全局与局部残差信息联合感知的可泛化图异常检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62376126); 航空发动机及燃气轮机重大专项基础研究项目(J2019-IV-0018-0086)


Generalizable Graph Anomaly Detection via Joint Perception of Global and Local Residual Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图异常检测作为图数据挖掘中的关键任务, 旨在识别网络中与大多数节点存在显著差异的异常节点. 现有的图异常检测方法普遍采用数据集特定的训练范式, 即为每个数据集单独训练模型. 然而, 该类方法缺乏跨数据集的泛化能力, 且训练成本高昂. 为克服上述局限, 近期研究开始关注残差特征的泛化潜力. 该类特征通过计算节点自身表示与基于邻居传播后的表示之差, 能够在很大程度上抵消特定于数据集的语义信息, 从而保留与异常模式紧密相关的通用性信息. 尽管该方向已取得初步成果, 但残差特征的建模过程仍存在如下关键问题: 首先, 在计算节点基于邻居传播前后的表示差值时, 邻居节点的稀少和潜在的结构噪声会在一定程度上影响结果的可靠性. 其次, 计算时的表示依赖于图神经网络(graph neural network, GNN)对局部关系的学习, 这种方式难以建模对异常检测同样有益的全局关系, 从而限制了残差特征的表达能力. 为解决上述问题, 提出一种全局和局部残差信息联合感知的可泛化图异常检测方法GRAD. 具体地, 该方法在利用GNN建模局部节点关系的基础上, 引入线性Transformer模块, 在不依赖原始图结构的前提下, 于特征空间中建模节点之间的全局结构相关性, 从而获得具备全局感知能力的节点表示. 随后, GRAD 在全局和局部视角上分别将表示转换为自身与其邻居之间的残差, 并将二者融合, 以构建数据集无关的通用节点表示. 随后在多个不同领域的公开图数据集上进行广泛实验, 验证了GRAD的有效性.

    Abstract:

    Graph anomaly detection, as a critical task in graph data mining, aims to identify anomalous nodes that significantly differ from the majority of nodes in a network. Existing methods for graph anomaly detection typically adopt dataset-specific training paradigms, i.e., training a separate model for each dataset. However, such methods lack generalization capability across datasets and incur high training costs. To overcome these limitations, recent studies have begun to focus on the generalization potential of residual features. Such features are obtained by computing the difference between a node’s own representation and the representation after neighborhood propagation, which can largely offset dataset-specific semantic information and thus retaingeneral information closely related to anomalous patterns. Despite initial progress in this direction, the modeling of residual features still faces the following key challenges: First, when computing the difference between a node’s representations before and after neighborhood propagation, the sparsity of neighbors and potential structural noise affect the reliability of the results to some extent. Second, the computation of representations relies on graph neural network (GNN) to learn local relationships, which makes it difficult to model global relationships that are also beneficial for anomaly detection, thus limiting the expressive power of residual features. To address these issues, this study proposes GRAD, a generalizable graph anomaly detection method via joint perception of global and local residual information. Specifically, based on GNN for modeling local node relationships, GRAD introduces a linear Transformer module to model global structural correlations among nodes in the feature space without relying on the original graph structure, thus obtaining node representations with global awareness. Then, GRAD transforms the representations into residuals between each node and its neighbors from both global and local perspectives, and integrates them to form dataset-independent general node representations. Extensive experiments on multiple public graph datasets from different domains verify the effectiveness of GRAD.

    参考文献
    相似文献
    引证文献
引用本文

张家强,陈松灿.全局与局部残差信息联合感知的可泛化图异常检测.软件学报,2026,37(4):1560-1574

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-12
  • 最后修改日期:2025-06-30
  • 录用日期:
  • 在线发布日期: 2025-09-02
  • 出版日期: 2026-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号