深度学习架构使其难以避免内容幻觉问题,这不仅会削减系统性能,还严重影响其可信性和应用广泛性,由此衍生的法律风险和伦理风险成为掣肘其进一步发展与落地的主要障碍。本文聚焦大型语言模型的幻觉问题。首先,对大型语言模型的幻觉问题展开系统概述,分析其来源及成因;其次,系统概述大型语言模型幻觉问题的评估方法和缓解方法,对不同任务的评估和缓解方法类型化并加以深入比较;最后,从评估和缓解角度展望应对幻觉问题的未来趋势和应对方案。

    Abstract:

    With the development of deep learning technologies such as Transformer-based pre-trained models, breakthroughs have been made in the research and applications of large language models (LLMs) have shown great understanding ability and creativity, which not only have an important impact on downstream tasks such as abstractive summarization, dialogue generation, machine translation, and data-to-text generation, but also show broad application prospects in multimodal fields such as image annotation and visual narrative. While LLMs have significant advantages in performance, deep learning-based LLMs are prone to hallucinatory problems, which would reduce the system performance, and even seriously affect the faithfulness and broad applications of LLMs. The accompanying legal and ethical risks have become the main obstacles to their further development and implementation. Therefore, this survey provides an extensive investigation and technical review of the hallucination problem in LLMs. Firstly, the hallucination problems in LLMs are systematically summarized, and their origin and causes are analyzed. Secondly, a systematical overview of hallucination evaluation and mitigation methods is provided, in which the evaluation and mitigation methods are categorized and thoroughly compared for different tasks. Finally, the future challenges and research directions of LLMs’ hallucination are discussed from the evaluation and mitigation perspectives.

    参考文献
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:2024-06-08
  • 录用日期:2024-06-20
文章二维码
您是第20226020位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号