融合潜在联合词与关联兼容的Mashup服务组件Web API推荐
作者:
作者单位:

青岛科技大学


Component Web API recommendation for Mashup service by fusing latent allied words and association compatibility
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    服务描述中包含的应用场景信息有限,使得以功能匹配为主的Mashup服务的组件Web API推荐与需求预期存在差异。部分研究者虽利用Web API的协作关联提升推荐兼容性,但忽视了功能关联对Mashup服务创建的负反馈影响,从而限制了推荐质量的提升。为此,提出一种融合潜在联合词与关联兼容的Mashup服务组件Web API推荐方法。首先,构建了一种融入场景契合度的服务描述特征词提取模型S-YAKE,并结合标签适配度提取潜在联合词,为Mashup服务需求和Web API生成融合潜在联合词的功能向量。再次,建立Web API异质关联图,通过改进的GATNE模型为Web API训练关联向量。最后,引入注意力机制,优化重组Mashup服务需求向量与Web API关联向量,与Web API功能向量一起输入全连接层,根据匹配度的输出概率实现Top-K组件Web API推荐。相对于对比方法,本文方法在评价指标Recall和Precision平均提升7.96%与8.34%,在多样性指标ILS平均降低13.07%。冷启动Web API推荐的Recall与Precision指标值分别为非冷启动Web API推荐的46.97%和49.1%,这说明文中方法不仅提升了Web API推荐质量,而且对冷启动Web API具有很好的推荐效果。

    Abstract:

    The service description contains limited application scenario information. It makes the component Web API recommendation of Mashup service based on function matching different from the requirement expectation. Although some researchers use the collaboration relationship of Web APIs to improve recommendation compatibility, they ignore the negative feedback effect of functional association on Mashup service creation, which limits the improvement of recommendation quality. To address this problem, a Web API recommendation method for Mashup service components by fusing latent allied words and association compatibility is proposed in this paper. Firstly, a service description feature word extraction model S-YAKE with scenario adaptation weights was constructed, and the latent allied words were extracted by combining label adaptation. The function vectors of fusing the latent allied words were generated for Mashup service requirements and Web APIs respectively. Secondly, the heterogeneous service association graph was established, and the association vector of Web API was trained by the improved GATNE model network. Finally, the attention mechanism was introduced to optimize and recombine the Mashup requirement vector and the Web API association vectors. They are fed into the fully connected layer together with the Web API feature vectors to achieve Top-K component Web API recommendation based on the output probability of the matching degree. Compared with the state-of-the-art methods, the proposed method improves the recall and precision by 7.96% and 8.34%, and reduces the ILS by 13.07% on average. The recall and precision values of cold-start Web API recommendation are 46.97% and 49.1% of those of non-cold-start Web API recommendation, respectively. It indicates that the proposed method not only improves the quality of Web API recommendation, but also has a good recommendation effect on cold-start Web API.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-17
  • 最后修改日期:2024-01-02
  • 录用日期:2024-03-28
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号