面向开放世界持续学习的任务敏感提示驱动混合专家模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62476228)


Task-aware Prompt-driven Mixture-of-experts Model for Open-world Continual Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    开放世界持续学习(OWCL)旨在模拟现实环境中任务不断演化、类别动态变化且遇到未经训练的未知样本的情景. 一个良好的开放世界持续学习模型不仅需要在学习新任务的同时保持对已学任务的记忆, 还需具备识别未知类别的能力, 进而实现持续且鲁棒的知识积累与泛化. 然而, 现有持续学习方法普遍建立在封闭世界假设之上, 无法有效应对开放类别带来的类别不确定性与任务间干扰, 尤其在知识稳定性与知识可塑性之间的权衡上表现出明显不足. 因此, 在开放世界持续学习问题的形式化定义基础上, 提出一种任务敏感提示驱动的混合专家模型TP-MoE (task-aware prompt-driven mixture of experts), 以实现对任务语义的动态建模与专家模块的高效调度, 从而帮助模型进行知识传输和知识更新. 具体而言, TP-MoE引入一种即插即用的任务提示聚合机制并改进门控机制用以专家网络路由, 在任务增量过程中持续融合历史与当前任务知识; 同时结合一种自适应开放边界阈值策略, 可根据新旧知识的迁移动态调整开放类别的判别边界, 从而提升开放类别检测能力与已知类别分类准确性. 实验结果表明, TP-MoE在Split-CIFAR100和Open-CORe50基准数据集上对各类指标的测试均取得领先性能, 展现出良好的稳健性与泛化性, 开放世界持续学习任务中的知识建模与任务调度提供了一种可扩展、可迁移的新框架.

    Abstract:

    Open-world continual learning (OWCL) aims to simulate real-world scenarios where tasks evolve continuously, categories change dynamically, and unseen samples are encountered. A well-designed OWCL model is expected not only to retain knowledge of learned tasks while acquiring new tasks but also to recognize unknown categories, thus achieving continuous and robust knowledge accumulation and generalization. However, most existing continual learning methods are built upon the closed-world assumption and cannot effectively cope with the category uncertainty and inter-task interference introduced by open categories. In particular, they show clear limitations in balancing knowledge stability and plasticity. Therefore, based on the formal definition of the OWCL problem, this study proposes a task-aware prompt-driven mixture-of-experts model (TP-MoE), which realizes dynamic modeling of task semantics and efficient scheduling of expert modules, thus supporting knowledge transfer and knowledge update. Specifically, TP-MoE introduces a plug-and-play task prompt aggregation mechanism and improves the gating strategy for expert routing, enabling the continual integration of historical and current task knowledge during task increments. At the same time, an adaptive open-boundary thresholding strategy is incorporated, which dynamically adjusts the decision boundaries of open categories according to the transfer between new and old knowledge, thus enhancing both open-category detection capability and known-category classification accuracy. Experimental results demonstrate that TP-MoE achieves state-of-the-art performance across various metrics on the Split-CIFAR100 and Open-CORe50 benchmarks, exhibiting strong robustness and generalization. This study provides a scalable and transferable framework for knowledge modeling and task scheduling in open-world continual learning.

    参考文献
    相似文献
    引证文献
引用本文

李昱洁,吴晗,孟丹,李天瑞,杨新.面向开放世界持续学习的任务敏感提示驱动混合专家模型.软件学报,2026,37(4):1531-1547

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-12
  • 最后修改日期:2025-06-30
  • 录用日期:
  • 在线发布日期: 2025-09-02
  • 出版日期: 2026-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号