人机共驾场景中驾驶权接管技术研究综述
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市技术创新与应用发展专项重大项目(CSTB2023TAD-STX0027); 科技创新2030—“新一代人工智能(2030)”重大项目(2022ZD0117904); 中国科学院重点部署青年人才项目(RCJJ-145-24-14); 北京市自然科学基金(4254109); 重庆市工业和信息化领域“揭榜挂帅”项目(SEKJP001ZJY)


Survey on Driving Control Takeover Techniques in Human-machine Shared Driving Scenario
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能驾驶技术的快速发展使人机共驾成为平衡自动化能力与人类驾驶权责的重要范式. 实现控制权在人与机器之间的安全、平滑、高效转移的驾驶权接管技术, 成为该领域面临的核心挑战与技术瓶颈之一. 通过从理论框架、技术挑战和交互机制这3个维度系统梳理相关研究, 揭示目前驾驶权接管技术在实时决策和个性化适配方面的局限性, 可以深入剖析当前进展, 明确未来研究方向. 首先, 基于多学科交叉视角, 阐述驾驶权接管的理论基础, 提出基于场景特征的接管分类框架, 分析环境复杂度与驾驶员状态等因素的作用机理, 系统比较唤醒策略与控制算法, 指出当前技术在复杂场景适应性和个性化设计方面的不足. 其次, 探讨人机信任对驾驶权接管的影响机制, 从信任动态建模与多模态交互两个维度, 提出基于信任校准的接管策略优化方法. 最后, 展望大模型与跨模态认知技术融合的发展趋势, 为未来人机无缝协同驾驶提供研究方向.

    Abstract:

    The rapid development of intelligent driving technology has made human-machine collaborative co-driving a key paradigm for balancing automation capabilities with human driving rights and responsibilities. Driving authority takeover technology, which ensures the safe, smooth, and efficient transfer of control between humans and machines, has become one of the core challenges and technical bottlenecks in this field. By systematically reviewing relevant research on theoretical frameworks, technical challenges, and interaction mechanisms, the limitations of driving authority takeover technology in real-time decision-making and personalized adaptation are highlighted. This enables a thorough analysis of current progress and clarifies future research directions. First, from a multidisciplinary perspective, this study elaborates on the theoretical foundation of driving authority takeover, proposes a classification framework based on scenario characteristics, and analyzes the roles of factors such as environmental complexity and driver state. In addition, the wake-up strategies and control algorithms are systematically compared, highlighting the shortcomings of current technology in adapting to complex scenarios and personalized designs. Second, the influence of human-machine trust on driving authority takeover is innovatively explored. From the two dimensions of trust dynamic modeling and multimodal interaction, a trust calibration-based optimization method for takeover strategies is proposed. Finally, the trend toward integrating large models with cross-modal cognitive technology is envisioned, providing research directions for seamless human-machine collaborative driving in the future.

    参考文献
    相似文献
    引证文献
引用本文

章程,朱志亮,张子墨,查金吾,付庆庆,冯海贝,李清坤,岳康,马翠霞,王宏安.人机共驾场景中驾驶权接管技术研究综述.软件学报,2026,37(3):1290-1315

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-11
  • 最后修改日期:2025-08-27
  • 录用日期:
  • 在线发布日期: 2025-12-24
  • 出版日期: 2026-03-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号