摘要:结构化数据分析通常需要在表格数据的多维属性上执行联合范围查询, 高效的多维索引因此成为数据库系统的关键支撑. 然而, 现有多维索引方法在高维场景下存在局限: 传统多维索引仅按数据分布进行均匀划分, 缺乏对查询特征的感知, 导致筛选效果有限; 而现有学习型多维索引虽引入查询感知, 但划分往往极不均匀, 使部分单元过大, 扫描成本显著增加. 为了解决上述问题, 提出一种新型的LA-tree学习型树形多维索引, 同时兼顾数据分布与查询负载感知. 在离线构建阶段, LA-tree将节点维度选择建模为最小化查询扫描比的问题, 并提出分层贪心搜索算法, 实现了均匀划分与查询感知的统一. 在在线查询阶段, 引入轻量线性模型与分段线性模型, 将传统的数值比较转化为快速映射计算, 在保证结果完整性的同时显著降低筛选延迟. 在动态场景中, 提出基于扫描量监控的自适应增量更新机制, 通过局部子树重构高效适配数据与查询负载的变化, 避免了整体索引重建的高昂代价. 实验结果表明, LA-tree在多个真实和基准数据集上均显著优于现有方法: 在静态场景中查询用时较最佳基准方法平均降低52%, 在动态场景中更新开销较重构方法减少97%, 同时保持低查询延迟与轻量级索引规模.