SWTuner: 基于机器学习方法的分布式编译调优框架
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP314

基金项目:

国家重点研发计划(2023YFB3001500)


SWTuner: Distributed Compilation Tuning Framework Based on Machine Learning Methods
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着编译技术的不断进步, 现代编译器支持了更为丰富的编程模型和复杂的编译优化, 使得手动调整编译选项以获得最佳性能变得非常困难. 尽管已有多种自动化的编译调优方法被提出, 但是面对庞大的搜索空间, 传统的启发式搜索算法很难避免陷入局部最优解. 同时, 现有调优方法主要针对单核或多核架构设计, 这限制了它们在大规模并行计算系统中的应用. 为了解决这些问题, 设计并实现基于机器学习方法的分布式编译调优框架SWTuner, 通过引入AUC-Bandit分布式元搜索策略、机器学习模型指导的性能预测以及基于SHAP的编译选项分析及筛选等技术手段, 有效提升了编译调优过程中的资源利用率和搜索效率. 实验结果显示, SWTuner在神威新一代超级计算机上对典型测试用例的调优中表现出色, 相较于其他调优方法, 其不仅缩短了搜索时间, 还能够显著降低搜索过程中的实际运行功耗. 在调优过程中, SWTuner所使用的随机森林模型显示出了良好的泛化能力和预测准确性, 并且在保证调优效果的前提下有效降低了搜索空间的维度, 为高性能计算中的自动编译调优提供了一个高效且可靠的解决方案.

    Abstract:

    With the continuous advancement of compilation technology, modern compilers support richer programming models and more complex compilation optimizations, which makes manually adjusting compilation options for optimal performance extremely challenging. Although various automated compilation tuning methods have been proposed, traditional heuristic search algorithms often struggle to avoid being trapped in local optima when confronted with vast search spaces. Moreover, most existing tuning methods target single-core or multi-core architectures, limiting their use in large-scale parallel computing systems. To address these issues, this study designs and implements a distributed compilation tuning framework, SWTuner, based on machine learning methodologies. By introducing AUC-Bandit-based distributed meta-search strategies, machine learning model-guided performance prediction, and SHAP-based compilation option analysis and filtering, the resource utilization and search efficiency during the compilation tuning process are significantly improved. Experimental results show that SWTuner performs excellently in tuning typical test cases on the new-generation Sunway supercomputer, not only reducing search time but also achieving notable reductions in actual execution power consumption during the search process compared to other tuning methods. During the tuning process, the random forest model employed by SWTuner demonstrates good generalization capability and prediction accuracy, effectively reducing search space dimensionality while maintaining tuning effectiveness, providing an efficient and reliable solution for automatic compilation tuning in high-performance computing.

    参考文献
    相似文献
    引证文献
引用本文

周文浩,沈莉,王飞,肖谦,李斌,高秀武,宋长明,安虹,漆锋滨. SWTuner: 基于机器学习方法的分布式编译调优框架.软件学报,,():1-19

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:2025-05-05
  • 录用日期:
  • 在线发布日期: 2025-10-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京市海淀区中关村南四街4号,邮政编码:100190
电话:010-62562563 传真:010-62562533 Email:jos@iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号