基于精细神经元的类脑感知学习模型
作者单位:

北京大学

基金项目:

国家自然科学基金(61425025), 国家重点研发计划(2020AAA0130400)


A biophysically detailed model for brain-like perceptual learning
Fund Project:

The National Natural Science Foundation of China, The National Key Technologies R&D Program of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    大脑如何实现学习以及感知功能对于人工智能和神经科学领域均是一个重要问题。现有人工神经网络虽然是从大脑的计算机制启发而来,但其结构和计算机制与真实大脑相差较大,无法直接用于理解真实大脑进行学习以及处理感知任务的机理。树突神经元模型是一种对真实神经元树突信息处理过程进行建模的计算模型,相比人工神经网络更接近生物真实,可以对真实神经元的信息处理过程进行仿真。使用树突神经网络模型处理学习感知任务对理解真实大脑的学习过程有重要作用。然而,现有基于树突神经元网络的学习模型大都局限于简化树突模型,无法完整建模树突的信号处理过程。针对这一问题,本文提出了一种基于精细中型多棘神经元网络的学习模型,使得精细神经网络可以通过学习完成相应感知任务。实验表明,在经典的图像分类任务上,所提模型可以达到很好的分类性能。此外,精细神经网络对于噪声干扰有很强的鲁棒性。对网络特性进行进一步分析,本文发现学习后网络中的神经元表现出了刺激选择性这种神经科学中的经典现象,表明所提模型具有一定的生物可解释性,同时也表明刺激选择特性可能是大脑通过学习完成感知任务的一种重要特性。

    Abstract:

    How brains realize learning and perception is an essential question for both artificial intelligence and neuroscience communities. Although artificial neural networks (ANNs) are inspired from the computational principles in brains, the computing mechanism of ANN is far from the real brain. Thus, it is hard to use ANNs to explore the principles of learning and perception in the real brain. Dendritic neuron models are always used to simulate the signal integration process in the brain. Performing learning and perceptual tasks with dendritic neuron models help scientists better understand the learning mechanism in the real brain. However, current learning models on mainly focus on the simplified dendritic neurons, which is unable to model the entire signal processing mechanisms of real neurons. To solve this problem, we propose a biophysically detailed neural network of medium spiny neurons (MSNs). The detailed network model can perform image classification tasks after learning. Experimental results show that the detailed network can achieve high performance on the image classification task. In addition, the detailed network shows strong robustness under noise interference. With further analysis of the neurons in the network, we find that the detailed neurons show the stimulus selectivity property after learning, which is consistent with the findings in neuroscience research. This property indicates that our model is biologically-plausible, and implies that the stimulus selectivity is an essential property in perception learning.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-29
  • 最后修改日期:2022-09-23
  • 录用日期:2022-10-13
文章二维码
您是第19985195位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号