面向欺诈检测的风险感知动态聚合图联邦学习
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2022YFB2703100)


Risk Perception Dynamic Aggregation Graph Federated Learning for Fraud Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着信息技术的迅猛发展, 欺诈行为在金融交易、社交网络与评论系统等多个领域呈现出日益复杂化和多样化的趋势, 给传统欺诈检测技术带来了严峻挑战. 当前主流的基于图神经网络的方法虽然在单机构数据环境中表现出色, 但由于涉及用户敏感信息, 难以实现跨机构间的数据共享与协作, 进而限制了模型的训练效果与泛化性能. 联邦学习作为一种新兴的隐私保护分布式学习范式, 为跨机构协作训练提供了可行途径, 但现有图联邦学习方法多针对通用图任务设计, 难以适应欺诈检测中普遍存在的类别分布不平衡和数据异构性问题, 导致在欺诈样本识别方面表现不佳. 为应对上述挑战, 提出一种面向欺诈检测的风险感知动态聚合图联邦学习方法(FedRPDA), 旨在有效应对跨机构的复杂欺诈风险事件识别. FedRPDA包括两项关键策略: 典型风险动态聚合策略通过衡量客户端图中欺诈节点的结构性风险强度, 并结合具有时间衰减特性的动态权重映射机制来自适应地调整客户端的聚合权重, 从而在数据异构条件下增强全局模型对正常样本与典型欺诈样本的判别能力; 多样化风险平均聚合策略结合基于变分扰动的欺诈样本特征增强机制与全局原型引导的对比学习机制, 有效提升模型对结构多样、数量稀少的非典型欺诈样本的表征能力, 促进其在特征空间中向共性异常靠拢, 进一步提升模型在复杂欺诈风险场景下的识别鲁棒性. 在多个真实欺诈检测数据集上的实验结果表明, FedRPDA 在检测性能与训练收敛效率方面显著优于现有图联邦学习基线方法, 展现出良好的泛化能力与实际应用潜力.

    Abstract:

    With the rapid development of information technology, fraudulent behaviors in multiple fields such as financial transactions, social networks, and review systems show an increasingly complex and diversified trend, which poses a serious challenge to traditional fraud detection techniques. Although current mainstream graph neural network-based methods perform well in single-agency data environments, cross-agency data sharing and collaboration are difficult due to the involvement of sensitive user information, which in turn limits the training effectiveness and generalization performance of the model. Federated learning, as an emerging privacy-preserving distributed learning paradigm, provides a feasible way for cross-agency collaborative training, but existing graph federated learning methods are mostly designed for general graph tasks, making them difficult to adapt to the class imbalance and data heterogeneity problems prevalent in fraud detection, resulting in poor performance in fraud sample identification. To address the above challenges, this study proposes a risk perception dynamic aggregation graph federated learning method (FedRPDA) for fraud detection, aiming to effectively deal with complex fraud risk event recognition across organizations. FedRPDA includes two key strategies: the typical risk dynamic aggregation strategy measures the structural risk intensity of fraudulent nodes in the client graph and combines it with a dynamic weight mapping mechanism with temporal decay characteristics to adaptively adjust the aggregation weights of clients, thus enhancing the global model’s ability to discriminate between normal samples and typical fraud samples under heterogeneous data conditions; the diversified risk average aggregation strategy integrates a variance perturbation-based feature enhancement mechanism for fraud samples with a global prototype-guided contrastive learning mechanism, which effectively improves the model’s ability to represent structurally diverse and scarce a typical fraud samples, promotes their convergence toward common anomalies in the feature space, and further enhances the model’s robustness in recognizing complex fraud risk scenarios. Experimental results on several real-world fraud detection datasets show that FedRPDA significantly outperforms existing graph federated learning baseline methods in terms of detection performance and training convergence efficiency, and demonstrates good generalization ability and practical application potential.

    参考文献
    相似文献
    引证文献
引用本文

杨家震,邱天,陈可嘉,段明江,蒋健,胡泽远,宋明黎,冯尊磊.面向欺诈检测的风险感知动态聚合图联邦学习.软件学报,2026,37(4):1511-1530

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-28
  • 最后修改日期:2025-06-30
  • 录用日期:
  • 在线发布日期: 2025-09-02
  • 出版日期: 2026-04-06
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号