面向小样本的恶意软件检测综述
作者:
作者单位:

广州大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A Review of Few-shot for Malware Detection
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    恶意软件检测是网络空间安全研究中的热点问题,例如Windows恶意软件检测和安卓恶意软件检测等.随着机器学习和深度学习的发展,一些在图像识别、自然语言处理领域的杰出算法被应用到恶意软件检测,这些算法在大量数据下表现出了优异的学习性能.但是,恶意软件检测中有一些具有挑战性的问题仍然没有被有效解决,例如,基于少量新颖类型的恶意软件,常规的学习方法无法实现有效检测.因此,小样本学习(few-shot learning, FSL)被用于解决面向小样本的恶意软件检测(few-shot for malware detection, FSMD)问题.一个N-way K-shot FSL问题包含N个类并且每个类包括K个训练样本,注意N通常不超过20.本文通过相关文献,提取出了FSMD的问题定义和一般流程.根据方法原理,将FSMD方法分为:基于数据增强的方法、基于元学习的方法和结合多种技术的混合方法,并讨论了每类FSMD方法的特点.最后,本文提出了对FSMD的背景、技术和应用的展望.

    Abstract:

    Malware detection is a hotspot of cyberspace security research, such as Windows malware detection and Android malware detection. With the development of machine learning and deep learning, some outstanding algorithms in the fields of image recognition and natural language processing have been applied to malware detection. These algorithms have shown excellent learning performance with a large amount of data. However, there are some challenging problems in malware detection that have not been solved effectively, e.g., conventional learning methods cannot achieve effective detection based on few of novel malware. Therefore, few-shot learning (FSL) is used to solve the few-shot for malware detection (FSMD) problems. An N-shot K-way FSL problem is involving K classes, and each class containing N training samples. Note that N is usually no more than 20. This paper extracts the problem definition of FSMD and the general process of FSMD by the related research. According to the principle of the method, FSMD methods are divided into: methods based on data augmentation, methods based on meta-learning, and hybrid methods combining multiple technologies. Then, this paper discusses each FSMD method. Finally, the background, technology and application prospect of FSMD are proposed.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-11
  • 最后修改日期:2023-07-28
  • 录用日期:2023-10-24
文章二维码
您是第20047137位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号