摘要:随着信息技术的迅猛发展, 欺诈行为在金融交易、社交网络与评论系统等多个领域呈现出日益复杂化和多样化的趋势, 给传统欺诈检测技术带来了严峻挑战. 当前主流的基于图神经网络的方法虽然在单机构数据环境中表现出色, 但由于涉及用户敏感信息, 难以实现跨机构间的数据共享与协作, 进而限制了模型的训练效果与泛化性能. 联邦学习作为一种新兴的隐私保护分布式学习范式, 为跨机构协作训练提供了可行途径, 但现有图联邦学习方法多针对通用图任务设计, 难以适应欺诈检测中普遍存在的类别分布不平衡和数据异构性问题, 导致在欺诈样本识别方面表现不佳. 为应对上述挑战, 提出一种面向欺诈检测的风险感知动态聚合图联邦学习方法(FedRPDA), 旨在有效应对跨机构的复杂欺诈风险事件识别. FedRPDA包括两项关键策略: 典型风险动态聚合策略通过衡量客户端图中欺诈节点的结构性风险强度, 并结合具有时间衰减特性的动态权重映射机制来自适应地调整客户端的聚合权重, 从而在数据异构条件下增强全局模型对正常样本与典型欺诈样本的判别能力; 多样化风险平均聚合策略结合基于变分扰动的欺诈样本特征增强机制与全局原型引导的对比学习机制, 有效提升模型对结构多样、数量稀少的非典型欺诈样本的表征能力, 促进其在特征空间中向共性异常靠拢, 进一步提升模型在复杂欺诈风险场景下的识别鲁棒性. 在多个真实欺诈检测数据集上的实验结果表明, FedRPDA 在检测性能与训练收敛效率方面显著优于现有图联邦学习基线方法, 展现出良好的泛化能力与实际应用潜力.