区块链扩展技术现状与展望
作者:
作者单位:

武汉大学国家网络安全学院

基金项目:

国家重点研发计划(2021YFB2700200)、中央高校基本科研业务费(2042022kf1195,2042022kf0046)、国家自然科学基金(U1836202,62076187, 62172303)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [66]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来,区块链技术引起广泛关注,其作为一种分布式账本技术,由于具备开放性、透明性和不可篡改性,已经被应用到诸多领域。但随着用户数量和访问需求的大幅增加,现有区块链体系结构可扩展性不足导致的性能瓶颈,制约了区块链技术的应用和推广,如何解决可扩展性问题已成为学术界和工业界关注的热点。本文对已有的区块链扩展方案进行分析和总结。首先,介绍区块链基本概念和可扩展性问题的由来,定义可扩展性问题并提出衡量可扩展性的指标。其次,给出分类框架,将现有方案按网络扩展、链上扩展、链下扩展三大类进行介绍,通过对不同的区块链可扩展性方案进行分析,比较各自的技术特点并归纳优缺点。最后,对亟待解决的开放性问题进行讨论,展望区块链技术未来趋势.

    Abstract:

    In recent years, blockchain has attracted a lot of attention. As a distributed ledger technology, it has been applied to many fields due to its openness, transparency, and non-tamperability. As the increase of the number of users and demand, the low processing speed of blockchain becomes a performance bottleneck. The poor scalability of the ex-isting blockchain architectures has restricted the application and promotion of blockchain. How to solve the scalability problem has become a hotspot of the blockchain field in academia and industry. This paper analyzes and summarizes the solutions on the scalability of blockchain. Firstly, we introduce the scalability problem. More broadly, we define the scalability problem and extract metrics to measure it. Secondly, we give a general classifica-tion framework, which categorizes existing solutions into three types: network expansion, on chain expansion, and off chain expansion. Through the analysis of different blockchain scalability schemes, the respective technical characteristics are compared and the advantages and disadvantages are summarized. Finally, we discuss open issues that need to be addressed, and explore future trends in blockchain.

    参考文献
    [1] Nakamoto S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. https://bitcoin.org/bitcoin.pdf, 2008.
    [2] Zeng SX, Huo R, Huang T. Overview of blockchain technology research: principle, progress and application[J]. Journal on. Communications, 2020, 41(01): 134-151.
    [3] Li JJ, Yuan Y, Wang FY. Development status and prospect of digital currency based on blockchain[J]. ACTA AUTOMATICA. SINICA, 2021, 47(04): 715-729.
    [4] Yao Q, Zhang DW. Overview of Identity Management Technology in Blockchain System[J]. Journal of Software, 2021, 32(07): 2260-2286.
    [5] Yuan Y, Zhou T, Zhou AY. Blockchain technology: from data intelligence to knowledge automation[J]. ACTA AUTOMATICA. SINICA, 2017, 43(09): 1485-1490.
    [6] Cai T, Lin H, Chen WH. Blockchain enabled efficient IoT data incentive sharing scheme[J]. Journal of Software, 2021, 32(04): 953-972.
    [7] Cai XQ, Deng Y, Zhang L. Blockchain principle and its core technology[J]. Chinese Journal of Computers, 2021, 44(01): 84-131.
    [8] Xia Q, Dou WS, Guo KW. Overview of Blockchain Consensus Protocol[J]. Journal of Software, 2021, 32(02): 277-299.
    [9] Meng WT, Zhang DW. Hyperledger Fabric Consensus Mechanism Optimization Scheme[J]. ACTA AUTOMATICA. SINICA, 2021, 47(08): 1885-1898.
    [10] Ga?i P, Kiayias A, Zindros D. Proof-of-Stake Sidechains[C]. Proceedings of the IEEE Symposium on Security and Privacy (SP). San Francisco: IEEE, 2019: 139-156.
    [11] Zhu JM, Zhang QN, Gao SP. Blockchain based trusted federation learning model for privacy protection[J]. Chinese Journal of. Computers, 2021, 44(12): 2464-2484.
    [12] Yuan Y,Ni XQ, Zeng S, Wang FY. Development status and prospect of blockchain consensus algorithm[J]. ACTA. AUTOMATICA. SINICA,2018,44(11):2011-2022.
    [13] Bai C. State-of-the-art and future trends of blockchain based on dag structure[C]. Proceedings of the Springer International workshop on structured object-oriented formal language and method. Shenzhen: Springer, 2019: 183-196.
    [14] Ozisik A P, Andresen G, Bissias G, et al. A secure, efficient, and transparent network architecture for bitcoin[R]. UMass Amherst, Tech. Rep.UM-CS-2016–006, 2016.
    [15] Matt Corallo. FIBRE: Fast Internet Bitcoin Relay Engine[EB/OL].
    [16] Klarman U, Basu S, Kuzmanovic A, et al. Bloxroute: a scalabletrustless blockchain distribution network whitepaper[EB/OL]. https://bloxroute.com/wp-content/uploads/2019/11/bloXrouteWhitepaper.pdf, 2018.
    [17] Karp H, Melbardis R. Nexus Mutual: A peer-to-peer discretionary mutualon the Ethereum blockchain[EB/OL]. https://nexusmutual.io/assets/docs/nmx_white_paperv2_3.pdf, 2017.
    [18] Team Harmony. Harmony Technical White Paper v2.0[EB/OL], https://harmony.one/whitepaper.pdf, 2018.
    [19] Naumenko G, Maxwell G, Wuille P, et al. Erlay: Efficient transaction relay for bitcoin[C]. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). NewYork: ACM, 2019: 817- 831.
    [20] Chawla N, Behrens H W, Tapp D, et al. Velocity: scalability improvements in block propagation through rateless erasure coding[C]. Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC). Piscataway: IEEE , 2019: 447-454
    [21] Rohrer E, Tschorsch F. Kadcast: A structured approach to broadcast in blockchain networks[C]. Proceedings of the ACM Conference on Advances in Financial Technologies (AFT). New York: ACM, 2019: 199-213.
    [22] Pinar Ozisik A, Gavin Andresen, Brian Neil Levine. Graphene: efficient interactive set reconciliation applied to blockchain propagation[C]. Proceedings of the ACM SIGCOMM. Beijing: ACM, 2019: 303-317.
    [23] Xie J, Yu F R, Huang T, et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019, 33(5): 166-173.
    [24] Croman K, Decker C, Eyal I, et al. On scaling decentralized blockchains[C]. Proceedings of the International conference on financial cryptography and data security.Berlin: Springer, 2016: 106-125.
    [25] Kwon Y, Kim H, Shin J. Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash?[C]. Proceedings of the IEEE Symposium on Security and Privacy (SP). San Francisco: IEEE, 2019: 935-951.
    [26] Kedziora M, Pieprzka D, Jozwiak I, et al. Analysis of segregated witness implementation for increasing efficiency and security of the Bitcoin cryptocurrency[J]. Journal of Information and Telecommunication, 2022: 1-12.
    [27] Nagayama R, Shudo K, Banno R. Simulation of the Bitcoin Network Considering Compact Block Relay and Internet Improvements[J]. IEICE Technical Report; IEICE Tech. Rep., 2020, 119(460): 179-183.
    [28] Luu L, Narayanan V, Zheng C, et al. A secure sharding protocol for open blockchains[C]. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). NewYork: ACM, 2016: 17-30.
    [29] Kokoris-Kogias E, Jovanovic P, Gasser L, et al. Omniledger: a secure, scale-out, decentralized ledger via sharding[C]. Proceedings of the IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE, 2018: 583-598.
    [30] Zamani M, Movahedi M, Raykova M. Rapidchain: Scaling blockchain via full sharding[C]. Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). Toronto: ACM, 2018: 931-948.
    [31] Wang J, Wang H. Monoxide: Scale out blockchains with asynchronous consensus zones[C]. Proceedings of the USENIX Conference on Networked Systems Design and Implementation. USA: USENIX Association, 2019: 95-112.
    [32] Eyal I, Gencer A E, Sirer E G, et al. Bitcoin-ng: A scalable blockchain protocol[C]. Proceedings of the Usenix Conference on Networked Systems Design and Implementation. USA: USENIX Association, 2016: 45-59.
    [33] Yonatan Sompolinsky, Shai Wyborski, Aviv Zohar. PHANTOM GHOSTDAG: a scalable generalization of Nakamoto consensus: September 2, 2021[C]. In Proceedings of the ACM Conference on Advances in Financial Technologies (AFT). New York: ACM, 2021: 57–70.
    [34] Rizun P R. Subchains: A technique to scale bitcoin and improve the user experience[J]. Ledger, 2016, 1: 38-52.
    [35] Pass R, Shi E. Fruitchains: A fair blockchain[C]. In Proceedings of ACM Symposium on Principles of Distributed Computing (PODC). New York: ACM, 2017: 315-324.
    [36] Kerber T, Kiayias A, Kohlweiss M. Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake[C]. In Proceedings of IEEE Symposium on Security and Privacy (SP). San Francisco: IEEE, 2019: 157-174.
    [37] Castro D L, Polychroniadou A. Lightweight, Maliciously Secure Verifiable Function Secret Sharing[C]. In Proceedings of EUROCRYPT. Norway: Springer, 2022: 150-179.
    [38] Bingyong Guo, Zhenliang Lu, Qiang Tang. Dumbo: Faster Asynchronous BFT Protocols[C]. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security (CCS). New York: ACM, 2020: 803–818.
    [39] Kokoris-Kogias E , Jovanovic P , Gailly N , et al. Enhancing bitcoin security and performance with strong consistency via collective signing[C]. In Proceedings of USENIX Security Symposium. USA: USENIX Association, 2016: 279-296.
    [40] Biais B, Bisiere C, Bouvard M, et al. The blockchain folk theorem[J]. The Review of Financial Studies, 2019, 32(5): 1662-1715.
    [41] Lewenberg Y, Sompolinsky Y, Zohar A. Inclusive block chain protocols[C]. In Proceedings of International Conference on Financial Cryptography and Data Security(FC). Berlin: Springer, 2015: 528-547.
    [42] Li C, Li P, Zhou D, et al. A decentralized blockchain with high throughput and fast confirmation[C]. In Proceedings of USENIX Annual Technical Conference. USA: USENIX Association, 2020: 515-528.
    [43] Yu H, Nikoli? I, Hou R, et al. OHIE: blockchain scaling made simple[C]. In Proceedings of IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE, 2020: 90-105.
    [44] Bagaria V, Kannan S, Tse D, et al. Prism: deconstructing the blockchain to approach physical limits[C]. In Proceedings of ACM SIGSAC Conference on Computer and Communications Security (CCS). NewYork: ACM, 2019: 585-602.
    [45] Joseph P, Thaddeus D. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments[EB/OL]2016.
    [46] Avarikioti G, Janssen G, Wang Y, et al. Payment network design with fees[C]. In Proceedings of Data Privacy Management, Cryptocurrencies and Blockchain Technology. Switzerland: Springer, 2018: 76-84.
    [47] TeamTrinity. Trinity:universal off-chain scaling solution[EB/OL]. https://trinity.tech/#/whitepaper, 2019.
    [48] μRaiden. A Payment Channel Framework for Fast and Free Off-Chain ERC20 Token Transfers[EB/OL].
    [49] Jason T, Christian R. A scalable verification solution for blockchains[EB/OL], 2017.
    [50] Kalodner H, Goldfeder S, Chen X, et al. Arbitrum: Scalable, private smart contracts[C]. In Proceedings of USENIX Security Symposium. USA: USENIX, 2018: 1353-1370.
    [51] Sergio D. RSK enables a new global economy built on Bitcoin[EB/OL], 2015.
    [52] Poon J, Buterin V. Plasma: Scalable autonomous smart contracts[EB/OL]. https://www.plasma.io/plasma-deprecated.pdf, 2017: 1-47.
    [53] Siris V A, Dimopoulos D, Fotiou N, Interledger Smart Contracts for Decentralized Authorization to Constrained Things[C]. In Proceedings of IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris: IEEE, 2019: 336-341.
    [54] Jae K, Ethan B. Cosmos: A Network of Distributed Ledgers[EB/OL], 2019.
    [55] Gavin W. POLKADOT: Vision for A Heterogeneous Multi-Chain Frameowrk[EB/OL], 2016.
    [56] 附中文参考文献:
    [57] [2] 曾诗钦, 霍如, 黄韬. 区块链技术研究综述: 原理、进展与应用[J]. 通信学报, 2020, 41(01): 134-151.
    [58] [3] 李娟娟, 袁勇, 王飞跃. 基于区块链的数字货币发展现状与展望[J].自动化学报, 2021, 47(04): 715-729.
    [59] [4] 姚前, 张大伟. 区块链系统中身份管理技术研究综述[J]. 软件学报, 2021, 32(07): 2260-2286.
    [60] [5] 袁勇, 周涛, 周傲英. 区块链技术: 从数据智能到知识自动化[J]. 自动化学报, 2017, 43(09): 1485-1490.
    [61] [6] 蔡婷, 林晖, 陈武辉. 区块链赋能的高效物联网数据激励共享方案[J]. 软件学报, 2021, 32(04): 953-972.
    [62] [7] 蔡晓晴, 邓尧, 张亮. 区块链原理及其核心技术[J]. 计算机学报, 2021, 44(01): 84-131.
    [63] [8] 夏清, 窦文生, 郭凯文. 区块链共识协议综述[J]. 软件学报, 2021, 32(02): 277-299.
    [64] [9] 孟吴同, 张大伟. Hyperledger Fabric共识机制优化方案[J]. 自动化学报, 2021, 47(08): 1885-1898.
    [65] [11] 朱建明, 张沁楠, 高胜萍. 基于区块链的隐私保护可信联邦学习模型[J]. 计算机学报, 2021, 44(12): 2464-2484.
    [66] [12] 袁勇,倪晓春,曾帅,王飞跃.区块链共识算法的发展现状与展望[J].自动化学报,2018,44(11):2011-2022.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:327
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2022-12-11
  • 最后修改日期:2023-03-15
  • 录用日期:2023-04-11
文章二维码
您是第19897083位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号